#! /usr/bin/env python3 # def asa121_test ( ): #*****************************************************************************80 # ## asa121_test() tests asa121(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 16 August 2022 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'asa121_test():' ) print ( ' Python version: ' + platform.python_version ( ) ) print ( ' Test asa121().' ) asa121_test01 ( ) # # Terminate. # print ( '' ) print ( 'asa121_test():' ) print ( ' Normal end of execution.' ) return def asa121_test01 ( ): #*****************************************************************************80 # ## asa121_test01() tests trigamma(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 16 August 2022 # # Author: # # John Burkardt # import numpy as np print ( '' ) print ( 'asa121_test01():' ) print ( ' trigamma() computes the trigamma function.' ) print ( ' Compare the result to tabulated values.' ) print ( '' ) print ( ' X ' ) print ( 'FX FX2' ) print ( ' ' ) print ( '(Tabulated) (TRIGAMMA) DIFF' ) print ( '' ) n_data = 0 while ( True ): n_data, x, fx = trigamma_values ( n_data ) if ( n_data == 0 ): break fx2, ifault = trigamma ( x ) print ( ' %12.4f %24.16e %24.16e %10.4e' \ % ( x, fx, fx2, np.abs ( fx - fx2 ) ) ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return def trigamma ( x ): #*****************************************************************************80 # ## trigamma() calculates trigamma(x) = d^2 log(gamma(x)) / dx^2 # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 16 August 2022 # # Author: # # Original FORTRAN77 version by BE Schneider. # Python version by John Burkardt. # # Reference: # # BE Schneider, # Algorithm AS 121: # Trigamma Function, # Applied Statistics, # Volume 27, Number 1, pages 97-99, 1978. # # Input: # # real X, the argument of the trigamma function. # 0 < X. # # Output: # # real VALUE, the value of the trigamma function at X. # # integer IFAULT, error flag. # 0, no error. # 1, X <= 0. # a = 0.0001 b = 5.0 b2 = 0.1666666667 b4 = -0.03333333333 b6 = 0.02380952381 b8 = -0.03333333333 # # Check the input. # if ( x <= 0.0 ): ifault = 1 value = 0.0 return value, ifault ifault = 0 z = x # # Use small value approximation if X <= A. # if ( x <= a ): value = 1.0 / x / x return value, ifault # # Increase argument to ( X + I ) >= B. # value = 0.0 while ( z < b ): value = value + 1.0 / z / z z = z + 1.0 # # Apply asymptotic formula if argument is B or greater. # y = 1.0 / z / z value = value + 0.5 * \ y + ( 1.0 \ + y * ( b2 \ + y * ( b4 \ + y * ( b6 \ + y * b8 )))) / z return value, ifault def trigamma_values ( n_data ): #*****************************************************************************80 # ## trigamma_values() returns some values of the trigamma function. # # Discussion: # # In Mathematica, the function can be evaluated by: # # PolyGamma[1,x] # # trigamma(X) = d^2 ln ( Gamma ( X ) ) / d X^2 # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Input: # # integer N_data. The user sets N_data to 0 before the first call. # # Output: # # integer N_data. On each call, the routine increments N_data by 1, and # returns the corresponding data; when there is no more data, the # output value of N_data will be 0 again. # # real X, the argument of the function. # # real F, the value of the function. # import numpy as np n_max = 11 f_vec = np.array ( ( \ 0.1644934066848226E+01, \ 0.1433299150792759E+01, \ 0.1267377205423779E+01, \ 0.1134253434996619E+01, \ 0.1025356590529597E+01, \ 0.9348022005446793E+00, \ 0.8584318931245799E+00, \ 0.7932328301639984E+00, \ 0.7369741375017002E+00, \ 0.6879720582426356E+00, \ 0.6449340668482264E+00 )) x_vec = np.array ( ( \ 1.0E+00, \ 1.1E+00, \ 1.2E+00, \ 1.3E+00, \ 1.4E+00, \ 1.5E+00, \ 1.6E+00, \ 1.7E+00, \ 1.8E+00, \ 1.9E+00, \ 2.0E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f if ( __name__ == '__main__' ): timestamp ( ) asa121_test ( ) timestamp ( )