#! /usr/bin/env python3 # def circle01_length ( ): #*****************************************************************************80 # ## circle01_length(): length of the circumference of the unit circle in 2D. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 June 2015 # # Author: # # John Burkardt # # Output: # # real VALUE, the length. # import numpy as np r = 1.0 value = 2.0 * np.pi * r return value def circle01_length_test ( ) : #*****************************************************************************80 # ## circle01_length_test() tests circle01_length(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 June 2015 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'circle01_length_test' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' circle01_length returns the length of the unit circle.' ) value = circle01_length ( ) print ( '' ) print ( ' circle01_length() = %g' % ( value ) ) return def circle01_monomial_integral ( e ): #*****************************************************************************80 # ## circle01_monomial_integral(): integrals on circumference of unit circle in 2D. # # Discussion: # # The integration region is # # X^2 + Y^2 = 1. # # The monomial is F(X,Y) = X^E(1) * Y^E(2). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 June 2015 # # Author: # # John Burkardt # # Reference: # # Philip Davis, Philip Rabinowitz, # Methods of Numerical Integration, # Second Edition, # Academic Press, 1984, page 263. # # Input: # # integer E(2), the exponents of X and Y in the # monomial. Each exponent must be nonnegative. # # Output: # # real INTEGRAL, the integral. # from scipy.special import gamma if ( e[0] < 0 or e[1] < 0 ): print ( '' ) print ( 'circle01_monomial_integral - Fatal error!' ) print ( ' All exponents must be nonnegative.' ) raise Exception ( 'circle01_monomial_integral - Fatal error!' ) if ( ( ( e[0] % 2 ) == 1 ) or ( ( e[1] % 2 ) == 1 ) ): integral = 0.0 else: integral = 2.0 for i in range ( 0, 2 ): integral = integral * gamma ( 0.5 * float ( e[i] + 1 ) ) integral = integral / gamma ( 0.5 * float ( e[0] + e[1] + 2 ) ) return integral def circle01_monomial_integral_test ( ): #*****************************************************************************80 # ## circle01_monomial_integral_test() tests circle01_monomial_integral(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 June 2015 # # Author: # # John Burkardt # from numpy.random import default_rng import numpy as np rng = default_rng ( ) m = 2 n = 4192 test_num = 20 print ( '' ) print ( 'circle01_monomial_integral_test():' ) print ( ' circle01_monomial_integral() returns the value of the' ) print ( ' integral of a monomial over the unit circle in 2D.' ) print ( ' Compare with a Monte Carlo estimate.' ) # # Get sample points. # x = circle01_sample ( n, rng ) print ( '' ) print ( ' Number of sample points used is %d' % ( n ) ) # # Randomly choose X, Y exponents. # print ( '' ) print ( ' If any exponent is odd, the integral is zero.' ) print ( ' We restrict this test to randomly chosen even exponents.' ) print ( '' ) print ( ' Ex Ey MC-Estimate Exact Error' ) print ( '' ) for test in range ( 0, test_num ): e = rng.integers ( low = 0, high = 5, size = m, endpoint = True ) e[0] = e[0] * 2 e[1] = e[1] * 2 value = monomial_value ( m, n, e, x ) result = circle01_length ( ) * np.sum ( value ) / float ( n ) exact = circle01_monomial_integral ( e ) error = abs ( result - exact ) print ( ' %2d %2d %14.6g %14.6g %10.2g' \ % ( e[0], e[1], result, exact, error ) ) return def circle01_sample ( n, rng ): #*****************************************************************************80 # ## circle01_sample() samples points on the circumference of the unit circle in 2D. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 02 January 2024 # # Author: # # John Burkardt # # Input: # # integer N, the number of points. # # rng(): the current random number generator. # # Output: # # real X(2,N), the points. # import numpy as np r = 1.0 c = np.zeros ( 2 ) theta = rng.random ( size = n ) x = np.zeros ( [ 2, n ] ) for j in range ( 0, n ): x[0,j] = c[0] + r * np.cos ( 2.0 * np.pi * theta[j] ) x[1,j] = c[1] + r * np.sin ( 2.0 * np.pi * theta[j] ) return x def circle01_sample_test ( ): #*****************************************************************************80 # ## circle01_sample_test() tests circle01_sample(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 June 2015 # # Author: # # John Burkardt # from numpy.random import default_rng rng = default_rng ( ) print ( '' ) print ( 'circle01_sample_test)_' ) print ( ' circle01_sample() samples the unit circle.' ) n = 10 x = circle01_sample ( n, rng ) r8mat_transpose_print ( 2, n, x, ' Sample points in the unit circle.' ) return def circle_integrals_test ( ): #*****************************************************************************80 # ## circle_integrals_test tests circle_integrals(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 June 2015 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'circle_integrals_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' Test circle_integrals().' ) # # Library functions. # circle01_length_test ( ) circle01_monomial_integral_test ( ) circle01_sample_test ( ) # # Terminate. # print ( '' ) print ( 'circle_integrals_test():' ) print ( ' Normal end of execution.' ) return def monomial_value ( m, n, e, x ): #*****************************************************************************80 # ## monomial_value() evaluates a monomial. # # Discussion: # # This routine evaluates a monomial of the form # # product ( 1 <= i <= m ) x(i)^e(i) # # The combination 0.0^0, if encountered, is treated as 1.0. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 April 2015 # # Author: # # John Burkardt # # Input: # # integer M, the spatial dimension. # # integer N, the number of evaluation points. # # integer E(M), the exponents. # # real X(M,N), the point coordinates. # # Output: # # real V(N), the monomial values. # import numpy as np v = np.ones ( n ) for i in range ( 0, m ): if ( 0 != e[i] ): for j in range ( 0, n ): if ( x[i,j] == 0.0 ): v[j] = 0.0 else: v[j] = v[j] * x[i,j] ** e[i] return v def r8mat_transpose_print ( m, n, a, title ): #*****************************************************************************80 # ## r8mat_transpose_print() prints an R8MAT, transposed. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 31 August 2014 # # Author: # # John Burkardt # # Input: # # integer M, the number of rows in A. # # integer N, the number of columns in A. # # real A(M,N), the matrix. # # string TITLE, a title. # r8mat_transpose_print_some ( m, n, a, 0, 0, m - 1, n - 1, title ) return def r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ): #*****************************************************************************80 # ## r8mat_transpose_print_some() prints a portion of an R8MAT, transposed. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 13 November 2014 # # Author: # # John Burkardt # # Input: # # integer M, N, the number of rows and columns of the matrix. # # real A(M,N), an M by N matrix to be printed. # # integer ILO, JLO, the first row and column to print. # # integer IHI, JHI, the last row and column to print. # # string TITLE, a title. # incx = 5 print ( '' ) print ( title ) if ( m <= 0 or n <= 0 ): print ( '' ) print ( ' (None)' ) return for i2lo in range ( max ( ilo, 0 ), min ( ihi, m - 1 ), incx ): i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m - 1 ) i2hi = min ( i2hi, ihi ) print ( '' ) print ( ' Row: ', end = '' ) for i in range ( i2lo, i2hi + 1 ): print ( '%7d ' % ( i ), end = '' ) print ( '' ) print ( ' Col' ) j2lo = max ( jlo, 0 ) j2hi = min ( jhi, n - 1 ) for j in range ( j2lo, j2hi + 1 ): print ( '%7d :' % ( j ), end = '' ) for i in range ( i2lo, i2hi + 1 ): print ( '%12g ' % ( a[i,j] ), end = '' ) print ( '' ) return def r8vec_print ( n, a, title ): #*****************************************************************************80 # ## r8vec_print() prints an R8VEC. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 31 August 2014 # # Author: # # John Burkardt # # Input: # # integer N, the dimension of the vector. # # real A(N), the vector to be printed. # # string TITLE, a title. # print ( '' ) print ( title ) print ( '' ) for i in range ( 0, n ): print ( '%6d: %12g' % ( i, a[i] ) ) def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 April 2013 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return None if ( __name__ == '__main__' ): timestamp ( ) circle_integrals_test ( ) timestamp ( )