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Abstract

A recently developed Centoidal Voronoi Tessellation
(CVT) unstructued samplingmethodis investigatechere
to assessts suitability for usein statisticalsamplingand
function integration. CVT efficiently genemtes a highly
uniform distribution of sample points over arbitrarily
shapedM-Dimensionalparameterspaceslit hasrecently
beenshownon several 2-D testproblemsto provide supe-
rior point distributionsfor genesting locally conforming
responsesurfacesin this paper its performanceasa sta-
tistical samplingand functionintegration methodis com-
pared to that of Latin-Hypecube Sampling(LHS) and
Simple RandomSampling(SRS)Monte Carlo methods,
andHaltonandHammesley quasi-Monte-Carlsequence
methods Specifically samplingefficienciesare compaed
for functionintegration andfor resolvingvariousstatistics
of responseén a 2-D testproblem.It is foundthat on bal-
anceCVT performsbestof all thesesamplingmethodson
our test poblems.

1. Background

For reasonshatwill becomeclearlater, it is oftenben-
eficial in statistical sampling and function integration to

sample "uniformly" @er the applicable parameter space.

Such uniformity, while conceptually simple and intui-
tive on a qualitative level, is on a quantitatve level some-
whatcomplicatedo describeandquantify mathematical-
ly. Quantitatve aspect®f uniformity involve: 1) theequal-
ity with which pointsarespacedelative to oneanotherin
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the parametespace(arethey all nominally the samedis-
tance from one another?); 2) uniformity of point density
over the entire domain of the parameter space (i.e., uni-
form "coverage"of thewholedomainby the setof points,
andnot just gooduniformity within certainregionsof the
space); and 3) isotropy in the point placement pattern.
Each of these aspects of uniformity can be quantified by
several mathematicameasuresWe will notdiscusshese
measures further here, but we mention them to say that
guantitative measures do exist for the intuitive notion of
uniformity. Wefind thatin 2-D thevisual-intuitive senseof
uniformity obtainedby viewing a distribution of samples
in a square2-D hypercube)orrelates/ery stronglywith
the quantitatve quality measuresnentionedabove. Thus,
in 2-D theeyeis anexcellentintegratorof thedifferentas-
pectsof uniformity listed above, anda very accuratedis-
criminator of uniformity or lack thereof —or at least in
judging whetherone particularlayout of samplepointsis
more uniform than another

Much effort has been applied in the literature to the
problem of achieving uniform placement of N samples
over M-dimensionahypercubeswhereM andN areboth
arbitrary It is well recognizedhat Simple-Randonsam-
pling (SRS)Monte Carlo doesnot do a particularlygood
job of uniformly spreadingputthesamplepoints. Thepop-
ular Latin Hypercube Sampling (LHS) method generally
does a much better job of uniformly spreading out the
points.This is dueto the greatersamplingregularity over
eachindividual parametedimensionbeforethe individu-
ally generated parameter values are randomly combined
into parameter sets which define the coordinates of the
sampling points ([5]).

Recentefforts to modify LHS to getanevenmoreuni-
form distribution of points over the paramter space have
included Distributed Hypercube Sampling (DHS, [12])
andimprovedDistributedHypercubeSampling(IHS, [2]).
The fundamentals and history of these are reviewed in
[18]. Thoughthe quantitatve measureof uniformity used
for comparisonsin [2] and [12] was somewhat flawed, it
does appear that DHS gives better sampling uniformity



thanLHS, andthatIHS givesbettersamplinguniformity
thanDHS butis increasinglymorecomputationallyexpen-
sive asthedimensionalityof the paramtesspacancreases.
We have recently become aware of another LHS variant,
“Optimal Symmetric LHS" (OSLHS, [20]) which also
seemdo improve the spatialuniformity of LHS samples.
Its computational cost and performance relative to DHS
and IHS are not yet kmm, havever.

A number of other potential approaches for achieving
uniformpointplacementhatarenotevolvedfromanLHS
basis are reviewed (and some new ones are presented) in
[7]. There ,somequantitatve metricsrelatedto visual/sen-
sory perception of point uniformity in 2-D are reviewed
and some new ones presented. Many of these non-LHS-
basedpproacheappeato work verywell in 2-D, butit is
said that some of the methods may not be applicable or
may not perform well in more than two dimensions, and
someclearlywill not scaleup to high dimensionsafford-
ably. Others seem more promising for high dimensions,
but have not yet been iresticated enough.

The so-called“Quasi- Monte Carlo” (QMC) quasi-or
sub-randomlow-discrepeng sequencenethodgseee.g.
[14]) canoftenachiere reasonablyiniform sampleplace-
mentin hypercubesThe strengthof thesesequenceneth-
ods(Halton,Hammerslg, Sobol,etc.),is thatthey canpro-
duce fairly uniform point distributions even though sam-
ples are added one at a time to the parameter space. The
one-at-a-time incremental sampling of QMC (and SRS)
enableghesemethodsto have betterefficiencgy prospects
thanCVT andLHS-typemethodsn the areaof erroresti-
mationandcontrol.Not only this, theresultsachiezedare
oftenquite good.For resolvingthe meanandstandardie-
viation of response measures, Hammersley sequences
werefoundin [11] to corverge to within 1% of exactre-
sults3 to 100timesfasterthanLHS over a large rangeof
testproblems For resolvingresponserobabilities,Ham-
mersley and modified-Halton were found in [15] to per-
form roughlythesameasLLHS onbalanceover severaltest
problems.

However, when the hyperspace dimension becomes
moderate to large and/or the sampling density becomes
high, some(perhapsall?) sequencesuffer from spurious
correlationof thesamplesThisis shavn for standardHal-
ton sequences in 16-D (ref. [12]) and 40-D (ref. [15]).
Sometimes modificationcanbefoundto suppressr de-
lay theonsetof spuriouscorrelation asafix fromtheliter-
ature implemented in [15] stws for Halton sequences.

Recently, a long-recognized approach for achieving
uniformity of pointplacementn M-dimensionalolumes,
called“CentroidalVoronoi Tessellation(CVT), hasbeen
made computationally efficient ([10]) for implementing
the principles of Centroidal Voronoi diagrams ([6],[13]).

These diagrams subdivide arbitrarily shaped domainsin
arbitary-dimensionapacento arbitrarynumberf near-
ly uniform subvolumes,or Voronoicells/regions.Given a
setof N points{z} (i=1,...,N)in anM-dimensionahyper-
cube theVoronoiregionor Voronoicell V; (j=1,...,N)cor-
respondingdo z is definecto beall pointsin thehypercube
thatarecloserto z thanto ary of theotherz's. Theset{ V}
(i=1,...,N)is called a Voronoitessellatioror Voronoidia-
gram of the hypercube, the set {z} (i=1,...,N) being the
generatingpointsor generatorsA centroidal Voronoites-
sellation (CVT) is a special Voronoi tessellation with the
propertythateachgeneratingointz is itselfthemasscen-
troid of the correspondingovonoi reion V.

Although CVTs are deterministic, they can be con-
verged to with probabilistic sampling methods. In [10],
new probabilisticCVT constructioralgorithmswereintro-
ducedjmplementedandtested Thesemethodsaregener-
ally much more efficient than previous deterministic and
probabilistic methods for constructing CVTs.

The CVT concept and the algorithms in [10] for their
constructiorcanbe generalizedn mary ways(see€[6] for
details).For example,insteadof a hypercubegeneralre-
gionsin M-dimensionalkpacecanbetreated.This feature
has been exploited with great success (see [6]) for dis-
cretizingarbitrary2-D and3-D domainvolumesfor com-
putationalmechanic@nalysiswith meshlessnalogue®f
finite elementmethodqe.g.,[1]). Furthermorepointscan
be distributed non-uniformly according to a prescribed
density function over the space. For instance, reference
[18] shaws several CVT point setsspacedaccordingto a
bi-Normal joint probability density function. Thus, CVT
can be used for Monte-Carlo-like sampling in problems
containing multiple random variables. In this regard, we
surmise that correlation structure for correlated random
variables can be introduced into CVT sampling with the
rank correlation procedure [8] employed in [9] for SRS
and LHS, and in [11] for Hammergi€MC.

Figurel compareshreeL HS andthreecorresponding
CVT pointsetsfor 100 samplesin a 2D unit hypercube.
The threeLHS pointsetswere generatedvith [9] for dif-
ferent initial seeds (Seedl = 123456789, Seed?2 =
192837465,Seed3= 987654321)and a Uniform joint
probability densityfunctionover a unit-hypercubeparam-
eter space.The threecorrespondindCVT pointsetswere
generated[3]) by usingthe LHS setsasinitial conditions
(point locations)to begin the CVT iterations.In all cases
the CVT setis muchmoreuniform (visually andquantita-
tively) thanits associatedl HS set.All threeCVT setsare
relatively similar visually and quantitatvely, eventhough
startingfrom threevery differentinitial conditionsgiven
by the LHS sets.



The LHS sets exhibit significant clustering and non-
uniformity of thepoints.TheLHS setsdo notappeato be
significantlymoreuniform thanthreeanalogousSRSsets
shawn in [18], andwhich will be usedherein later com-
parisonshut quantitately they aresignificantlymoreuni-
form ([4]). CVT sets from the three different SRS initial
setsareshawn in [18]. ThedifferentLHS and SRSinitial
conditions do not have much of an impact on final CVT
uniformity, so CVT appears to be nadt in this rgard.

Figures2 and3 shav HaltonandHammerslg pointsets
and the corresponding CVT sets started from them. The
Halton pointset is noticably and quantitatively more uni-
form thanary of theLHS setsitheHammerslg setis even
more uniform than the Halton set; and the CVT sets are
even more uniform than the Hammessket.

Hence, CVT places samples much more uniformly in
the 2D hypercubeghanSRSandLHS, andeven moreuni-
formly thanthe low-discrepang HaltonandHammerslg
QMC sequencesThisis trueregardlessof theinitial con-
ditions (samplesets)that CVT startsfrom ([4]). In initial
investigations[4] for 2-D, 7-D, and20-D testcasesCVT
has provided greater sampling uniformity than Halton,
Hammerslg, Sobol,SRS,LHS, DHS, andIHS according
to a meaningful subset of nonflawed quantitative quality
measures. Additionally, no degradation of sampling uni-
formity has been detected in higher dimensions (i.e., for
the 20-D case).

It is therefore natural to ask whether CVT can be ap-
pliedfor: A) statisticasamplingover arbitrary-dimension-
al spaces of input random variables to calculate various
statisticsof outputresponsdehaior; B) functionintegra-
tion overarbitrarily shapedlomainsandC) whetheiit can
sene asa methodfor generatingavorablepoint distribu-
tions for impraved response-swate accurac

A preliminarypositive indicationregardingitem C) for
response surface generation is presented in [18]. There,
CVT wasshavn on several 2-D testproblemsto provide
superior point distributions for generating locally-con-
forming Moving Least Squares response surfaces. Point
distributions by CVT, SRS, LHS, and a structured sam-
pling method with deterministically uniform point place-
ment ([17]) were tried in the study

In this paperwe take a first steptoward examiningthe
potential of CVT for improved statistical sampling and
function integration (sections 2 and 3 respectively). We
compare against results from SRS, LHS, Halton, and
Hammersley sampling. Our discussion clarifies the con-
nectionbetweentraditional statisticalsamplingandfunc-
tion integration.We usethis connectiorto contemplatehe
prospects of CVT vs. other sampling methods.

2. Evaluation of CVT asa Statistical
Sampling M ethod

2.1. 2-D Model Problem and Statistical M easures
of Response for Performance Evaluation of
Sampling M ethods

Figure 4 shows an analytic multimodal function de-
scribingsystenresponse asafunctionof two systemin-
puts pl and p2:

r(pl,p2)=[0.8K +0.35 sin%AT{%B][l.S sin(130)] EQ1

on the domaim<pl<1 ando<p2<1,

wherek = (p1)2+(p2)2, 0 = atang;—fg.

A statistical problem arises if p1 and p2 are random
variables. In that case, any particular realization pl; and
p2; of the stochastic variables yields a deterministic re-
sponse; asgivenby theabove functionalrelationship An
ensembleof responsesccompanieshe differentrealiza-
tionsof pl andp2 asthey vary stochasticallyor randomly
accordingto theirindividual propensitiespr joint propen-
sitiesif thetwo variablesarecorrelatedIn probabilitythe-
ory ajoint probabilitydensityfunctiondefinedoverthein-
put parameter space, JPDF(pl,p2), is used to model the
relative likelihood of achieving an input combination
pl,p2correspondindo the point (p1,p2)in the p1l-p2co-
ordinate plane. The JPDF function is defined for every
pointin the p1-p2parameteplaneandintegratesoverthe
plane into a &lue of unity

The JPDFlikelihoodfunction for attainingvariousin-
put combinations maps through the response function
r(pl,p2) into a corresponding likelihood function for re-
sponsevalues.Operationallythe resultingresponserob-
ability densityfunction,PDF({), canbeapproachedloser
andcloservia Monte Carlosamplingasmoreandmorepa-
rametersetsor realizationgp1,p2) arerandomlygenerat-
ed from the governing input JPDF and are propagated
throughtheresponsdunctionr(pl,p2)into responseeal-
izationsr;. Theresponseealizationsaredistributedin the
responsespace(i.e., alongthe responseoordinateaxisr)
with a densitythat,asmoreandmoresamplesareadded,
trends tavard the gact PDF of response.

Very often,only certainstatisticaimeasuresf the PDF
of responsaredesiredr canbereasonablgstimatedRe-
sponsamean,y, , andstandardieviation, o, , canbe esti-
mated directly from the mean i, and standard deviation
6, of thepopulationor set{r;} of realizationsWe havethe
following definitions:
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where N is the numberof realizationsor “samples” of
response.

Also oftenof interestis the probability of responsex-
ceedingor notexceedingsomeparticularthresholdvalue
rt. Exceedencerobabilityis very simply estimatedasthe
ratio of the number of calculated response values at or
above the given threshold value, to the total number of
samples, N. As the number of response realizations in-
creasegheestimatgquotient)trendstowardgreateaccu-
ragy, i.e., towardtheactualexceedencerobability Thisis
of coursealsotruefor theestimategi, andé, of response
mean and standard\dation.

2.2. Comparison of Response Statistics from
Various Sampling M ethods

Herewe compareestimate®f responsenean standard
deviation, and exceedence probabilities as obtained from
varioussamplingmethodswe have previously introduced:
CVT, SRS,LHS, andHaltonandHammerslg sequences.

We startwith e.g. the 100-samplgointsetdn Figurel,
whichcorrespondo auniformJPDFovertheinputparam-
eterspaceof our modelresponsdunction (Figure4). We
map these sets of samples through our response function
EQ 1 to obtaincorrespondingesponsesets,andthencal-

culate the aformentioned statistics of these populations.

We thencomparehe calculatedstatisticsof eachsetto
eachotherandto “referencevalues”obtainedfrom using
threemillion SRSsamplesat parametesetsgeneratedby
the sampling code [9]. The reference values are actually
averagef threeresults,eachobtainedfrom onemillion
samples generated from random initial seeds “X”, “Y”,
and“zZ” (differentfrom seeddl, 2, and3 usedto generate
the 100-sample LHS sets in Figure 1).

Three‘replicate” setsof onemillion samplesachwere
used in preference to one set of three million samples so
that empirical confidence intervals (Cl) on the calculated
averages could be compared against their classical Cl to
reafirm or caveatthem.(Recentresearch[16], [19]) has
shavn thatfor SRS,empirical Cl appeatto be somavhat
moreaccurateghanclassicalCl.) Empirical Cl areformed
by assuminghe calculatedstatistic(responsenean,stan-
darddeviation, or exceedenc@robability)is arandomre-
alization from a Normal or nearly Normal distribution
aboutthe exactresult.Hencea T-distribution with 3 - 1 =

2 degreesof freedomcanbe usedto getconfidencenter-
valsaboutthesmall-sampleverageof thethreereplicates.
Thus,for 95%empiricalCl thefollowing formulais used:

66‘5[
3

where6,,, is the samplestandardieviation (cf. EQ 3) of
the three estimates.

95% confidence half-intea¥ = 4.303

EQ4

2.2.1. Mean of Response. Tables1 and 2 shawv the

calculatedmeans,along with nominal errors from the

referencenean,fi,, . Thereferenceneant,,, =0.581608
is the averageof the threemeansfrom three SRSsetsof

108 samplesach.Thestandardieviation of the estimated
meanss 6,,,=0.0002278Thus,empirical95%half-Cl by

EQ4 are0.000566Whenthereferencemeanis calculated
basedon the entire populationof N=3x1 samplesthe

value doesnt changefrom the averagedvalue basedon

three separateloﬁ—samplesets,but classicalCl can be

computed. The classical 95% half-Cl from standard
statistical formulas is somevhat smaller at 0.000388.
Using the larger CI (empirical) we saythat with at least
95% certaintythe true responsemeanpu lies within the
rangef,,, +0.000566 = (0.582174, 0.581042).

FromTable2, then,evenusingthelargerCl to account
for uncertainty in the reference value we can definitively
saythatall threeSRSresultshave errorsthatarean order
of magnitudggreatetthanfor theLHS andCVT sampling.
Thisis trueof individual errorsandof theaverageerror. In
writing up theseresultswe noticethattheindividual SRS
errorsareall of the samealgebraicsignandof fairly large
magnitudeelatvetotheCVT andLHS results A measure
of sampling bias is given by the average of the errors,
whichis two ordersof magnituddarger(=0.0407)for the
SRSresultsthantheaveragebiasin theLHS (-0.0003)and
CVT (=0.0006) results. A dlight bias in the code used to
generateéhe 100-sampleéSRSsets([3]) maybesuggested.
(Note that the 108 SRS sets that the reference statistics
were derived from were generated from a different code,
[9].) Alternatively, we could simply be seeing a chance
anomalyin the generatedSRSdata.We cannottell which
is the case from our limited number of trials.

In ary casethestandardleviation of theestimatess an
orderof magnitudehigherfor SRSthanfor LHS or CVT.
This is somevhatexpected,asLHS andCVT (aswell as
DHS, IHS, and QMC sequence methods) are known to
performbetterthan SRSin termsof variancereductionof
the estimates.

Taking the uncertainty in the reference value into ac-
count, we can conclude to well over 95% certainty that
CVT is moreaccurateghanLHS in realization3 andless
accuraten realization2. To almost95% certaintywe can



concludethat CVT doesbetterthanLHS in realizationl.
Theseconclusionsarereflectedn aslightly lower average
errormagnitudefor CVT thanfor LHS. Their averageer-
ror (bias)andvarianceof the estimatess comparableWe
note that the CVT results are obtained from the LHS re-
sultsasinitial conditionsfor the CVT iterationsIn cased
and3themagnitudeof theerrordeclinedafterthe CVT it-
erationsandin case2 themagnitudencreased(Thesere-
sultshold abore andbeyondconsiderationsf uncertainty
in the reference result).

Table 2 shows that the Hammersley result is, to well
over 95% certainty an orderof magnitudebetterthanthe
Haltonresult. The Haltonresultis considerablymproved
by CVT iterations.Within theuncertaintyin thereference
result it cannot be determined whether CVT actually did
improve theHammerslg result,but a significantimprove-
mentaccordingto the nominalvaluesin thetableis indi-
cated.

2.2.2. Standard Deviation of Response. Tables3 and4
shov the estimatesof the standarddeviation of our
response.Nominal errors from the reference value
0,.r =0.343208arealsoshavn. This valueis the average
of the threestandarddeviationscalculatedrom the three
10° SRS sets. The standarddeviation of these three
estimatess 6,,, =0.000327Empirical95%half-Cl by EQ
4 are 0.000813.We can then say that to at least 95%
certaintythat the true responsestandarddeviation o lies
within the ranges, . +0.000813 = (0.344021, 0.342395)

From Table 3, even accounting for uncertainty in the
referencevalue we canconcludeto well over 95%certain-
ty thatthe SRSandLHS errorsarefor all threetrialsanor-
derof magnitudegreatethanthe CVT errors.Thisis true
of individual errors and for average error magnitude as
well. Thealgebraicaverageof the signederrorsshavsthat
theaveragebiasin theLHS andCVT resultsis similar, and
smallerthantheaveragebiasin the SRSresultsby anorder
of magnitude. The standard deviation of the estimatesis
similarfor LHS andSRS,andtheseareanorderof magni-
tudelargerthanwith CVT. Thus,in thesethreetrial calcu-
lationsof responsestandarddeviation, CVT shovs anor-
derof magnituddmprovementover SRSandLHS in both
the error magnitude and standard deviation of the esti-
mates.

Table 4 shows that, even given the uncertainty in the
referencevalue we candefinitively saythattheHaltonand
Hammerslg errorsarereducedby anorderof magnitude
with the CVT iterations. The initial and improved Ham-
mersley results are an order of magnitude better than the
initial and impraved Halton results.

2.2.3. Response Exceedence Probability for r1=0.2. The
reference value for exceedence probability (EP)

correspondingo a responsehresholdlevel of r{=0.2 is

i),ef =0.870984 Thisvalueis theaverageof thethreeEPs
calculatedfrom the three 10° SRS sets. The standard
deviation of these three estimatesis §6,,,=0.000257.
Empirical 95% half-CI by EQ 4 are0.000639.Whenthe

referenceEP is calculatedbasedon the entire population
of N=3x1 samplesthe value doesnt changefrom the

averagedvalue basedon three separateLOe—samplesets,
but classicalCl canbe computedThe classical95% half-

Cl from standardstatisticalformulasis somavhatsmaller

at0.000379Usingthelarger (empirical)95% half-Cl we

can then say that at least to 95% certainty the true

probability Py , of responsexceedingthethresholdvalue
r+=0.2lies within therangei’,ef +0.000639= (0.871623,
0.870345).

Since the test sets were limited to 100 sample points,
derived probabitiescanonly be resohedin incrementsof
0.01.Thus,for ther;=0.2 case a derivedresultcannotbe
moreaccuratehan0.87or 0.88—bothof whichareequally
valid estimates of the true probability,
0.870984+0.000639, which lies between the attainable
values0.87and0.88.In otherwords,ary errorin anesti-
mateof 0.870r 0.88is dueto resolutionerrorfrom thelim-
ited numberof samplesandnotto afault or inferiority of
the samplingmethods point placemenschemeor result-
ing patternHencejn judgingtheperformancef oursam-
pling methods, in Tables 5 and 6 we take results of 0.87
and 0.88 as exact results, and quantify errors therefrom.
Accordingly, a sample-setesultof e.g. 0.89would entalil
anerrorof +0.01here andaresultof e.g. 0.85would entail
an error of -0.02.

From Table 5 we can conclude to well over 95% cer-
tainty thatthe SRSandLHS errorsarefor all threetrials
significantlygreatethanthe CVT errors.Thisis trueof in-
dividual errors, and for average error magnitude as well
(whichfor CVT is anorderof magnituddessthanthatof
SRS and LHS —-LHS actually being significantly worse
thanSRSin this setof trials). Thealgebraicaverageof the
signederrorsshaws that the averagebiasin the LHS and
SRS results is similar, and about 50% smaller for CVT.
Thestandardieviation of theestimatess anorderof mag-
nitudelessfor the CVT resultsthanfor theLHS andSRS,
with SRS significantly better than LHS according to this
metric.Thus,in thesecalculationof exceedencerobabil-
ity, CVT shawvs anorderof magnitudemprovementover
SRSandLHS in boththeerrormagnitudeandstandardie-
viation of the estimates.

Table6 shavsthattheHaltonerroris significantlylarg-
erthantheHammerslg error CVT reduceghe-0.02Hal-
tonerrorto zerowithin ourability to distinguisherrorhere,
but doesnotimprovethe-0.01errorof theHammerslg re-
sult.



2.2.3. Response Exceedence Probability for r=0.5. The
referencevaluefor exceedenc@robability corresponding
to aresponsehresholdevel of r=0.5is P,,,=0.555050.
This valueis the averageof thethreeEPscalculatedrom
the three 10° SRS sets. The standarddeviation of these
threeestimatess 6,,,=0.000209 Empirical 95% half-CI
by EQ 4 are0.000519.ThereferenceEP whencalculated
basedn the entirepopulationof N=3x1 sampleyields
classical 95% half-Cl of 0.000562,very close to the
empirical value.Using the larger (classical)95% half-CI
we canthensayto at least95% certainty that the true
probability Pg 5 of responsexceedingthethresholdvalue
rr=0.5lies within therangei’,ef +0.000562= (0.555612,
0.554488).

Since the test sets were limited to 100 sample points,
for ther{=0.5 casea derived resultcannotbe moreaccu-
ratethan0.550r 0.56—bothof which areequallyvalid es-
timatesof thetrue probability, 0.555050+0.000562which
liesbetweertheattainablevalues0.55and0.56.Hence,n
judgingthe performancef our samplingmethodsjn Ta-
bles7 and 8 we take resultsof 0.55and0.56 asexactre-
sults, and quantify errors therefrom. Accordingly, a sam-
ple-set result of e.g. 0.57 would entail an error of +0.01
hereandaresultof e.g. 0.53wouldentailanerrorof-0.02.

From Table 7 we seethat the averagebiasof the SRS
sampless an orderof magnitudeargerfor SRSthanfor
LHS andCVT. In thecase LHS biasis smallerthanCVT
biasby about50%, but botharesmall. The standardievi-
ation of the estimatess the sameorderof magnitudefor
SRS,LHS, andCVT, with CVT having the smalleststan-
darddeviation,thenLHS, thenSRS.Averageerrormagni-
tude is also least for C\VThen for LHS, then for SRS.

Table9 shaws thatfor this problemthe Halton error of
0.02is actuallybetterthanthe Hammerslg errorof -0.03.
CVT reducesoththeseerrorsto zerowithin our ability to
distinguish error here.

3. Relationship of Statistical Sampling to
Function Integration

The volume integral of a continuousdifferentiable
functionf over some parameteplimeV can be written

{de = gé’yf(lg)dV(E) =i:Z’Nf(13i)(AV),» EQS

where p are the coordinatesof a differential volume
elementof integrationwithin V, andthe finite summation
is the discrete analogue approximation of thegirate
Following the most common precepts of discrete nu-
mericalintegration,theN subs/olumes(Ar), arenon-oser-
lappingregionswhich takentogetheroccupy theentirein-

tegrationdomain,andafunctionevaluationpoint p ; asso-
ciated with each subvolume (AV); is located within the

subvolume.ldeally the locationis suchthatthe valuef; =

f(p;) is best representati over the subolume so that

de = JFi(AV)j:fj(AV)iv EQ6

(GYoR

where f; is the mean value of the function f over
subsolume (Ar),. If equalitiesEQ 6 hold for all N
subvolumes thenEQ 5 becomesn equalityandthefinite
discrete summation equals theet intgyral.

In practice whenknowing nothingaboutthefunctionf
before hand, we can generally best hope to approach
equalitiesEQ 6 asfollows. We attempto subdvide thedo-
main into “compact” subdomains of nearly or exactly
equal volumes and place the function-evaluation or sam-
pling points p; at the effective centers (usually center of
“mass’) of their compactly surrounding regions (subvol-
umes).In this way we improve the prospectshatf; is rep-
resentative of the mean of f over the subvolume so that
equality in EQ 6 is approached.

functionvalueover the subvolumesuchthatthe equal-
ity EQ6 is mostcloselyapproachedrhisis directlyin line
with the CentroidalVoronoi principle that governssubdi-
vision of the spaceinto equalCentroidalVoronoiregions
and locates CVT points at the centers of those regions.
Therefore asexplainednext thereis reasorto expectthat
CVT samplingwill performrelatively well for functionin-
tegration.

If we subdvidethedomaininto N compactlysurround-
ing Voronoicells,in theideallimit of equalcell volumes
we have (AV);, = VIN andthediscretesummatiorin EQ5
becomes

S Swen, =y fp)o = v 3 % EQ7
i=1,N i=1,N i=1,N

ComparingeQ 5, EQ 7, andEQ 2 we have, in theter-
minology of EQ 2,

N
rdv =V ﬁ:I/Dler:VEﬁ EQ8
,[ i:Z,NN %\71.:] D "

We seethat the volume integral of a functionr(p) over
somedomainis equalto the volume V of the domain
multiplied by the meanof the PDF() which resultsfrom

mappinga uniform PDF over V(p ) throughthe function
r(p). Thatis, we canestimatethe integral of a function
over somedomain by uniformly samplingthe function
overthedomainandmultiplying themeanfi of thesample
resultsby the volumeV of the integrationregion. This is



the connectionbetweenstatisticalsamplingand function
integration.

For (AV), notequalto V/N, EQ7 is notanequalityand
thereforeEQ 8 is notanequalityandhencethe correspon-
dence between statistical sampling and function integra-
tion suffers.However, thecorrespondendenprovesasthe
numberof samplesncreases-providedthe samplepoints
remainwell spreadout over the domainsothe associated
sulvolumesbecomesnorenearlyequalin sizeapproach-
ing V/N. If compactness of the subvolumes is retained
aboutcentrallylocatedsamplepoints,thenthe decreasing
sulvolumesize(asN increasespalsomeanghatthe point
valuef; becomesnoreandmorerepresentatie of themean
of f over the subvolume so that equality in EQ 6 is ap-
proached.

Becausef the propertiesof CVT, therateof expected
errordecreasassamplesizeN increasesvould appearto
be superior to other unstructured sampling methods (at
least the ones examined here: SRS, LHS, Halton, and
Hammerslg). We planto explorethisin futurepapersges-
peciallythe connectiorbetweerexpectedrateof errorde-
creaseandsamplinguniformity (which governsthe asso-
ciated subvolumes' size equivalence, compactness, and
sample-point centrality).

4. Concluding Remarks

Uniform CVT samplingwould seento beanaturalbest
choice among other unstructured sampling methods for
function integration —certainly better than the commonly
used SRS ([14]). CVT’s better performance than SRS,
LHS, Halton,andnominally Hammerslg on estimatef
mean responsg tend to support this conjecture.

Certainly in non-adaptie functionintegration(andby
association, in uniform sampling to find the mean of a
function over some parameter space), it stands to reason
that uniformity of the samplepointsover the spaceis de-
sirable.Thus,someregionsof thespacevouldnotbeover-
sampled -where a high density of samples would tend to
mauginalizetheinformationvalueof eachindividual sam-
ple-attheexpenseof undersamplingr notsamplingother
regionsof the spacelnformationmaminalizationincreas-
es with redundancy in the sampling, which accompanies
point “clustering” or “clumping”.

Examplesof point clusteringandclumping,with corre-
sponding relative under-sampling in other regions, are
shavnin Figuresl-3(andmary morefiguresin [18]) to be
most pronounced for SRS, next most for LHS, then Hal-
ton, then Hammersley, and finally CVT. Certainly, CVT
yields the mostuniform placemenbf samplesin fact,in
all CVT pointsets there are no instances of discernable
variationin samplingdensityovertheparametespaceno
clumping or clustering.

In our results,greatersamplinguniformity generally
correlatedwith betteraccurag in the calculatedresponse
statistics. SRSusuallybut not alwaysperformedworst of
all methodsLHS and Halton were generallybetterthan
SRSandnotquiteasgoodasHammerslg andCVT. Ham-
merslg was often, bt not alvays, as good as CVT

The variability of CVT results (standard deviation of
the estimatesyvasconsiderablysmallerthanfor SRSand
usuallyLHS aswell, generallyshaving both more preci-
sion and accuracy than the more popular SRS and LHS
methods.

However, much more work needs to be done before
CVT canbeconcludedo betypically bestfor generalap-
plicationsof statisticalsamplingandfunctionintegration.
In particular we have notyetassesse@VT statisticalper-
formance under the much more common situation where
non-uniform input random variables yield a non-uniform
JPDFover the parametespace This will bethe next im-
portanttestfor CVT concerningts prospectasageneral
statistical sampling method.

Certainly for functionintegrationandpoint placement
for response-surface generation (see [18]), CVT already
appearsery promisingrelative to otherstructurecandun-
structured sampling methods. Especially for irregular
(non-hypercube) interpolation and integration domains,
theregularity of CVT samplingover the domainis alarge
partof thereasonwhy CVT is alreadyrecognizedo hold
greatpromisefor theapplicationof 2-D and3-D meshless
finite-element methods.
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LHSI pointset (from seed 1) CVT-LHS1 pointset (from LHS1)

LHS2 pointset (from seed 2) CVT-LHS2 pointset (from LHS2)

LHS3 pointset (from seed 3) CVT-LHS3 pointset (from LHS3)

Figure 1. 100-point sample sets on a 2-D unit hypercube for: A) Left Column- uniform JPDF LHS
Monte Carlo with three different initial seeds; and B) Right Column- corresponding
uniform JPDF CVT sets starting from LHS sets as initial conditions.



Figure 2. 100-point sample sets on 2-D unit hypercube for:
A) Left plot— Halton QMC sequence;
B) Right plot— corresponding CVT set starting from the Halton set as initial

conditions.

Figure 3. 100-point sample sets on 2-D unit hypercube for:
A) Left plot— Hammersley QMC sequence;
B) Right plot— corresponding CVT set starting from the Hammersley set as initial

conditions.



response value

Figure 4. 2-D model function for system response as a function of
input parameters p1 and p2.

Table 1. Calculated response means (100 samples, Uniform 2D JPDF)

SRS LHS CVT (LHS)
a, f, error a, f, error a, [, error
% 1 0.63153 +0.0499 0.58472 +0.0031 0.57948 -0.0021
E 2 0.62511 +0.0435 0.58035 -0.0013 0.58675 0.0051
N
= 3 0.61019 +0.0286 0.57891 -0.0027 0.58035 -0.0013
L
4
average || 0.622277 | +0.0407 0.581327 -0.0003 0.582193 | +0.00059
std. de. 0.010949 0.0109 0.003026 | 0.00302 0.003970 | 0.00400
avg.error 0.0407 0.0024 0.0020
magnitude
Table 2. Calculated response means (100 samples, Uniform 2D JPDF)
Halton Hammersey CVvT
a, f, error a, f, error a, [, error
0.56891 -0.0127 0.57455 -0.0071
0.57533 -0.0063 0.58719 +0.0056




Table 3. Calculated response standard deviations (100 samples, Uniform 2D JPDF)

SRS LHS CVT (LHS)
0, 6, error G, 6, error G, G, error
% 1 0.39227 | +0.04906 0.37505 | +0.03184 0.34135 | -0.00186
K 2 0.37978 +0.03657 0.35397 +0.01076 0.33821 -0.00500
% 3 0.32844 | -0.01477 0.30729 | -0.03592 0.33800 | -0.00521
o
average || 0.366830 | +0.023622 0.345437 | +0.002228 0.339187 | -0.003428
std. de. 0.033828 | 0.033828 0.034677 | 0.034677 0.001876 | 0.002220
avg.error 0.033467 0.026174 0.003428
magnitude

Table 4. Calculated response standard deviations (100 samples, Uniform 2D JPDF)

Halton Hammer sley CVT
G, 6, error 6, 6, error G, 6, error
0.32942 | -0.01379 0.34565 | -0.00600
0.34565 | +0.00244 0.34392 | +0.00071

Table 5. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Uniform 2D JPDF)

SRS LHS CVT
Po» Py, error Py, Py, error Py, Py, error
% 1 0.85 -0.02 0.84 -0.03 0.86 -0.01
'3: 2 0.86 -0.01 0.86 -0.01 0.87 0.0
% 3 0.89 +0.01 0.90 +0.02 0.87 0.0
[i4
average 0.867 -0.0067 0.867 -0.0067 0.867 -0.0033
std. de. 0.021 0.0153 0.031 0.0252 0.006 0.0058
avg.error 0.0133 0.02 0.0033
magnitude




Table 6. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Uniform 2D JPDF)

Table 7. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Uniform 2D JPDF)

Halton Hammerdey CVT
Pos Py, error Po» Py, error Po» Py, error
0.85 -0.02 0.87 0.0
0.86 -0.01 0.86 -0.01

SRS LHS CVT
Pys Pys error Pys Py error Pys Py error
z 1 0.56 0. 0.53 -0.02 0.55 0.
b 2 0.57 +0.01 0.55 0. 0.58 0.02
% 3 0.62 +0.06 0.57 +0.01 0.56 0.
[
average 0.5833 +0.023 0.550 -0.003 0.563 +0.007
std. de. 0.0321 0.032 0.020 0.015 0.015 0.012
avg. error 0.023 0.01 0.007
magnitude

Table 8. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Uniform 2D JPDF)

Halton Hammersey CVT
Pys Py s error Pys Pys error Pys Py s error
0.58 +0.02 0.56 0.
0.52 -0.03 0.56 0.




