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ABSTRACT
When discretized sensitivities are used to approximate the sensitivities of a

discretized variable, a discrepancy may occur, particularly when the underlying
parameter represents a geometric or implicit quantity. For a model problem, the
primary source of error is found to be in the boundary conditions, which in turn
are affected by errors in approximate spatial derivatives. A related optimization
problem shows that the discretized sensitivities provide superior approximation
of the behavior of the continuous variables.

INTRODUCTION
The sensitivities, or partial derivatives of state variables with respect to

problem parameters, provide a very useful analytic tool for a parameterized
state system. But it may be quite difficult to deduce the appropriate sensitivity
system when the state system was derived by discretization via, for instance, the
finite element method, from a continuous state system. In such a case, it may
be more convenient to derive the discretized sensitivity system, which reverses
the order of application of discretization and differentiation to the continuous
state equation. For implicit or geometric variables, the discretized sensitivities
should not be expected to be equal to the sensitivities of the discretized state
variables. Instead, an approximation error ensues, which typically diminishes
as some power of the discretization parameter h. Compounding this error, the
boundary conditions defining the discretized sensitivity may have to be approx-
imated. These two sources of error can result in a computed discretized sensi-
tivity which is an unsuitable approximation to the sensitivity of the discretized
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Figure 1: Flow region for α = 1.

state variables.
A typical situation where sensitivities are useful occurs in the optimization

of a cost functional associated with a state solution. The computation of the
cost gradient via the chain rule results in a formula involving the partial deriva-
tives of the cost with respect to the state variables, and of the state variables
with respect to the parameters (the sensitivities). Errors in estimating the sen-
sitivities can result in poor approximation of the cost gradients, leading to a
failure of the optimization itself.

THE MODEL PROBLEM
The problem to be considered is the steady two-dimensional flow of a viscous

incompressible fluid through a rectangular channel of height 3 units and length
10 units. The channel is partially obstructed by a parabolic bump whose height
is controlled by a parameter, α. The original problem is related to a wind tunnel
simulation studied by Huddleston (1990). A typical configuration is shown in
Figure 1.

The state system comprises the time independent Navier Stokes equations,
the continuity equation, zero velocities at the walls, straight outflow, a pre-
scribed inflow, and the specification of the value of the pressure at a single
point. The state variables are the horizontal and vertical velocities, u and v,
and the pressure p. For brevity, the state variable u may be used to stand for
all three.

In the usual way, the finite element method may be applied, with a discretiza-
tion parameter h, to produce uh (and vh and ph), a discrete approximation to
the state variables. Because the flow region is not convex, the choice of the
Taylor Hood element results in an approximation error that is O(h2) for the ve-
locities u and v, and O(h) for the pressure p. First spatial velocity derivatives,
such as uy, are only approximated to order O(h), a point which will shortly
cause difficulties. For details on this formulation, refer to Gunzburger (1989).

Both the continuous and discrete state variables will be assumed to be
smoothly differentiable functions of the parameters, which will be denoted, for
instance, as u(x, y, α). The bump parameter α influences the problem in an
implicit way. That is, instead of explicitly influencing a quantity in the state
system, it determines where a particular boundary condition is applied. The
discretization method is also implicitly affected by α. This is primarily because
the position of nodes along the moving bump boundary must be adjusted. How-

2



Figure 2: Discretized velocity sensitivities.

ever, for the model problem, the position of all interior nodes above the bump
will also be adjusted as α varies, so as to avoid extremely distorted elements.
This adjustment causes a further influence of the parameter α, which extends
through all the elements above the bump.

COMPUTATION OF SENSITIVITIES
Derivatives such as uα and uhα are respectively referred to as the sensitivities

of the continuous and discrete state variables with respect to α. Sensitivities
can be used to estimate the solution value at nearby parameter values, to assess
the strength of the influence of a parameter, or to produce, via the chain rule,
the derivative of a cost functional with respect to the parameters.

Once a solution to the continuous or discrete state system has been obtained,
the sensitivities of that solution can be determined from a sensitivity system.
When the parameter of interest occurs explicitly, then simple differentiation of
the state system with respect to that parameter should be enough to determine
the sensitivity system. However, for implicit parameters, such as those that
control geometry, it may be necessary instead to carefully consider limits of
difference quotients in order to determine the proper form of the sensitivity
system.

Thus, once a solution uh of the discretized state system has been computed,
the sensitivity of the discretized state variable uhα can be found by solving the
sensitivity system.

By contrast, the discretized sensitivities ûhα are found by computing the
continuous sensitivity system, discretizing it, and solving it.

The definition of sensitivities and their use in the model problem and a
variety of other applications is treated in Borggaard (1994), Borggaard et al.
(1993), Burkardt (1995), and Burkardt and Peterson (1995a).

A typical discretized velocity sensitivity field for the bump parameter is
displayed in Figure 2. The sensitivities may be regarded as the solution of the
homogeneous Oseen equations. There are no source terms, and zero boundary
conditions everywhere except along the bump. A suitable estimation of the
bump boundary conditions is crucial to computing reliable sensitivities.

There are actually three reasonable ways to estimate a sensitivity:
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• Derive the sensitivity system from the discrete state system, and solve it
for the sensitivities;

• Discretize the continuous sensitivity system, computing the discretized
sensitivity;

• Compute uh at a nearby value of α and apply finite differences, producing
an estimate which will be denoted by ∆αu

h.

If, in fact, it is exactly the sensitivities of the discretized variable which are
desired, then the first method has the advantage that it produces precisely these
quantities, that is, the partial derivatives of the discrete solution uh with respect
to the parameter. And for a parameter which occurs explicitly, the formulation
of the necessary sensitivity system can be surprisingly easy. In the case where
the finite element method is used, this is because the differentiation operator
passes under the integral sign of the finite element state system, and the test
functions are unaffected by the parameter. Thus the sensitivity system for
the discretized state variables is actually identical to the discretized sensitivity
system.

For a geometric parameter, however, direct differentiation of the discretized
state system can result in many new terms. This is because the region of inte-
gration is affected by changes in the parameter. Moreover, if the finite element
method is used, the shape of individual elements, the placement of nodes, and
the form of the test functions will all be affected as well. These dependen-
cies are particularly irksome because, aside from changes at the boundary, they
have little to do with the physical problem; instead, they are artefacts that arise
from differentiating the discretization algorithm that is applied to the problem.
The result can be a very cumbersome form for the differentiated discrete state
system, and one which must be adjusted whenever the algorithm is modified.

For the second method, it is comparatively quite easy to derive the contin-
uous sensitivity system, since no discretization operations have been applied.
The same discretization algorithm can be applied to solve both the state and
sensitivity systems. And if a Newton or quasi-Newton method has been used
to solve the nonlinear state system, then the currently factored Newton matrix
is exactly the matrix needed to solve the linear sensitivity system. Thus, the
computation of discretized sensitivities is extremely cheap in terms of algorithm
development and CPU time.

One possible drawback of using discretized sensitivities has already been
noted: if the user desires the sensitivity of the discretized variables, then the
discretized sensitivities are only approximately equal to those quantities, and
the first method might be preferred. On the other hand, if the quantity of
interest is the sensitivity of the continuous variables, (the physically meaningful
quantity), then both the discretized sensitivities and the sensitivities of the
discretized variables may be regarded as approximations to this quantity, and
the choice between them should be made on other grounds.

In any case, the approximating power of the discretized sensitivities depends
on the value of the discretization parameter h. If the value of h is appropriate
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for solution of the state system, but turns out to be too coarse for estimating
the desired (discrete or continuous) sensitivities, a reduction of h, even by half,
can be very costly. If the model problem is treated via finite elements, and a
banded Gaussian solver is used, for instance, then halving h increases the work
of factoring the system matrix by a multiplier of 16.

Finally, consider the third method, of finite differences. This has the great
advantage that almost no special programming is required beyond that which
computes the state solution itself. Instead, each parameter is in turn slightly
perturbed, and the state solution is recomputed. A difference quotient then
estimates the partial derivative. Moreover, if a given value of ∆α does not seem
to produce a suitable approximation, the computation can easily be repeated
with a smaller value, at the same cost, until roundoff effects come into play.

On the other hand, each computed derivative comes at the cost of a full
solution of the state system; in some cases, a single solution can be enormously
expensive, and the cost of computing a new solution for each parameter to be
investigated may be insupportable. There are also some subtle difficulties with
this approach, particularly for a finite element formulation with moving nodes.
If a particular node (xi, yi) is not moving, then we can compute the value of the
finite difference approximation to the sensitivity of the discretized variables as:

∆αu
h(xi, yi, α) =

uh(xi, yi, α+ ∆α)− uhi (xi, yi, α)

∆α
(1)

Unfortunately, this formula cannot be applied if the i-th node moves with α.
In the model problem, all nodes above the bump may move, though only in the
vertical direction. Then the correct formula to apply at node i with vertical
coefficient yi(α) is:

∆αu
h(xi, yi(α), α) ≈

uhi (xi, yi(α+ ∆α), α+ ∆α)− uhi (xi, yi(α), α)

∆α

−∂u
h
i

∂yi

∂yi
∂α

(2)

Both the discretized sensitivities and the finite difference approach require

the values of
∂uhi
∂yi

and
∂yi
∂α

. These should be easily computable from the dis-

cretization of uh and from the behavior prescribed for the nodes (xi, yi(α)) as
α varies. For the Taylor Hood elements, uhy is not continuously defined across
element interfaces, and so, for a finite difference approach, this term must be
approximated, perhaps by the average of its values in each of the elements that
impinge on the given node.

THE BOUNDARY CONDITION
Since the bump parameter does not occur explicitly in the continuous state

system, simple differentiation will not produce the desired continuous sensitivity
system. The equations will be derived following the approach of Burns et al.
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(1991). Consider, then, a fixed point (x, y), and compare the values of u for α
and for the perturbed parameter value α+ ∆α.

If (x, y) is strictly inside the flow region for a given value of α, then, for
small perturbations ∆α, the perturbed flow region will still strictly contain the
point (x, y). Therefore, both u(x, y, α) and u(x, y, α+ ∆α) will satisfy the state
system, and the limit of their difference quotient, uα, satisfies the sensitivity
equations formed by taking the partial derivative with respect to α of the state
equations that apply inside the flow region. Assuming sufficient continuous
differentiability, the orders of differentiation may be interchanged to produce
the usual sensitivity system for the continuous problem.

Most of the original state boundary conditions may also be transformed
by implicit differentiation with respect to the parameter, to yield boundary
conditions for the discretized sensitivities. However, this approach cannot be
used for the boundary conditions u = 0 and v = 0 along the bump, where
the parameter sets the location of the bump boundary. To determine the form
of the corresponding boundary condition for the sensitivity system at a node
(xi, yi(α)) that is moving with the boundary, consider the fact that the total
derivative of u with respect to α at the node must be zero, since the value of u
there is always 0. But this implies that at any such node:

0 =
Du

Dα
=
∂u

∂α
+
∂u

∂y

∂yi
∂α

, (3)

which gives us the appropriate sensitivity boundary condition to apply there:

uα(xi, yi(α), α) = −uy(xi, yi(α), α)
∂yi
∂α

. (4)

This boundary condition completes the specification of the continuous sensitiv-
ity system that defines the quantities uα.

Once the continuous sensitivity system has been defined, applying the dis-
cretization operation yields the corresponding discretized sensitivity system.
However, the boundary conditions along the bump cause a problem, because
they are given in terms of the spatial derivatives of the continuous solution u.
But that solution is unavailable; only an estimate can be made from the dis-
cretization uh. Thus, the boundary conditions are approximated with the term

−uhy
∂yi
∂α

.

There remains the question of how to approximate uhy given uh. The es-
timated derivative might be supplied by the discretization itself, as in finite
elements, or by the use of finite differences applied to pointwise values of uh.
It is important, if possible, to choose an approximation for the derivative that
does not significantly increase the error.

Three simple estimates are available to us:

• FD2, the two point finite difference formula;

• FD3, the three point finite difference formula;
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Table 1: SENSITIVITY DISCREPANCY FOR U.

Method α = 0.25 α = 0.5 α = 1.0

h = 1.000
FD2 0.183 0.242 0.398
FD3 0.0698 0.138 0.343
FE 0.0802 0.162 0.433

h = 0.500
FD2 0.139 0.215 0.394
FD3 0.0515 0.105 0.234
FE 0.0651 0.139 0.320

h = 0.250
FD2 0.0852 0.151 0.308
FD3 0.0207 0.0534 0.157
FE 0.0259 0.0673 0.206

h = 0.125
FD2 0.0477 0.0906 0.207
FD3 0.00675 0.0192 0.0663
FE 0.00854 0.0255 0.0868

h = 0.0625
FD2 0.0253 0.0498 0.119
FD3 0.00213 0.00611 0.0225
FE 0.00299 0.00793 0.0322

• FE, the approximation supplied by the discretization method, in our case,
the finite element method, which requires the averaging of nearby values.

The finite difference formulas use the value of uh at the node where the
boundary condition is to be applied, and at one or two nodes immediately
above it.

To evaluate the performance of these approximations, each was used to de-
fine the boundary condition for the bump sensitivity parameter, the discretized
bump sensitivities were solved for, and compared to the estimate produced by
finite differences applied directly to the solution values, as in Equation 2. The
sensitivity discrepancy was then recorded, that is, the maximum difference be-
tween ûhα and ∆αu

h over all the nodes. Several values of the bump parameter α
and the discretization parameter h were considered. The results are presented
in Table 1.

From the tables, it seems that for any method and value of h, the sensitivity
discrepancy increases roughly linearly with α. This is plausible, since, as the
bump rises, the flow velocity above the bump must increase. Moreover, larger
bumps correspond to more disordered and nonlinear flow.

The table also makes clear that, for any fixed method and value of α, the
discrepancy decreases, again in a roughly linear fashion, as h is decreased. This
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is an important computational confirmation of the asymptotic convergence of
ûhα and uhα to the continuous limit, uα. Moreover, the estimate of O(h) error
in ûhα correlates nicely with its dependence on the boundary condition, which
was approximated to within O(h). This suggests that the use of higher order
elements, a local refinement of the mesh near the bump, or some other technique,
would be required to improve the performance of the discretized sensitivities as
approximants to uhα.

Note that the two point finite difference method is significantly less accurate
than the others, although its error maintains the same overall rate behavior as
the other methods when h is decreased or α is increased. Since our discretized
solution is quadratic, and methods FD3 and FE are exact for quadratics, there
will be no reward for pursuing a higher order finite difference method.

From the previous remark, it may be wondered why the methods FD3 and
FE differ at all. But this is because the three points sampled by the FD3
method may actually lie in two different elements, across which uh is not con-
tinuously differentiable.

IMPROVED SPATIAL DERIVATIVES
Note that values of the derivative uhy are required at two different parts of the

computation. First, these values are needed to define the boundary condition
along the bump. Secondly, these values are needed to adjust the finite difference
estimates, as in Equation 2.

The estimate of the error between the sensitivities uhα and the discretized
sensitivities ûhα uses the continuous sensitivities uα as an intermediate quantity:

‖ûhα − uhα‖ ≤ ‖ûhα − uα‖+ ‖uα − uhα‖ (5)

Under the pessimistic view that the right hand side is not much bigger than
the left, the error is made up of two parts:

• the discretization error of approximating uα by uhα,

• the error committed approximating uα by differentiating the discretized
state variable uh.

The first portion of the error actually includes an additional term, namely
the error caused by approximating the boundary condition for the discretized
sensitivities, an error which we know is roughly O(h). The relative importance
of this error may be judged by making at attempt to reduce it. The procedure
will be to compute the flow solution uh on a grid with a relatively fine mesh
parameter h = 0.0625 and save the nodal values of uhy , which is taken to be
a good approximation to uy. Then the problem will be solved on a series of
coarse meshes as before, except that the saved data will be used when values of
uhy are needed for discretized sensitivity boundary conditions. These improved
values will also be used when applying Equation 2. The results for this method,
designated FE+, are shown in Table 2 and represent a dramatic improvement
over the previous finite element results.
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Table 2: IMPROVED SPATIAL DERIVATIVES.

Method α = 0.25 α = 0.5 α = 1.0

h = 1.000
FE 0.0802 0.162 0.433

FE+ 0.0306 0.107 0.484

h = 0.500
FE 0.0651 0.139 0.320

FE+ 0.0120 0.0304 0.144

h = 0.250
FE 0.0259 0.0673 0.206

FE+ 0.00440 0.00433 0.0254

h = 0.125
FE 0.00854 0.0255 0.0868

FE+ 0.00178 0.00133 0.00363

Moreover, as h decreases, the error is now dropping faster than O(h). This
suggests that the original sensitivity boundary value estimate which used the
spatial derivatives of the discrete variable is in fact a poor approximant of uy,
and that this error accounts for a significant portion of the discrepancy.

APPROXIMATING A GRADIENT
To see how sensitivities are needed in a real computation, and how discrepan-

cies in approximated sensitivities can affect (and even doom) that computation,
consider a case discussed in Burkardt and Peterson (1995b). The problem is
similar in geometry to the model problem, but an inflow parameter λ is added,
and there are now three bump parameters α1, α2, and α3. A cost functional
J(uh) is defined, and a flow field is sought which minimizes J . Since the only free
variables are the parameters, the problem may be recast as the minimization of
the functional

J (λ, α1, α2, α3) = J(uh(λ, α1, α2, α3)). (6)

In order to carry out a minimization, it is necessary to compute the partial
derivatives, such as:

∂J
∂λ

=
dJ

duh
∂uh

∂λ
(7)

The value of
dJ

duh
should be easy to derive from the formula for J , and the

second factor is just uhλ, the sensitivity of the discrete variables.
In a computation involving Equation 7, the sensitivities of the discrete vari-

ables were approximated by the discretized sensitivities. For a particular value
of h, the resulting gradient field was so inconsistent with the cost functional
that the optimization had to be halted. At the termination point, a step in the
computed direction of descent would actually produce an increase in the cost
functional.
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Figure 3: Approximated gradients, H = 0.5.

Gradients approximated by discretized sensitivities.
The global minimizer is at the solid disk.

The optimization halts at the square.

This situation is illustrated in Figure 3, which shows contours of the cost
functional J evaluated on a two-dimensional “slice” through its four-dimensional
parameter space. The approximate gradient field computed from the discretized
sensitivities is superimposed. The inconsistency between the two sets of data
is pictorially clear; there are many points where the approximate gradients are
not perpendicular to the contours. The point where the optimization halted is
shown, and it is clear that the gradient data is especially inconsistent with the
contour values there.

But the gradients and contour values are presumably inconsistent because
the value of h is large, which implies that the discretized sensitivities and the
sensitivities of the discretized variables are both far from the continuous sensi-
tivities, and hence from each other. One simple remedy is to reduce h. Figure 4
shows the same slice of parameter space when h = 0.25. The same contour
levels are plotted, and it may be seen that they have shifted dramatically, while
the gradients have changed much less. The two sets of data now appear to be
consistent over a larger neighborhood of the minimizer. When the optimization
algorithm is applied to this data, the global minimizer is correctly computed.

This graphical investigation raises an interesting point. Which quantity is
really “inconsistent”? Refining the mesh one more time, as in Figure 5, makes
it clear that the contour levels were very corrupt at h = 0.5, while the gradient
field was quite close to being correct even at that coarse value of h. This suggests
that the discrepancy between the discretized sensitivities and the sensitivities of
the discretized variables may be due to the fact that the discretized sensitivities
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Figure 4: Approximated gradients, H = 0.25.
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do a better job of approximating the continuous sensitivities.

CONCLUSION
Discretized sensitivities provide a simple and straightforward way of approx-

imating the parameter sensitivity of a continuous or discretized state variable.
Discretized sensitivities and sensitivities of discretized state variables should
both be regarded as approximations to the sensitivity of the continuous state
variables, and only secondarily as approximations to each other.

The discretized sensitivities can be significantly easier to compute, because
only the original state equation is differentiated, not the discretized version. On
the other hand, the sensitivities of the discretized variable have the advantage
that they are consistent with the discretized solution uh.

Discretized sensitivities may not be accurately computed if their boundary
conditions or other data depend on knowledge of the continuous solution; the
discrete solution uh may be used in place of the unknown data involving u,
but this can cause inaccuracies in the computation of the entire discretized
sensitivity field, of a magnitude depending on the approximating error of uh or
its spatial derivatives.

Typically, the discretized sensitivities will be approximated to a lower order
than the state solution itself. Therefore, a particular value of the discretization
parameter h might be suitable for computing an approximate state solution
but not for the discretized sensitivities. When accurate discretized sensitivities
are needed, it may be advisable to employ a discretization scheme for the state
variable with a higher than usual approximating power to guarantee satisfactory
computation. In the case of the model problem, this would mean moving from
the Taylor Hood element to a higher degree element.

For the model problem, the computed value of the discretized sensitivities is
essentially determined entirely from the data specified on the bump boundary.
Surprisingly, the major source of the discrepancy between the discretized sen-
sitivities and the sensitivities of the discretized variables seems to arise when
the boundary condition data involving uy is approximated by the discretized
solution uhy .

Finally, if discretized sensitivities are used as approximations to the sensi-
tivities of the discretized variables, then a certain degree of approximation error
may be expected. In such a case, it is important that data be monitored for
consistency. For instance, gradient vectors computed via discretized sensitiv-
ities might be allowed to deviate no more than some tolerance angle from a
descent direction of a cost function evaluated on a discretized variable. In this
way, unacceptably bad computations can be terminated promptly, and correc-
tive measures, such as reducing the mesh parameter h, recomputing with finite
differences, or reverting to a higher order element, can be tried.
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Figure 5: Approximated gradients, H = 0.125.
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