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Sparse grid (SG) stochastic collocation methods have been recently used to build accurate but cheap-to-
run surrogates for groundwater models to reduce the computational burden of Bayesian uncertainty
analysis. The surrogates can be built for either a log-likelihood function or state variables such as hydrau-
lic head and solute concentration. Using a synthetic groundwater flow model, this study evaluates the
log-likelihood and head surrogates in terms of the computational cost of building them, the accuracy
of the surrogates, and the accuracy of the distributions of model parameters and predictions obtained
using the surrogates. The head surrogates outperform the log-likelihood surrogates for the following four
reasons: (1) the shape of the head response surface is smoother than that of the log-likelihood response
surface in parameter space, (2) the head variation is smaller than the log-likelihood variation in param-
eter space, (3) the interpolation error of the head surrogates does not accumulate to be larger than the
interpolation error of the log-likelihood surrogates, and (4) the model simulations needed for building
one head surrogate can be recycled for building others. For both log-likelihood and head surrogates,
adaptive sparse grids are built using two indicators: absolute error and relative error. The adaptive head
surrogates are insensitive to the error indicators, because the ratio between the two indicators is hydrau-
lic head, which has small variation in the parameter space. The adaptive log-likelihood surrogates based
on the relative error indicators outperform those based on the absolute error indicators, because adapta-
tion based on the relative error indicator puts more sparse-grid nodes in the areas in the parameter space
where the log-likelihood is high. While our numerical study suggests building state-variable surrogates
and using the relative error indicator for building log-likelihood surrogates, selecting appropriate type of
surrogates and error indicators depends on the shapes of response surfaces. The shapes should be approx-
imated and examined before building sparse grid surrogates.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Uncertainty analysis has become a common practice in ground-
water modeling in the last several decades for evaluating model
predictive performance, improving model structures, and support-
ing science-informed decision-making (Gupta et al., 2012; Matott
et al., 2009; Tartakovsky, 2013). Among various methods devel-
oped for uncertainty analysis, Bayesian approaches are one of the
most popular methods. However, in comparison with other meth-
ods of uncertainty analysis that are computationally frugal (Hill
et al., 2015), Bayesian approaches are computationally expensive,
because they always involve Markov chain Monte Carlo (MCMC)
simulations, in which tens to hundreds of thousands of model
executions are necessary for estimating the probability distribu-
tions of model parameters and predictions. To alleviate the com-
puting burden, one solution is to replace a model by its surrogate
that is sufficiently accurate but computationally cheap, and a
review article of surrogate modeling is given by Razavi et al.
(2012). Among various methods of building surrogates, the sparse
grid (SG) stochastic collocation methods are used in this study.
Although the SG methods have become popular, using them for
Bayesian uncertainty quantification has been reported only in a
limited number of groundwater studies (Zeng et al., 2012; Zhang
et al., 2013, 2015). In other uses of SG methods (e.g., Lin and
Tartakovsky, 2009, 2010; Lin et al., 2010; Shi and Yang, 2009;
Zhang et al., 2010; Dai and Ye, 2015), SG methods are used to
estimate the distributions or moments (e.g., mean and covariance)
of groundwater state variables (e.g., hydraulic head and solute
concentration). These studies assumed known parameter
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distributions, and did not estimate the distributions using Bayesian
approaches.

This study investigates an important problem for SG-based
Bayesian uncertainty quantification, i.e., how to evaluate the like-
lihood function used in Bayesian inference. Consider a Bayesian
inference problem for a nonlinear model, f, used to simulate state
variables (e.g., hydraulic head and solute concentration),

d ¼ f ðhÞ þ e ð1Þ
where d is a vector dataset of state variable, h is a vector of model
parameters, and e is a vector of residuals that may include errors
in data, model parameters, and model structures. The goal of Baye-
sian inference is to estimate the posterior distributions, p(h|d), of
model parameters, h, given data, d, using Bayes’ theorem (Box and
Tiao, 1992)

pðhjdÞ ¼ LðhjdÞpðhÞR
LðhjdÞpðhÞdh ð2Þ

where p(h) is the prior distribution and L(h|d) is the likelihood func-
tion to measure goodness-of-fit between model simulations, f(h),
and data, d. The prior distribution can be specified using data from
previous studies or expert judgment. When prior information is
lacking, a common practice is to assume uniform distributions with
relatively large parameter ranges so that the prior distributions do
not affect the estimation of posterior distributions. Defining a like-
lihood function appropriate to a specific problem is still an open
question, and it has been shown that the likelihood function has
substantial impacts on the results of Bayesian inference (Evin
et al., 2014; Lu et al., 2013; Schoups and Vrugt, 2010; Shi et al.,
2014; Smith et al., 2010). While SG methods can work with various
likelihood functions (Zhang et al., 2013), this study uses the com-
monly used Gaussian likelihood function,

LðhjdÞ ¼ 1

ð2pÞN=2jRj1=2
exp �1

2
ðd� f ðhÞÞTR�1ðd� f ðhÞÞ

� �
; ð3Þ

where N is the number of data (i.e., the dimension of d), and
P

is
the covariance matrix of the residuals, e. Because analytical expres-
sions for p(h|d) are unavailable for nonlinear models, Markov chain
Monte Carlo (MCMC) methods are often used for estimating p(h|d).
In MCMC, a large number (tens to hundreds of thousands) of param-
eter samples are drawn; for each sample, the nonlinear function,
f(h), and the likelihood function, L(h|d), are evaluated. If the nonlin-
ear function is computationally expensive, the computational cost
for the Bayesian inference may be unaffordable. This necessitates
the use of SG surrogates.

In SG applications for Bayesian inference, two kinds of SG surro-
gates have been used. One is for the logarithm of the likelihood
function used to directly replace L(h|d) during Bayesian inference;
the other is for the state variables used to replace f(h) for evaluat-
ing the likelihood. Building the state variable surrogates is com-
mon in the literature of not only SG collocation (Ma and Zabaras,
2009b; Zeng et al., 2012; Zhang et al., 2015) but also other stochas-
tic collocation methods of Bayesian inference (Marzouk et al.,
2007; Marzouk and Xiu, 2009; Liao and Zhang, 2013; Laloy et al.,
2013). While building log-likelihood surrogates is less common
(Zhang et al., 2013), it is theoretically superior to building state-
variable surrogates for two reasons. First, only one log-likelihood
surrogate is needed regardless of the number of observations,
whereas one state-variable surrogate is needed for each observa-
tion. When the number of observations is large, the computational
cost of building multiple state-variable surrogates can be signifi-
cantly higher than that of building a single log-likelihood surro-
gate. In addition, each state-variable surrogate has its SG
interpolation error, and the error may accumulate and become
large when the surrogates are used for evaluating the likelihood
function. However, building the log-likelihood surrogates has its
own disadvantages as discussed in the numerical example below.
It is therefore necessary to evaluate the two kinds of surrogates
to determine which kind of surrogate is more appropriate for Baye-
sian inference.

To the best of our knowledge, there has been no reported refer-
ence on comparing the state-variable surrogates and the log-
likelihood surrogates. The study of Petvipusit et al. (2014) is the
only reference related to the comparison that we are aware of.
The study compared two surrogates used for optimization of CO2

sequestration. One surrogate was built for a break-even tax credit
function, and the other for the moments (i.e., mean and variance)
of the function. The comparative study of Petvipusit et al. (2014)
showed that building the moment surrogate is computationally
more efficient than building the function surrogate. However, their
study is irrelevant to comparison between the log-likelihood and
state-variable surrogates. The two kinds of surrogates are com-
pared in this study in terms of accuracy and efficiency. The accu-
racy is evaluated by comparing the posterior distributions
obtained using the two kinds of surrogates with the reference dis-
tributions obtained using the original model without any surro-
gates. The computational efficiency is evaluated by directly
comparing the number of model executions needed for building
the log-likelihood and state-variable surrogates. The comparative
evaluation is done by conducting a numerical study for a synthetic
groundwater flow model. The conclusions drawn from the syn-
thetic study through the quantitative and comprehensive evalua-
tions are expected to be applicable to other groundwater studies,
given that the complexity of the synthetic model is representative
for groundwater modeling.

This study also addresses another important issue for building
adaptive SG, i.e., whether absolute or relative error should be used
as the indicator for adaptation. Building adaptive SG is common for
saving computational cost by adding SG nodes only in the areas
where SG interpolation error is larger than a user-specified toler-
ance value (Barthelmann et al., 2000; Klimke, 2006; Ma and
Zabaras, 2009a; Pfluger, 2010; Zhang et al., 2013). The absolute
error (difference between a model simulation and its surrogate)
is the interpolation error itself, and has been used widely (Ma
and Zabaras, 2009a, 2009b; Stoyanov, 2013a, 2013b; Webster
et al., 2014; Zeng et al., 2012; Zhang et al., 2013), because it
directly controls SG accuracy. However, it should be noted that
having an accurate SG surrogate is insufficient to having an accu-
rate Bayesian inference, i.e., obtaining accurate posterior parame-
ter distributions. For example, adding adaptive SG points in low
likelihood regions to reduce SG error is useless to Bayesian infer-
ence, because only parameter samples generated from high likeli-
hood regions are accepted during MCMC simulation; this is
demonstrated below using the numerical examples based on the
synthetic groundwater model. The key question is where to add
adaptive SG nodes in Bayesian inference, and this problem is
resolved empirically in this study by using relative error, i.e., abso-
lute error divided by the model simulation. We explore whether
the relative error outperforms the absolute error by using both
absolute and relative error indicators to build adaptive log-
likelihood and state-variable surrogates. As discussed below in
Section 4, the two error indicators lead to significantly different
SG node locations when building the log-likelihood surrogates,
but not the case when building the state-variable surrogates. As
a result, the two error indicators have substantial impacts on the
accuracy of estimating the posterior distributions of model param-
eters and predictions.

It should be noted that this study is focused on using SG for
Bayesian uncertainty quantification; other uses of SG are beyond
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the scope of this study. For example, this study does not consider
the use of SG for polynomial chaos expansion methods (Xiu and
Hesthaven, 2005). The remainder of this paper is organized as
follows. In section 2, we provide a brief description of developing
adaptive sparse grids. The synthetic groundwater model, its ran-
dom parameters and predictions, and the procedure for building
the log-likelihood and state-variable surrogates are described in
Section 3. The results of evaluating the two kinds of surrogates
using the absolute and relative error indicators are analyzed in
Section 4. Conclusions of this study are given in Section 5.
2. Methodology

This section briefly describes the sparse grid methods for build-
ing surrogates of nonlinear functions (e.g., likelihood function and
hydraulic head) in Section 2.1 to make this paper self-contained.
The techniques of building adaptive SG surrogates using the abso-
lute and relative error indicator as adaptation criteria are discussed
in Section 2.2. Section 2.3 defines the criteria used to evaluate
accuracy and efficiency of the distributions of model parameters
and predictions obtained using the different SG surrogates.

2.1. Sparse grid stochastic collocation methods

Since sparse grid (SG) surrogates are constructed from a series
of one-dimensional (1-D) hierarchical Lagrange interpolants
(Bungartz and Griebel, 2004; Klimke, 2006; Ma and Zabaras,
2009b; Zhang et al., 2013), we start this section with 1-D interpo-
lation (Bungartz and Griebel, 2004; Klimke, 2006). Consider a non-
linear function g(h). For convenience, we will assume h is
contained in the range [0,1], but simple translation and dilation
allows these results to be extended to any bounded interval. The
function g(h) can represent the original nonlinear model or a
related function such as the likelihood function. The 1-D hierarchi-
cal Lagrange interpolation formula U is defined as

ULðgÞðhÞ ¼
XL
i¼0

DUiðgÞðhÞ; ð4Þ

where L is the resolution level. UL(g)(h) is a simplified expression of
UL(g(h))(h), implying that ULðgÞ is first built for function g(h) and
then applied to any values of parameter h of function g. This mean-
ing of the notation is also applied to the incremental interpolation

function, DUiðgÞ. The summation over levels up to the resolution
level exhibits the hierarchical structure of UL. The incremental
interpolation operator DUi(g)(h) is given as,

DUiðgÞðhÞ ¼
Xmi

j¼0

cij/
i
jðhÞ i ¼ 0; . . . ; L; ð5Þ

where the integer mi is the number of 1-D interpolation points
(or SG nodes) for level i, defined by

m0 ¼ 1

m1 ¼ 2

mi ¼ 2i�1 if i P 2

8><
>: ð6Þ

and /i
jðhÞ are the interpolation basis functions, and cij are the corre-

sponding interpolation coefficients.
Among the various quadrature rules (e.g., Clenshaw-Curits rule,

Fejer rule, Gauss–Legendre rule, Gauss-Patterson rule, and uniform
rule) developed for generating the SG nodes (Bungartz and Griebel,
2004; Klimke, 2006; Pfluger, 2010), the uniform rule is used in this
study. The abscissas, hij, of a standard 1-D uniform grid are given by
(Bungartz and Griebel, 2004)
h01 ¼ 0:5 if i ¼ 0

h11 ¼ 0; h12 ¼ 1 if i ¼ 1

hij ¼ ð2j� 1Þ
Xi

k¼0

mk � 1

 !,
if i P 2

8>>>><
>>>>:

ð7Þ

While linear, quadratic, or cubic hierarchical basis function can be
used for hierarchical Lagrange interpolation (Bungartz and
Griebel, 2004; Klimke, 2006; Pfluger, 2010), Zhang et al. (2013)
demonstrated that the cubic hierarchical basis outperforms the
linear and quadratic bases with a significant reduction in the num-
ber of required model executions. Therefore, the cubic hierarchical
basis is used, and it is given by (Bungartz and Griebel, 2004)

/0
1ðhÞ ¼ 1 0 6 h 6 1 if i ¼ 0 ð8Þ

/1
1ðhÞ ¼ h� h11 � dh

�dh � h� h11 � 2dh
�2dh 0 6 h 6 1 if i ¼ 1

/1
2ðhÞ ¼

h� h12 þ dh
�dh � h� h12 þ 2dh

�2dh 0 6 h 6 1 if i ¼ 1

8>><
>>: ð9Þ

/i
jðhÞ ¼

Y3
k¼1

h� hij � ð2k� 3Þdh
�ð2k� 3Þdh h 2 Pi

j; if i P 2; and j is odd

/i
jðhÞ ¼

Y3
k¼1

h� hij � ð2k� 5Þdh
�ð2k� 5Þdh h 2 Pi

j; if i P 2; and j is even

/i
jðhÞ ¼ 0 otherwise

8>>>>>>><
>>>>>>>:

ð10Þ

where dh ¼ 1
2i
and Pi

j ¼ ½hij � dh; hij þ dh�. Graphic illustrations of this

and other basis functions can be found in literature (e.g., Bungartz
and Griebel, 2004; Klimke, 2006; Ma and Zabaras, 2009b; Zhang
et al., 2013). The interpolation coefficient, cij, is iteratively derived
as follows:

c01 ¼ DU0ðgÞðh01Þ ¼ U0ðgÞðh01Þ ¼ gðh01Þ i ¼ 0 ð11Þ

cij ¼ DUiðgÞðhijÞ ¼ UiðgÞðhijÞ � Ui�1ðgÞðhijÞ
¼ gðhijÞ � Ui�1ðgÞðhijÞ i P 1 ð12Þ

Equation (12) shows that, the coefficient, also called the hierarchi-
cal surplus of the basis function /i

jðhÞ, is the difference between

the interpolation function g(h) and the interpolant Ui�1(g) at hij.
When the function g(h) is smooth with respect to h, the magnitude
of the surplus cij approaches zero as the resolution level i increases
(Klimke, 2006; Ma and Zabaras, 2009a, 2009b). Therefore, the sur-
plus can be used as an error indicator to guide the sparse grid
refinement, i.e., adding SG nodes of the next level. It is also used
in the numerical exercise below to compare the surrogates for
hydraulic head and log-likelihood based on the absolute error and
relative error indicators.

Based on the 1-D hierarchical interpolation above, the multi-
dimensional hierarchical interpolation for a multivariate function
is built as

VL;DðgÞðhÞ ¼
X
kðiÞ6L

DVi;DðgÞðhÞ; ð13Þ

where D is the dimensions of model parameter h = (h1, . . . ,hD). For a
full tensor-product grid (not a sparse grid), the index k of SG nodes
at level i is given by

kðiÞ ¼ maxði1; . . . ; iDÞ: ð14Þ
The total number of points of the full-tensor product grid isPL

i¼1mi

� �D
, which grows exponentially with the model parameter
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dimension, D. For a sparse grid isotropic for all the parameters, k(i)
is given by

kðiÞ ¼ i1 þ � � � þ iD: ð15Þ
where i = (i1, . . . , iD) is a multi-index of the resolution level of
DVi,D(g)(h). As a function of level, the sparse grid used far fewer
points, as prescribed by the Smolyak rule (Eq(15)). Fig. 1 illustrates
the full tensor-product grid and the sparse grid built for a two-
dimensional problem (D = 2) with the same maximum resolution
level of L = 3. The number of SG grid nodes (i.e., the number of
model executions) is reduced from 81 for the full grid to 29 for
the sparse grid.

The incremental interpolation operator DVi,D(g)(h) is given by

DVi;DðgÞðhÞ ¼ DUi1 � � � � � DUiD ¼
X
j

cij/
i
jðhÞ; ð16Þ

where j = (j1, . . . , jD) and each j is a set ðjl ¼ 1; . . . ;mil ; l ¼ 1; . . . ;DÞ.
The multi-dimensional hierarchical basis function, /i

j, is defined by

/i
jðhÞ ¼

YD
n¼1

/in
jn
ðhnÞ; ð17Þ

where /in
jn
ðhnÞ is the 1-D hierarchical basis function given above. The

multi-dimensional interpolation coefficient, cij, is also derived itera-
tively by

c01 ¼ DV0;DðgÞðh01Þ ¼ V0;DðgÞðh01Þ ¼ gðh01Þ L ¼ 0 ð18Þ

cij ¼ DVi;DðgÞðhijÞ ¼ VL;DðgÞðhijÞ � VL�1;DðgÞðhijÞ
¼ gðhijÞ � VL�1;DðgÞðhijÞ L P 1 ð19Þ
2.2. Absolute and relative error indicators for building adaptive sparse
grids

For high dimensional problems, using adaptive SG is necessary
to further control the growth in SG nodes, i.e., the computational
cost of building the SG surrogate. Following Ma and Zabaras
(2009a) and Zhang et al. (2013) and using a 1-D SG as an example,
each SG node has two children at the next level. For example, the
Fig. 1. Illustration of (a) full tensor-product grid and (b) sparse grid built for a case of
different levels are marked in different colors. (For interpretation of the references to co
j-th SG node hij at level i has two child nodes, hiþ1
2j�1 and hiþ1

2j , at level

i + 1. Before adding the two child nodes, the error indicator at hij
(i.e., the corresponding interpolation coefficient cij) is compared
with a user-prescribed error tolerance, a. If the error indicator is
larger than a, then the two children are included in the new SG
nodes of level i + 1; otherwise, the grid refinement is terminated
at node hij. An example of the one-dimensional adaptive sparse grid
is referred to Fig. 4 of Zhang et al. (2013). Evaluating the error indi-
cator is important to the adaptation, because the SG only refines
for the nodes whose error indicator are larger than the error toler-
ance, a. In this study, we consider two error indicators: the abso-
lute error (AE),

AE ¼ jgðhÞ � VL;DðgÞðhÞj; ð20Þ

and the relative error (RE),

RE ¼ gðhÞ � VL;DðgÞðhÞ
gðhÞ

�����
�����: ð21Þ

The impact of the two error indicators on accuracy and efficiency of
SG-based Bayesian inference will be evaluated in the numerical
example below.

For a multi-dimensional problem, developing adaptive SG
(isotropic for all the parameters) is more complicated, because
the child nodes of each SG node have a tree-like structure with
two children in each direction in parameter space. For a SG node

hijðhi1j1 ; . . . ; h
iD
jD
Þ at level i, the two children, Cn

1ðhijÞ and Cn
2ðhijÞ, in the

n-th dimension are

Cn
1ðhijÞ ¼ ðhi1j1 ; . . . ; h

in�1
jn�1

; hinþ1
2jn�1; h

inþ1
jnþ1

; . . . ; hiDjD Þ
Cn
2ðhijÞ ¼ ðhi1j1 ; . . . ; h

in�1
jn�1

; hinþ1
2jn

; hinþ1
jnþ1

; . . . ; hiDjD Þ
ð22Þ

Because a node in the multi-dimensional SG has multiple parents in
each direction, the adaptation procedure becomes more compli-
cated, although the adaptation procedure is still similar to that of
the 1-D case by comparing the error indicator with an error toler-

ance. For example, Cn
1ðhijÞ is not only a child of hijðhi1j1 ; . . . h

iD
jD
Þ but also
two parameters and with the maximum resolution level of 3. Sparse grid nodes of
lor in this figure legend, the reader is referred to the web version of this article.)
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a child of hijðhi1�1
j1

; . . . ; hin�1
jn�1

; hinþ1
2jn�1; h

inþ1
jnþ1

; . . . ; hiDjD Þ, hijðhi1j1 ; h
i2�1
j02

; . . . ; hin�1
jn�1

;

hinþ1
2jn�1; h

inþ1
jnþ1

; . . . ; hiDjD Þ, and other SG nodes, where

j01 ¼ ðj1 þ 1Þ=2 if j1 is odd
j01 ¼ j1=2 if j1 is even

(
ð23Þ

As a result, a child node that is not needed by a parent node at one
adaptation step may be needed by another parent node in the same
or different adaptation step. This is illustrated in Fig. 2. While the
blue nodes with square frames at level 3 are not needed by the
green nodes with square frames at level 2, the nodes with labels
(1) and (2) are needed by the green nodes at the southeast and
northwest corners. This adaptive SG may correspond to the scenario
that SG node refinement is not needed at the third quadrant but
needed in other quadrants, if the function is smooth in the third
quadrant where a smaller number of SG nodes are needed to build
the SG surrogates. In other words, the adaptation strategy described
above considers local smoothness of the nonlinear functions in
different quadrants. The same adaptation procedure applies when
different basis functions and quadrature rules are used, although
the locations of SG nodes become different.

Special attention should be paid when using the relative error
defined in Eq. (21), especially when it is used for the log-
likelihood function, since the function depends on multiple factors,
including function forms (e.g., Gaussian and non-Gaussian), num-
ber of observations, d, and error statistics (e.g., the covariance
matrix used in Gaussian likelihood). We suggest examining the
shape and magnitude of the log-likelihood to ensure that the rela-
tive error is useful to improve the accuracy of adaptive SG. The def-
inition in Eq. (21) meets this goal for the Gaussian likelihood
defined in Eq. (3), because, when the number of observation is
not small and when the fit of model simulations to observation is
not perfect, the log-Gaussian likelihood is negative with small
absolute values in the area at the vicinity of the true parameter
Fig. 2. The standard uniform sparse grid (a) and adaptive sparse grid (b) built for
2-dimensional case. The maximum resolution level is 3. The end point of an arrow
line represents the SG node (level 3) deleted by the grid refinement termination of
the start point (level 2).
values. The relative error is thus large in this area, and more adap-
tion SG nodes are added in this area to improve the adaptive SG
and the surrogate-based Bayesian inference. This is illustrated in
the numerical example below. When the relative error is used for
building state-variable surrogates, if the state-variable variation
is small in parameter space, using the relative error should yield
similar results to those obtained using the absolute error. This is
also illustrated in the numerical example below. When the relative
error is used for building the state-variable surrogates, more nodes
are added in the area where the state-variable simulations are
small. This may be a disadvantage, because it makes difficult to
directly control SG accuracy. However, the advantages and disad-
vantages are unknown, and more research is warranted in a future
study, especially for groundwater reactive transport modeling.

2.3. Evaluation of accuracy and computational efficiency

For the four SG surrogates (log-likelihood and state-variable
surrogates with the absolute and relative error indicators), compu-
tational efficiency is evaluated by comparing the number of model
executions needed to build the surrogate. The computational time
of using the surrogates for estimating the distributions of model
parameters and predictions is ignored, because it is negligible in
comparison with the computational time of building the surro-
gates. For the issue of accuracy, since the SG interpolant accuracy
is directly measured by the surplus of the basis functions (see
Eq(19)), we focus on the two kinds of posterior distributions: (1)
the distributions of model parameters estimated using the MCMC
simulation with the adaptive SG surrogates and (2) the distribu-
tions of model predictions based on the parameter samples
obtained from the MCMC simulations. The accuracy is measured
by comparing the distributions obtained using the surrogates with
the distributions obtained using the original model without any
surrogates; the latter distributions are also referred to as reference
distributions. The measure used in this study is the relative
entropy, D(p||q), defined as (Cover and Thomas, 2006)

DðpkqÞ ¼
Z

pðxÞ logpðxÞ
qðxÞ dx; ð24Þ

where p(x) is the reference distribution, q(x) is the surrogate-based
distribution. Variable x can be either model parameters or predic-
tions in this study. In addition, the relative entropy is evaluated
for both the joint distribution of all model parameters/predictions
and for the marginal distributions of individual model parame-
ters/distributions. In practice, the distributions, p(x) and q(x), are
approximated by the empirical cumulative distribution functions
based on the MCMC samples of model parameters and predictions
(Lee and Park, 2006; Perez-Cruz and Fernando, 2008). Smaller
values of D(p||q) indicate more accurate surrogate-based distribu-
tions that are closer to the reference distributions. Generally speak-
ing, q(x) is considered to be sufficiently close to p(x), if the relative
entropy is in the order of magnitude of 10�4 (Ma and Zabaras,
2009b).
3. Synthetic groundwater model, random parameters, and
surrogate building

The synthetic model, revised after that of Rojas et al. (2008),
considers steady-state groundwater flow in a three-dimensional
domain with the dimension of 5000 m in length, 3000 m in width,
and 60 m in depth. As shown in Fig. 3, the domain has three geo-
logical layers, layer 1 being unconfined, layer 2 being a confining
layer, and layer 3 being confined. The thicknesses of Layers 1–3
are 35 m, 5 m and 25 m, respectively. The north and south lateral
boundaries are impermeable. The east boundary is a river located



Fig. 3. Sketch map of the synthetic model domain, boundary conditions, and
locations of drain and head observations. Observations O4 and O23 marked in the
figure are selected to evaluate the head surrogates using absolute and relative error
indicators.
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in layer 1; the river width is 10 m, and the river stage elevation is
35 m. The elevation of the riverbed bottom is 30 m, and the riv-
erbed thickness is 5 m; the riverbed conductance is 20 m2/d. The
east boundary beneath the river is impermeable. The west bound-
ary has a constant head of 56 m for all the three model layers. The
bottom boundary is impermeable. At the domain surface, uniform
precipitation with the rate of 9.0 � 10�4 m/d is applied. The
recharge rate to the aquifer is estimated by multiplying the precip-
itation rate to a recharge ratio, which is set as 0.15 in the synthetic
model. A drain is located at the center of the right half of the
domain; the drain bottom elevation is 45 m, and the drain conduc-
tance is 20 m2/d. A total of five pumping wells are located across
the domain, and a pumping rate of 250 m3/d per well is applied
to the confined layer (Layer 3). Heterogeneous fields of log hydrau-
lic conductivity are generated for each of the three layers using the
sequential Gaussian simulator (SGSIM) of the Geostatistical Library
(GSLIB) (Deutsch and Journel, 1998). For all the three layers, an iso-
tropic exponential covariance function is used with the correlation
length of 200 m, and the variance of log hydraulic conductivity is
set as 1.0. The mean values are 1.0 m/d, 0.1 m/d, and 5.0 m/d for
layers 1–3, respectively. The generated hydraulic conductivity is
used for the horizontal direction, and the vertical hydraulic con-
ductivity is calculated as 1/10 of the horizontal one. The flow
model is solved numerically using MODFLOW-2005 (Harbaugh,
2005). The quantities of prediction are the groundwater discharge
to the river, the recharge from the constant head boundary to the
aquifer, and the groundwater discharge to the drain.

A total of five random parameters are considered in this study,
and they are the recharge ratio, the boundary constant head, the
riverbed conductance, and the variance and correlation length of
the log hydraulic conductivity field of layer 1. These random
parameters represent different uncertainty in the three important
factors of the groundwater system: driving force (recharge ratio),
boundary conditions (boundary constant head and riverbed con-
ductance), and hydraulic conductivity (variance and correlation
length). For the latter two parameters, they are not used to gener-
ate multiple realizations of hydraulic conductivity. Instead, they
are used in the manner of kriging to generate a mean field of
hydraulic conductivity, and the mean field is used for the head
simulation, as done in the stochastic inverse modeling of
Hernandez et al. (2006). Uniform priors are assumed for the
parameters, and their ranges are [0.08,0.28] for the recharge ratio,
[46,62] for the boundary constant head, [1,50] for the riverbed
conductance, [0.1,10] for the variance, and [20,1000] for the corre-
lation length. Although the number of random parameters is rela-
tively small and cannot demonstrate the capability of the SG
methods to handle relatively high-dimensional problems, it is
expected that the conclusions of this study about the two kinds
of surrogates and the two kinds of error tolerance are applicable
to the relatively high-dimensional problems. Extending this study
to a relatively high-dimensional problem is warranted in a future
study.

The data used for estimating the posterior distributions include
120 measurements of hydraulic conductivity (K) (corrupted by 3%
white noise of measured values) and 32 observations of hydraulic
head (16 from layer 1 and 16 from layer 3) (Fig. 3). Measurement
errors of white noise (with mean of zero and variance of 0.01 m2)
are also added to the head data. The corrupted data are used in
the MCMC simulations. While the measurements of hydraulic con-
ductivity are used as conditioning data of SGSIM to generate
heterogeneous hydraulic conductivity, only measurements of
hydraulic head are used to evaluate the likelihood function. The
Differential Evolution Adaptive Metropolis Approach (DREAM)
developed by Vrugt et al. (2008, 2009) is used to estimate the pos-
terior distributions of model parameters, and the most recent
DREAM(ZS) code (Laloy and Vrugt, 2012; Vrugt and Ter Braak,
2011) is used in this study. When the original model is used to esti-
mate the reference parameter distributions, three parallel chains
are used, and the length of each chain is 30,000. After the burn-
in period, the last 20,000 samples of each chain are used. Therefore,
the computational cost without using surrogates requires a total of
90,000 model executions, which are significantly larger than that
needed for building the surrogates, as shown below. It should be
noted that the conclusions drawn from the numerical study are
independent of the MCMC approaches, and other approaches
(e.g., the delayed rejection adaptive Metropolis Hastings algorithm
developed by Haario et al. (2006)) can also be used.

When building the adaptive SG surrogates for this five-
dimensional problem, the adaptation occurs at level 5, because
the number of SG nodes is only 180 at level 4 and the number of
SG nodes increases substantially at level 5. The maximum level is
set to 8, and the results below show that it is sufficient to have
accurate estimates of distributions of model parameters and pre-
dictions. Given that the log-likelihood varies between negative
one million and ten, when building the log-likelihood surrogate
(SG_L_AE) using the absolute error indicator, the error tolerance
is set as 0.1. When building the log-likelihood surrogate (SG_L_RE)
using the relative error indicator, the error tolerance is set as 0.01,
i.e., 1‰ of the absolute log-likelihood. The head surrogates are built
for each head observation using the absolute error (SG_H_AE) and
relative error (SG_H_RE). The maximum resolution level is also set
to 8, and the adaptation starts at level 5. Since hydraulic head var-
ies between 40 and 60 m and the standard deviation of measure-
ment error is assumed to be 0.1 m, the absolute and relative
error tolerances are set to 0.001 and 2.0E�5, respectively, about
two orders of magnitude smaller than the measure error and the
relative error (measurement error divided by the mean head).
Because the error tolerances are strict, a large number of model
evaluations are needed when building the SG surrogates. The com-
putational cost can be reduced dramatically by increasing the error
tolerances but at the cost of moderately decreasing the accuracy of
the results of Bayesian inference (results not shown).

It should be noted that building head surrogates for multiple
head observations is not necessarily computationally more
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expensive than building a likelihood surrogate for a single likeli-
hood function. Since forward model runs provide head simulations
for all head observations, head simulations used for building one
head surrogate can be used for building another head surrogate
without increasing the computational cost. In an extreme case, if
all head surrogates use the same SG nodes in the parameters space,
the computational cost of building the multiple head surrogates is
the same as that of building one head surrogate.

When estimating the distributions of model predictions, a com-
mon practice is to first build the surrogates for the prediction vari-
ables and then use the surrogates to generate model predictions
based on the MCMC samples (i.e., the posterior samples) obtained
from the Bayesian inference. This however is not done in this
study, because we need to evaluate the accuracy of the model pre-
dictions based on the MCMC samples obtained using the four sur-
rogates. In other words, we need to exclude the error that may be
caused by using the surrogates of model predictions. Therefore, the
original model is used to estimate the distributions of the model
predictions, i.e., running MC simulations using the original model
with the MCMC samples.
4. Numerical results and evaluation of the surrogates

This section starts in Section 4.1 to present the distributions of
model parameters and predictions obtained using the original
model without using any surrogates. These distributions are used
as the reference for evaluating the accuracy of the corresponding
distributions obtained using the surrogates. In Section 4.2, the dis-
tributions obtained using the log-likelihood surrogates are pre-
sented. The results indicate that, the log-likelihood surrogates do
not give satisfactory results, although using the relative error indi-
cator is better than using the absolute error indicator. Section 4.3
shows the distributions obtained using the head surrogates are
better than those obtained using the log-likelihood surrogates.
The section also shows that using absolute or relative error indica-
tor has minimal impacts on the distributions of model parameters
Fig. 4. Posterior probability density functions of (a–e) five random parameters and (f–h
(reference) and sparse grid surrogates built for log-likelihood, SG_L_AE, and SG_L_RE. Th
references to color in this figure legend, the reader is referred to the web version of thi
and predictions. The reasons that the head surrogates outperform
the log-likelihood surrogates are given in Section 4.4.

4.1. Reference distributions obtained without using surrogates

Fig. 4(a)–(e) plot the marginal posterior probability density
functions (converted from histograms) of the five model parame-
ters based on the samples obtained from MCMC simulations using
the original model without any surrogates; these histograms are
labeled as reference. Fig. 4(f)–(h) does the same for the three model
predictions. These plots indicate that the MCMC results are satis-
factory for quantifying parametric and predictive uncertainty in
that the true parameter values and predictions are at the modes
or close to the modes of the distributions. In addition, except for
the riverbed conductance, the posterior parameter distributions
of the other four parameters are narrow and significantly concen-
trated relative to the uniform prior distributions (results not
shown). The difference between the prior and posterior parameter
distributions indicates that the available data of hydraulic conduc-
tivity and head observations are sufficient for reducing parametric
uncertainty. Fig. 4(f)–(h) shows that the predictive uncertainty is
still significant, and quantifying its uncertainty is necessary.

4.2. Evaluating log-likelihood surrogates built using absolute and
relative errors

Fig. 4(a)–(e) plot the marginal posterior probability density
functions for the five model parameters obtained using the SG sur-
rogates built for the log-likelihood function using the absolute
error indicator (denoted as SG_L_AE) and the relative error indica-
tor (denoted as SG_L_RE). These plots show that the surrogate-
based density functions are different from the reference density
functions, especially in the areas near the true values that have
high density and are important for uncertainty analysis and risk
assessment. The relative entropies listed in Table 1 for the marginal
and joint distributions are larger than 1E�4, suggesting that the
SG-based density functions are significantly different from the
) three model predictions based on the MCMC simulations using the original model
e vertical blue lines represent the true parameter values. (For interpretation of the
s article.)



Table 1
Relative entropies (REn) between reference posterior distributions (obtained without
using surrogates) and those obtained using the log-likelihood surrogate (SG_L_AE)
with absolute error and the log-likelihood surrogate (SG_L_RE) with relative error.
REn is evaluated for the marginal distributions of individual model parameters/
predictions and for the joint distribution of all the parameters/predictions.

Model parameters SG_L_AE SG_L_RE

Marginal
REn

Joint
REn

Marginal
REn

Joint
REn

Recharge ratio 1.58E�2 1.01E�1 3.80E�2 9.22E�2
Boundary constant head 8.75E�3 3.25E�4
Riverbed conductance 2.99E�2 8.63E�3
Variance 4.56E�3 2.39E�4
Correlation length 1.39E�3 1.38E�3

Model predictions
Discharge to river 3.08E�2 7.09E�1 4.78E�2 5.68E�1
Recharge from boundary

constant head
2.38E�2 1.03E�2

Discharge to drain 2.09E�2 1.24E�2

Fig. 5. Variation of average SG interpolation error with number of SG nodes at each
level (dot) for surrogates SG_L_AE and SG_L_RE.
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reference distributions. In Fig. 4(a)–(e), the density functions based
on SG_L_RE appear to be slightly closer to the reference distribu-
tions than those based on SG_L_AE. This is confirmed by the rela-
tive entropy values listed in Table 1. Except for the parameter of
recharge ratio, the relative entropy values of the marginal distribu-
tion are smaller for SG_L_RE than for SG_L_AE. The exception for
recharge ratio may not be critical, because the distributions based
on the two surrogates are visually similar, as shown in Fig. 4(a),
except at the peaks.

Fig. 4(f)–(h) plot the marginal posterior probability density
functions for the three predictions obtained using the original
model (without surrogate) and the two surrogates of SG_L_AE
and SG_L_RE. These plots show again that the two surrogate-
based density functions are different from the reference density
functions, especially in the areas near the true values with high
density. The relative entropy listed in Table 1 for the joint distribu-
tion is also in the order of magnitude of 1.0E�1, indicating a signif-
icant difference from the reference distributions. Table 1 shows
that, overall, the relative entropy values of the marginal distribu-
tions are larger for SG_L_AE than for SG_L_RE.

The reason that the distributions based on the log-likelihood
surrogates are not satisfactory is attributed to the accuracy of the
log-likelihood surrogates. Fig. 5 plots the variation of SG interpola-
tion error (averaged over all SG nodes) with the number of SG
nodes. Each dot in the figure corresponds to a resolution level.
The SG adaptation starts at level 5, and the SG error reaches its
minimum of 0.2 for SG_L_AE and 0.3 for SG_L_RE at level 8, after
which the SG error does not decrease. The larger interpolation
error for SG_L_RE is reasonable, because the relative error toler-
ance is set as 1% of the log-likelihood values that are large in mag-
nitude. Although the SG interpolation error can be further reduced
by increasing the maximum resolution level of 8, it is not pursued
in this study, because the numbers of SG nodes (25,980 and 13,964
for SG_L_AE and SG_L_RE, respectively) are already significantly
larger than those for building the head surrogates discussed below.

The number of SG nodes and their locations in the parameter
space is determined by not only the error indicators but also the
shape and magnitude of the log-likelihood function. This can be
understood by examining Fig. 6, which plots the log-likelihood
function and the node locations of the two surrogates for the indi-
vidual parameters (the other parameters are fixed at their true
value). The figure shows that the log-likelihood function ranges
between �60,000 and 10. Given the large absolute values (i.e.,
the negative values with large magnitude), when building the like-
lihood surrogate, the absolute error is seldom smaller than the
absolute error tolerance of 0.1. Therefore, more nodes are needed,
and the added nodes are always in the areas where the log-
likelihood function has large absolute value (i.e., the log-
likelihood is negative but with large magnitude). Such nodes how-
ever are useless for estimating posterior parameter distribution,
because of the low log-likelihood values.

This problem can be avoided by using the relative error indica-
tor, because the relative error indicator can quickly become smaller
than the relative error tolerance of 0.01. In addition, since larger
relative errors always occur near the peak of the log-likelihood
where the absolute value (magnitude) of the log-likelihood func-
tion is smaller, more nodes of SG_L_RE are added to the areas
where the log-likelihood function has smaller absolute value (mag-
nitude). As a result, SG_L_RE has fewer nodes than SG_L_AE in the
entire parameter space, but has more nodes than SG_L_AE near the
peak of the log-likelihood function. This is a useful feature for accu-
rately estimating the posterior parameter. It should be noted that
the usefulness of the relative error depends on the shape of the
log-likelihood. The discussion above is for the log-likelihood that
is negative with small absolute values near the peak of the log-
likelihood, which is always true for the Gaussian likelihood func-
tion in practice.

To further examine the accuracy of SG_L_AE and SG_L_RE, the
two surrogates are used to evaluate the log-likelihood function at
certain points in the parameter space. Fig. 7 shows the true log-
likelihood function values and the errors of the two surrogates at
100 uniform points along the range of prior distributions of the five
individual parameters (the other four parameters are fixed at their
true values). The root mean squared error (RMSE) of the 100 points
is also evaluated for the two surrogates, and they are given in
Fig. 7. Although SG_L_RE has larger RMSE than SG_L_AE for all
the five parameters, the error of SG_L_RE is smaller than that of
SG_L_AE at the peaks of the log-likelihood, i.e., the high probability
region on the posterior parameter distributions. Nonetheless, the
errors of the two surrogates are all larger than their error tolerance,
and this is believed to be the reason that the log-likelihood surro-
gates do not produce accurate distributions of the model parame-
ters and predictions.

4.3. Evaluating head surrogates built using absolute and relative errors

Fig. 8(a)–(e) plots the marginal posterior probability density
functions for the five model parameters obtained using the original



Fig. 6. Log-likelihood function and SG nodes in the space of individual parameters (the other four parameters are fixed at their true values). Each dot denotes a SG node.

Fig. 7. Errors of SG_L_AE and SG_L_RE for evaluating log-likelihood function at 100 uniform points in the space of the individual parameters (the other four parameters are
fixed at their true values). RMSE is the root mean squared errors averaged over the 100 points.

Fig. 8. Posterior probability density functions of (a–e) five random parameters and (f–h) three model predictions based on the MCMC simulations without using surrogate
(reference) and two sparse grid surrogates built for head, SG_H_AE, and SG_H_RE. The vertical blue lines represent the true parameter values. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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model (without any surrogates), the sparse grid surrogates built for
head using the absolute error (denoted as SG_H_AE) and relative
error (denoted as SG_H_RE). The numbers of SG nodes are 8162
and 8205 for SG_H_AE and SG_H_RE, respectively, significantly
smaller than the number of 51,713 for the full SG without adapta-
tion. The numbers of SG nodes of the two head surrogates are also
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significantly smaller than those for SG_L_AE (25,980) and SG_L_RE
(13,964). Therefore, building the head surrogates is computation-
ally more efficient than building the log-likelihood surrogates.

Comparing Fig. 8(a)–(e) with Fig. 4(a)–(e) shows that the den-
sity functions based on head surrogates are significantly closer to
the reference than those based on log-likelihood surrogates. This
is confirmed by the relative entropy values listed in Table 2 for
the head surrogates, because these values are about one order of
magnitude smaller than those listed in Table 1 for the log-
likelihood surrogates. The small relative entropy values listed in
Table 2 suggest that the distributions based on the head surrogates
are sufficiently close to the reference. Nonetheless, the distribu-
tions based on SG_H_RE are better than those based on SG_H_AE.
For example, the relative entropy of the joint distribution for
SG_H_RE is smaller than that for SG_H_AE. Considering the approx-
imation error of evaluating the relative entropy (Wang et al., 2009),
the difference of relative entropies for SG_H_AE and SG_H_RE in
Table 2 is insignificant.

Fig. 8(f)–(h) plot the marginal posterior probability density
functions for the three predictions with and without using surro-
gates. Comparing these figure with Fig. 4(f)–(h) shows that the dis-
tributions based on the head surrogates are more accurate than the
distributions based on the log-likelihood surrogates. The same con-
clusion can be drawn by comparing the values of relative entropies
listed in Table 1 (for the log-likelihood surrogates) and Table 2 (for
the head surrogates). For the distributions of SG_H_AE and
SG_H_RE shown in Fig. 8(f)–(h), they are visually similar, although
the relative entropy values listed in Table 2 indicate that the
results of SG_H_RE are slightly better. However, the difference is
insignificant to conclude that SG_H_RE outperforms SG_H_AE in
the synthetic study.

The reasons for the similar results for SG_H_AE and SH_H_RE
are investigated by examining accuracy of the two surrogates. Sim-
ilar to Fig. 5, Fig. 9 plots the SG errors averaged over all SG nodes
for the two head surrogates built for two head observations at loca-
tion O4 and O23marked in Fig. 3 (results for the other observations
are similar and thus not shown). The error decreases sharply when
the level increases, and the errors of the two head surrogates are
similar in terms of their magnitudes and variation trends at all
the resolution levels, despite the fact that the error for SG_H_RE
is slightly smaller than that for SG_H_AE (at O4, the final errors
are 3.5E�4 and 3.3E�4 for SG_H_AE and SG_H_RE, respectively;
at O23, the final errors are 5.4E�4 and 5.2E�4 for SG_H_AE and
SG_H_RE, respectively). This explains the reasons why the poste-
rior parameter distributions based on the two surrogates are
Table 2
Relative entropies (REn) between reference posterior distributions (obtained without
using surrogates) and those obtained using the head surrogate (SG_H_AE) with
absolute error and the head surrogate (SG_H_RE) with relative error. REn is evaluated
for the marginal distributions of individual model parameters/predictions and for the
joint distribution of all the parameters/predictions.

Model parameters SG_H_AE SG_H_RE

Marginal
REn

Joint
REn

Marginal
REn

Joint
REn

Recharge ratio 1.28E�3 1.45E�2 2.96E�4 7.40E�3
Boundary constant head 5.38E�4 5.81E�4
Riverbed conductance 5.98E�3 7.75E�4
Variance 2.27E�3 3.04E�3
Correlation length 9.28E�4 8.68E�4

Model predictions
Discharge to river 5.40E�4 6.20E�3 6.50E�5 1.89E�3
Recharge from boundary

constant head
9.15E�4 7.10E�5

Discharge to drain 1.61E�3 6.20E�4
similar but the distributions based on SG_H_RE are slightly closer
to the reference distributions than those based on SG_H_AE.

The impacts of the absolute and relative error indicators on
determining SG nodes are also examined by plotting the nodes of
the two surrogates in the prior space of the individual parameters
(the other four parameters are fixed at their true value). Fig. 10
includes such plots for O4 and O23, and it shows that the spatial
patterns of SG nodes in the parameter space are similar for the
two surrogates, indicating that the two error indicators have min-
imal impacts on building adaptive sparse grids. Fig. 10 also plots
the head values to analyze the relation between the SG nodes
and hydraulic head in parameter space. This figure shows that,
unlike what was shown in Fig. 6, the spatial patterns of the SG
nodes are similar for the two surrogates. This is attributed to the
small variation (0.4–4 m) of hydraulic head in the parameter space.
For example, assuming that two SG nodes have absolute interpola-
tion error of 2.0E�3, since it is larger than the tolerance of 1.0E�3,
child nodes will be added to the two nodes. Further assume that
the head values at the two nodes are 44 and 46 m, respectively.
The relative errors at the two nodes are 4.5E�5 and 4.3E�5,
respectively. Since these errors are larger than the tolerance of
2E�5, child nodes will be also added to the two nodes. Therefore,
due to the small variation of head in the parameter space, the abso-
lute error and relative error have an almost constant ratio (the
head value). As a result, the two head surrogates have similar num-
bers and spatial patterns of the SG nodes. However, this may not be
true for other groundwater variables that are highly nonlinear
functions of model parameters. For example, in groundwater reac-
tive transport modeling, concentration simulations may vary sub-
stantially in parameter space, and the relative performance of SG
surrogates based on the absolute and relative errors should be
carefully examined.

Similar to Fig. 7, Fig. 11 plots the true head values at observa-
tions O4 and O23 evaluated at 100 uniform points. It also plots
the errors when the head values are estimated using the two sur-
rogates. The RMSE of the 100 points is in the order of 1.0E�3–1.0
E�4, which are similar to average errors at the SG nodes (Fig. 9).
It indicates that the head surrogates are accurate to reproduce
the head values. Because of the high accuracy of the head surro-
gates, they produce accurate estimates of the log-likelihood. Simi-
lar to Fig. 7, Fig. 12 plots the log-likelihood at the 100 uniform
points in parameter space as well as the errors corresponding to
the two head surrogates. Since the log-likelihood is based on heads
at the 32 observation locations, Fig. 12 is directly comparable with
Fig. 7. Comparing the two figures shows that the RMSE of the head
surrogates is about two orders of magnitude smaller than that of
the log-likelihood surrogates, when the log-likelihood function is
evaluated by the two kinds of surrogates. Although the error of
the head surrogates built for each head observation accumulates
when the head surrogates are used to evaluate the log-likelihood
function, the head surrogates still give dramatically more accurate
estimation of the log-likelihood than the likelihood surrogates.
4.4. Reasons that head surrogates outperforms log-likelihood
surrogates

As discussed in Sections 4.2 and 4.3, the posterior distributions
of model parameters and predictions based on the head surrogates
are significantly more accurate than those based on the log-
likelihood surrogates. In addition, the computational cost for build-
ing the head surrogates is also significantly lower than that for
building the log-likelihood surrogates. The reasons are explained
in this section. The analysis below is focused on SG_H_RE and
SG_L_RE, because SG_H_RE slightly outperforms SG_H_AE and
SG_L_RE significantly outperforms SG_L_AE.



Fig. 9. Variation of average SG interpolation error with number of SG nodes at each level (dot) for surrogates SG_H_AE and SG_H_RE built for (a) observation 4 (O4) and (b)
observation 23 (O23) marked in Fig. 3.

Fig. 10. Hydraulic head and SG nodes in the space of individual parameters (the other four parameters are fixed at their true values). Each dot denotes a SG node. The plots in
the top and borrow rows are for observations O4 and O23 (marked in Fig. 3), respectively.
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Fig. 13 plots the response surfaces of the likelihood, log-
likelihood, and hydraulic head at observation location O4 in the
parameter spaces of two parameter combinations. The left column
of the Fig. 13 is for boundary constant head and river conductance,
and the right column for variance and correlation length of hydrau-
lic conductivity. The surfaces are obtained using brute-force MC
simulations with 10,000 (100 points for each dimension) model
executions. The response surfaces for other parameter combina-
tions are similar to those shown in Fig. 13, and thus not shown.
In Fig. 13(a) and (b), the surfaces are flat in most of the parameter
space but have sharp peaks. When the peak locations are unknown,
it is likely that the peaks cannot be captured by SG surrogates,
especially when the problem is high dimensional and/or the peak
is sharp.

Fig. 13(c) and (d) shows that the log-likelihood surfaces are
smoother than the likelihood surfaces (Fig. 13(a) and (b)) in the
parameter space, and that there is no sharp peak on the log-
likelihood surfaces. Therefore, building log-likelihood surrogates
is preferred over building likelihood surrogates. However, building
accurate log-likelihood surrogates is not trivial, because the



Fig. 11. Errors of SG_H_AE and SG_H_RE for evaluating hydraulic head at 100 uniform points in the space of the individual parameters (the other four parameters are fixed at
their true values). RMSE is the root mean squared errors averaged over the 100 points. The plots in the top and borrow rows are for observations O4 and O23 (marked in
Fig. 3), respectively.

Fig. 12. Errors of SG_H_AE and SG_H_RE for evaluating log-likelihood at 100 uniform points in the space of the individual parameters (the other four parameters are fixed at
their true values). RMSE is the root mean squared errors averaged over the 100 points. The plots in the top and borrow rows are for observations O4 and O23 (marked in
Fig. 3), respectively.
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log-likelihood surfaces vary substantially at the edges of the two
parameter spaces. For example, the log-likelihood function still
has a large range varying from 1.0E1 to �1.0E5. The drastic
changes (especially at the edges of parameter spaces) make it dif-
ficult to develop accurate log-likelihood surrogates, especially
when the absolute error is used for adaptation, as discussed in
Section 4.2.

Fig. 13(e) and (f) for the response surface of hydraulic head do
not show any drastic change in the head values. Instead, the sur-
faces are smooth, and the head variation is less than 15 m
(Fig. 13(e)). Therefore, the head surrogates are more accurate than
the log-likelihood surrogate. Comparing Figs. 5 and 9 show that the
SG error for SG_H_RE is about 2–3 orders of magnitudes smaller
than that for SG_L_RE. In addition, building the head surrogates
is more computationally efficient, because the number of nodes
for building SG_H_RE is 62.42% of that for building SG_L_RE and
the results of SG_H_RE are more accurate than those of SG_L_RE.
Therefore, building head surrogate is preferred over building like-
lihood surrogates.
Since examining response surfaces is vital to selecting the
appropriate type of surrogate and error indicator, the response sur-
faces should be estimated before building SG surrogates. Direct
estimates of a response surface can be done by parallel computing
using state-of-the-art computing software such as PFLOTRAN
(Hammond and Lichtner, 2010), if the needed computational
resources are available. If computational resources for conducting
parallel computing are limited, a rough approximation of the
response surface is still needed. One may use global optimization
methods (e.g., the dynamically dimensioned search algorithm of
Tolson and Shoemaker (2007)) to allocate parameter optima and
then build a rough response surface near the optima in parameter
space. The approximated response surfaces should be sufficient for
examining their sign, magnitude, and variation pattern in the
parameter space. The computational cost of obtaining approxi-
mated response surfaces should be smaller than that of building
SG surrogates. In addition, some of the model outputs for approx-
imating the response surfaces can be recycled for building the
surrogates.



Fig. 13. Response surfaces of (a–b) likelihood function, (c–d) log-likelihood function, and (e–f) hydraulic head at observation 4 (O4 marked in Fig. 3) in the two-dimensional
parameter space of (left column) boundary constant head and river conductance and (right column) variance and correlation length of hydraulic conductivity.
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5. Conclusions and discussion

This paper addresses two important issues for applying SG
methods to Bayesian uncertainty analysis. The first issue is to com-
pare the two kinds of SG surrogates built for log-likelihood and
state variables (hydraulic head in this study). The second issue is
to compare two adaptive surrogates built using absolute and rela-
tive error indicators. A total of four surrogates are built; they are
the log-likelihood surrogates based on absolute error indicator
(SG_L_AE) and relative error indicator (SG_L_RE), and head surro-
gates based on absolute error indicator (SG_H_AE) and relative
error indicator (SG_H_RE). The four surrogates are evaluated in
terms of their accuracy and computational efficiency. The accuracy
is evaluated by comparing the surrogate-based distributions of
model parameters and predictions with those obtained using the
original model without any surrogate. The efficiency is evaluated
by comparing the number of model executions needed for building
the surrogates.

Although the log-likelihood surrogates yield satisfactory distri-
butions of model parameters and predictions, the head surrogates
outperform the log-likelihood surrogates in terms of accuracy and
efficiency for three reasons. The first reason is that the response
surface of hydraulic head is significantly smoother than the
response surface of log-likelihood in the parameter space. The SG
surrogates of smooth functions are more accurate and easier to
be built than those of non-smooth functions. The second reason
is that the head variation is significantly smaller than the
log-likelihood variation in the parameter space. The small head
variation is physically reasonable, because groundwater flow is
governed by first principles regardless of the variation of parame-
ter values. This is not the case for the log-likelihood, because there
are no physical bounds for this statistical variable. The last reason
is that the interpolation error of the individual head surrogates
does not accumulate to be larger than the interpolation error of
the log-likelihood surrogate, when the head surrogates are used
to evaluate the log-likelihood functions. This is not surprising
because the interpolation error of the individual head surrogate
is three orders of magnitude smaller than the error of the log-
likelihood function. The three reasons may change under different
situations, and more research is warranted to further evaluate the
log-likelihood and state-variable surrogates for different situations
with more observations and more nonlinear models.

The log-likelihood surrogate based on the relative error indica-
tor is significantly more accurate and computationally more effi-
cient than the surrogate based on the absolute error indicator.
The SG nodes of the two log-likelihood surrogates are significantly
different, because of the large magnitude variation of the log-
likelihood. When the absolute error is used, new SG nodes are
placed in the areas where the absolute values of log-likelihood is
large. While this reduces the SG interpolation error, the new SG
nodes are useless for improving the accuracy of parameter distri-
butions, especially for identifying high-probability regions on the
parameter distributions, because the areas with large absolute val-
ues of log-likelihood do not correspond to the high-probability



X. Zeng et al. / Journal of Hydrology 535 (2016) 120–134 133
regions. This problem is resolved by using the relative error.
Because large relative errors occur in the areas where the absolute
log-likelihood value is small, new SG nodes are added to such
areas. Given that the regions with small absolute values of log-
likelihood correspond to high probability regions on the parameter
distributions, using the relative error indicator gives more accurate
parameter distributions than using the absolute error indicator.

The head surrogates are insensitive to the error indicator,
because the two head surrogates have similar number of SG nodes
and the node locations in parameter space are also similar. This is
attributed to the small magnitude variation of the hydraulic head.
Recalling that the ratio between absolute error and relative error is
hydraulic head and that the hydraulic head has small variation in
the parameter space, the ratio is roughly a constant. In other
words, the absolute and relative errors play the same roles for
determining the nodes of adaptive SG. However, this conclusion
may change if the state variable is not head but another variable
such as flow rate or solute concentration which may change dra-
matically in parameter space. In this case, it is necessary to evalu-
ate the response surface of the state variables to determine
whether using the relative error indicator can help build more
accurate state-variable surrogates. For example, using the relative
error indicator defined in this study, more adaptive SG nodes are
added to improve SG accuracy for low values of the state variables.
It is necessary to evaluate whether this affects the accuracy of the
posterior distributions of model parameters and predictions.

Although not discussed in this paper, building state-variable
surrogates has another advantage over building log-likelihood sur-
rogates, because the state-variable surrogates are more flexible for
Bayesian updating. For example, when more data becomes avail-
able, the log-likelihood may change dramatically, and the log-
likelihood surrogate has to be re-built. This is particularly true
for data-worth analysis in which new data are determined gradu-
ally (e.g., Lu et al. (2012), Neuman et al. (2012), Zhang et al.
(2015)). For the state-variable surrogates, it is only necessary to
build new surrogates for the new data. In addition, once the
state-variable surrogates are built, they can be used with any kind
of likelihood functions. This is a critical feature for exploring appro-
priate likelihood functions as shown in the study of Shi et al. (2014)
and for varying a given kind of likelihood function as shown in the
study of Liu et al. (2016) for thermodynamic integration to evalu-
ate Bayesian evidence.
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