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Abstract

A recently developed Centroidal Voronoi Tessellation
(CVT)unstructuredsamplingmethodis investigatedhere
to assessits suitability for usein statisticalsamplingand
function integration. CVT efficiently generates a highly
uniform distribution of sample points over arbitrarily
shapedM-Dimensionalparameterspaces.It hasrecently
beenshownon several 2-D testproblemsto providesupe-
rior point distributionsfor generating locally conforming
responsesurfaces.In this paper, its performanceasa sta-
tistical samplingandfunctionintegration methodis com-
pared to that of Latin-Hypercube Sampling(LHS) and
SimpleRandomSampling(SRS)Monte Carlo methods,
andHaltonandHammersley quasi-Monte-Carlosequence
methods.Specifically, samplingefficienciesare compared
for functionintegrationandfor resolvingvariousstatistics
of responsein a 2-D testproblem.It is foundthat on bal-
anceCVTperformsbestof all thesesamplingmethodson
our test problems.

1. Background

For reasonsthatwill becomeclearlater, it is oftenben-
eficial in statistical sampling and function integration to
sample "uniformly" over the applicable parameter space.

Such uniformity, while conceptually simple and intui-
tive on a qualitative level, is on a quantitative level some-
whatcomplicatedto describeandquantifymathematical-
ly. Quantitativeaspectsof uniformity involve:1) theequal-
ity with which pointsarespacedrelative to oneanotherin

theparameterspace(arethey all nominally thesamedis-
tance from one another?); 2) uniformity of point density
over the entire domain of the parameter space (i.e., uni-
form "coverage"of thewholedomainby thesetof points,
andnot just gooduniformity within certainregionsof the
space); and 3) isotropy in the point placement pattern.
Each of these aspects of uniformity can be quantified by
severalmathematicalmeasures.We will not discussthese
measures further here, but we mention them to say that
quantitative measures do exist for the intuitive notion of
uniformity. Wefind thatin 2-D thevisual-intuitivesenseof
uniformity obtainedby viewing a distribution of samples
in a square(2-D hypercube)correlatesvery stronglywith
thequantitative quality measuresmentionedabove. Thus,
in 2-D theeye is anexcellentintegratorof thedifferentas-
pectsof uniformity listedabove, anda very accuratedis-
criminator of uniformity or lack thereof –or at least in
judgingwhetheroneparticularlayoutof samplepointsis
more uniform than another.

Much effort has been applied in the literature to the
problem of achieving uniform placement of N samples
over M-dimensionalhypercubes,whereM andN areboth
arbitrary. It is well recognizedthat Simple-Randomsam-
pling (SRS)MonteCarlodoesnot do a particularlygood
job of uniformly spreadingoutthesamplepoints.Thepop-
ular Latin Hypercube Sampling (LHS) method generally
does a much better job of uniformly spreading out the
points.This is dueto thegreatersamplingregularity over
eachindividual parameterdimensionbeforethe individu-
ally generated parameter values are randomly combined
into parameter sets which define the coordinates of the
sampling points ([5]).

Recentefforts to modify LHS to getanevenmoreuni-
form distribution of points over the paramter space have
included Distributed Hypercube Sampling (DHS, [12])
andImprovedDistributedHypercubeSampling(IHS, [2]).
The fundamentals and history of these are reviewed in
[18]. Thoughthequantitative measureof uniformity used
for comparisons in [2] and [12] was somewhat flawed, it
does appear that DHS gives better sampling uniformity
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thanLHS, andthat IHS givesbettersamplinguniformity
thanDHSbut is increasinglymorecomputationallyexpen-
siveasthedimensionalityof theparamterspaceincreases.
We have recently become aware of another LHS variant,
“Optimal Symmetric LHS” (OSLHS, [20]) which also
seemsto improve thespatialuniformity of LHS samples.
Its computational cost and performance relative to DHS
and IHS are not yet known, however.

A number of other potential approaches for achieving
uniformpointplacementthatarenotevolvedfrom anLHS
basis are reviewed (and some new ones are presented) in
[7]. There,somequantitativemetricsrelatedto visual/sen-
sory perception of point uniformity in 2-D are reviewed
and some new ones presented. Many of these non-LHS-
basedapproachesappearto work verywell in 2-D,but it is
said that some of the methods may not be applicable or
may not perform well in more than two dimensions, and
someclearlywill not scaleup to high dimensionsafford-
ably. Others seem more promising for high dimensions,
but have not yet been investigated enough.

The so-called“Quasi- Monte Carlo” (QMC) quasi-or
sub-randomlow-discrepency sequencemethods(seee.g.
[14]) canoftenachieve reasonablyuniform sampleplace-
mentin hypercubes.Thestrengthof thesesequencemeth-
ods(Halton,Hammersley, Sobol,etc.),is thatthey canpro-
duce fairly uniform point distributions even though sam-
ples are added one at a time to the parameter space. The
one-at-a-time incremental sampling of QMC (and SRS)
enablesthesemethodsto have betterefficiency prospects
thanCVT andLHS-typemethodsin theareaof erroresti-
mationandcontrol.Not only this, theresultsachievedare
oftenquitegood.For resolvingthemeanandstandardde-
viation of response measures, Hammersley sequences
werefound in [11] to converge to within 1% of exact re-
sults3 to 100timesfasterthanLHS over a largerangeof
testproblems.For resolvingresponseprobabilities,Ham-
mersley and modified-Halton were found in [15] to per-
form roughlythesameasLHS onbalanceoverseveraltest
problems.

However, when the hyperspace dimension becomes
moderate to large and/or the sampling density becomes
high, some(perhapsall?) sequencessuffer from spurious
correlationof thesamples.This is shown for standardHal-
ton sequences in 16-D (ref. [12]) and 40-D (ref. [15]).
Sometimesamodificationcanbefoundto suppressor de-
lay theonsetof spuriouscorrelation,asafix from theliter-
ature implemented in [15] shows for Halton sequences.

Recently, a long-recognized approach for achieving
uniformity of pointplacementin M-dimensionalvolumes,
called“CentroidalVoronoiTessellation”(CVT), hasbeen
made computationally efficient ([10]) for implementing
the principles of Centroidal Voronoi diagrams ([6],[13]).

These diagrams subdivide arbitrarily shaped domains in
arbitary-dimensionalspaceinto arbitrarynumbersof near-
ly uniformsubvolumes,or Voronoicells/regions.Given a
setof N points{ zi} (i=1,...,N)in anM-dimensionalhyper-
cube,theVoronoiregionor Voronoicell Vj (j=1,...,N)cor-
respondingto zj is definedto beall pointsin thehypercube
thatarecloserto zj thantoany of theotherzi’s.Theset{ Vi}
(i=1,...,N)is called a Voronoitessellationor Voronoidia-
gram of the hypercube, the set { zi} (i=1,...,N) being the
generatingpointsor generators.A centroidal Voronoites-
sellation (CVT) is a special Voronoi tessellation with the
propertythateachgeneratingpointzi is itself themasscen-
troid of the corresponding Voronoi region Vi.

Although CVTs are deterministic, they can be con-
verged to with probabilistic sampling methods. In [10],
new probabilisticCVT constructionalgorithmswereintro-
duced,implemented,andtested.Thesemethodsaregener-
ally much more efficient than previous deterministic and
probabilistic methods for constructing CVTs.

The CVT concept and the algorithms in [10] for their
constructioncanbegeneralizedin many ways(see[6] for
details).For example,insteadof a hypercube,generalre-
gionsin M-dimensionalspacecanbetreated.This feature
has been exploited with great success (see [6]) for dis-
cretizingarbitrary2-D and3-D domainvolumesfor com-
putationalmechanicsanalysiswith meshlessanaloguesof
finite elementmethods(e.g.,[1]). Furthermore,pointscan
be distributed non-uniformly according to a prescribed
density function over the space. For instance, reference
[18] shows several CVT point setsspacedaccordingto a
bi-Normal joint probability density function. Thus, CVT
can be used for Monte-Carlo-like sampling in problems
containing multiple random variables. In this regard, we
surmise that correlation structure for correlated random
variables can be introduced into CVT sampling with the
rank correlation procedure [8] employed in [9] for SRS
and LHS, and in [11] for Hammersley QMC.

Figure1 comparesthreeLHS andthreecorresponding
CVT pointsetsfor 100 samplesin a 2D unit hypercube.
The threeLHS pointsetsweregeneratedwith [9] for dif-
ferent initial seeds (Seed1 = 123456789, Seed2 =
192837465,Seed3= 987654321)and a Uniform joint
probabilitydensityfunctionoveraunit-hypercubeparam-
eterspace.The threecorrespondingCVT pointsetswere
generated([3]) by usingtheLHS setsasinitial conditions
(point locations)to begin theCVT iterations.In all cases
theCVT setis muchmoreuniform(visuallyandquantita-
tively) thanits associatedLHS set.All threeCVT setsare
relatively similar visually andquantitatively, even though
startingfrom threevery different initial conditionsgiven
by the LHS sets.



The LHS sets exhibit significant clustering and non-
uniformity of thepoints.TheLHS setsdonotappearto be
significantlymoreuniform thanthreeanalogousSRSsets
shown in [18], andwhich will beusedherein later com-
parisons,butquantitatively they aresignificantlymoreuni-
form ([4]). CVT sets from the three different SRS initial
setsareshown in [18]. ThedifferentLHS andSRSinitial
conditions do not have much of an impact on final CVT
uniformity, so CVT appears to be robust in this regard.

Figures2 and3 show HaltonandHammersley pointsets
and the corresponding CVT sets started from them. The
Halton pointset is noticably and quantitatively more uni-
form thanany of theLHS sets;theHammersley setis even
more uniform than the Halton set; and the CVT sets are
even more uniform than the Hammersley set.

Hence, CVT places samples much more uniformly in
the2D hypercubethanSRSandLHS, andevenmoreuni-
formly thanthelow-discrepancy HaltonandHammersley
QMC sequences.This is trueregardlessof theinitial con-
ditions (samplesets)thatCVT startsfrom ([4]). In initial
investigations[4] for 2-D, 7-D, and20-D testcases,CVT
has provided greater sampling uniformity than Halton,
Hammersley, Sobol,SRS,LHS, DHS,andIHS according
to a meaningful subset of nonflawed quantitative quality
measures. Additionally, no degradation of sampling uni-
formity has been detected in higher dimensions (i.e., for
the 20-D case).

It is therefore natural to ask whether CVT can be ap-
pliedfor: A) statisticalsamplingoverarbitrary-dimension-
al spaces of input random variables to calculate various
statisticsof outputresponsebehavior; B) functionintegra-
tion overarbitrarilyshapeddomains;andC) whetherit can
serve asa methodfor generatingfavorablepoint distribu-
tions for improved response-surface accuracy.

A preliminarypositive indicationregardingitemC) for
response surface generation is presented in [18]. There,
CVT wasshown on several 2-D testproblemsto provide
superior point distributions for generating locally-con-
forming Moving Least Squares response surfaces. Point
distributions by CVT, SRS, LHS, and a structured sam-
pling method with deterministically uniform point place-
ment ([17]) were tried in the study.

In this paperwe take a first steptowardexaminingthe
potential of CVT for improved statistical sampling and
function integration (sections 2 and 3 respectively). We
compare against results from SRS, LHS, Halton, and
Hammersley sampling. Our discussion clarifies the con-
nectionbetweentraditionalstatisticalsamplingandfunc-
tion integration.Weusethisconnectionto contemplatethe
prospects of CVT vs. other sampling methods.

2. Evaluation of CVT as a Statistical
Sampling Method

2.1. 2-D Model Problem and Statistical Measures
of Response for Performance Evaluation of
Sampling Methods

Figure 4 shows an analytic multimodal function de-
scribingsystemresponser asa functionof two systemin-
puts p1 and p2:

EQ 1

on the domain  and ,

where , .

A statistical problem arises if p1 and p2 are random
variables. In that case, any particular realization p1i and
p2i of the stochastic variables yields a deterministic re-
sponseri asgivenby theabovefunctionalrelationship.An
ensembleof responsesaccompaniesthe differentrealiza-
tionsof p1 andp2 asthey vary stochasticallyor randomly
accordingto their individualpropensities,or joint propen-
sitiesif thetwo variablesarecorrelated.In probabilitythe-
ory ajoint probabilitydensityfunctiondefinedoverthein-
put parameter space, JPDF(p1,p2), is used to model the
relative l ikel ihood of achieving an input combination
p1,p2correspondingto thepoint (p1,p2)in thep1-p2co-
ordinate plane. The JPDF function is defined for every
point in thep1-p2parameterplaneandintegratesover the
plane into a value of unity.

TheJPDFlikelihoodfunction for attainingvariousin-
put combinations maps through the response function
r(p1,p2) into a corresponding likelihood function for re-
sponsevalues.Operationally, theresultingresponseprob-
ability densityfunction,PDF(r), canbeapproachedcloser
andcloservia MonteCarlosamplingasmoreandmorepa-
rametersetsor realizations(p1,p2)i arerandomlygenerat-
ed from the governing input JPDF and are propagated
throughtheresponsefunctionr(p1,p2)into responsereal-
izationsri. Theresponserealizationsaredistributedin the
responsespace(i.e., alongtheresponsecoordinateaxisr)
with a densitythat,asmoreandmoresamplesareadded,
trends toward the exact PDF of response.

Veryoften,only certainstatisticalmeasuresof thePDF
of responsearedesiredorcanbereasonablyestimated.Re-
sponsemean, , andstandarddeviation, , canbeesti-
mated directly from the mean and standard deviation

of thepopulationorset{ ri} of realizations.Wehavethe
following definitions:
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2
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EQ 2

EQ 3

where N is the numberof realizationsor “samples” of
response.

Also oftenof interestis theprobabilityof responseex-
ceeding(or notexceeding)someparticularthresholdvalue
rT. Exceedenceprobabilityis verysimplyestimatedasthe
ratio of the number of calculated response values at or
above the given threshold value, to the total number of
samples, N. As the number of response realizations in-
creases,theestimate(quotient)trendstowardgreateraccu-
racy, i.e., towardtheactualexceedenceprobability. This is
of coursealsotruefor theestimates and of response
mean and standard deviation.

2.2. Comparison of Response Statistics from
Various Sampling Methods

Herewecompareestimatesof responsemean,standard
deviation, and exceedence probabilities as obtained from
varioussamplingmethodswehavepreviously introduced:
CVT, SRS,LHS, andHaltonandHammersley sequences.

Westartwith e.g. the100-samplepointsetsin Figure1,
whichcorrespondto auniformJPDFovertheinputparam-
eterspaceof our modelresponsefunction(Figure4). We
map these sets of samples through our response function
EQ 1 to obtaincorrespondingresponsesets,andthencal-
culate the aformentioned statistics of these populations.

Wethencomparethecalculatedstatisticsof eachsetto
eachotherandto “referencevalues”obtainedfrom using
threemillion SRSsamplesat parametersetsgeneratedby
the sampling code [9]. The reference values are actually
averagesof threeresults,eachobtainedfrom onemillion
samples generated from random initial seeds “X” , “Y” ,
and“Z” (differentfrom seeds1, 2, and3 usedto generate
the 100-sample LHS sets in Figure 1).

Three“replicate”setsof onemillion sampleseachwere
used in preference to one set of three million samples so
that empirical confidence intervals (CI) on the calculated
averages could be compared against their classical CI to
reaffirm or caveatthem.(Recentresearch([16], [19]) has
shown that for SRS,empiricalCI appearto besomewhat
moreaccuratethanclassicalCI.) EmpiricalCI areformed
by assumingthecalculatedstatistic(responsemean,stan-
darddeviation,or exceedenceprobability)is a randomre-
alization from a Normal or nearly Normal distribution
abouttheexactresult.Hencea T-distribution with 3 - 1 =

2 degreesof freedomcanbeusedto getconfidenceinter-
valsaboutthesmall-sampleaverageof thethreereplicates.
Thus,for 95%empiricalCI thefollowing formulais used:

95% confidence half-interval = EQ 4

where is thesamplestandarddeviation (cf. EQ 3) of
the three estimates.

2.2.1. Mean of Response. Tables 1 and 2 show the
calculatedmeans,along with nominal errors from the
referencemean, . Thereferencemean =0.581608
is the averageof the threemeansfrom threeSRSsetsof
106 sampleseach.Thestandarddeviationof theestimated
meansis =0.0002278.Thus,empirical95%half-CIby
EQ4 are0.000566.Whenthereferencemeanis calculated
basedon the entire populationof N=3x106 samples,the
value doesn’t changefrom the averagedvalue basedon
three separate106-samplesets,but classicalCI can be
computed. The classical 95% half-CI from standard
statistical formulas is somewhat smaller, at 0.000388.
Using the larger CI (empirical)we say that with at least
95% certaintythe true responsemean lies within the
range ±±0.000566 = (0.582174, 0.581042).�

FromTable2, then,evenusingthelargerCI to account
for uncertainty in the reference value we can definitively
saythatall threeSRSresultshave errorsthatareanorder
of magnitudegreaterthanfor theLHS andCVT sampling.
This is trueof individualerrorsandof theaverageerror. In
writing up theseresultswe noticethat theindividual SRS
errorsareall of thesamealgebraicsignandof fairly large
magnituderelativeto theCVT andLHSresults.A measure
of sampling bias is given by the average of the errors,
which is two ordersof magnitudelarger(=0.0407)for the
SRSresultsthantheaveragebiasin theLHS (-0.0003)and
CVT (=0.0006) results. A slight bias in the code used to
generatethe100-sampleSRSsets([3]) maybesuggested.
(Note that the 106 SRS sets that the reference statistics
were derived from were generated from a different code,
[9].) Alternatively, we could simply be seeing a chance
anomalyin thegeneratedSRSdata.We cannottell which
is the case from our limited number of trials.

In any case,thestandarddeviationof theestimatesis an
orderof magnitudehigherfor SRSthanfor LHS or CVT.
This is somewhatexpected,asLHS andCVT (aswell as
DHS, IHS, and QMC sequence methods) are known to
performbetterthanSRSin termsof variancereductionof
the estimates.

Taking the uncertainty in the reference value into ac-
count, we can conclude to well over 95% certainty that
CVT is moreaccuratethanLHS in realization3 andless
accuratein realization2. To almost95%certaintywe can
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concludethatCVT doesbetterthanLHS in realization1.
Theseconclusionsarereflectedin aslightly loweraverage
errormagnitudefor CVT thanfor LHS. Their averageer-
ror (bias)andvarianceof theestimatesis comparable.We
note that the CVT results are obtained from the LHS re-
sultsasinitial conditionsfor theCVT iterations.In cases1
and3 themagnitudeof theerrordeclinedaftertheCVT it-
erations,andin case2 themagnitudeincreased.(Thesere-
sultsholdaboveandbeyondconsiderationsof uncertainty
in the reference result).

Table 2 shows that the Hammersley result is, to well
over 95%certainty, anorderof magnitudebetterthanthe
Haltonresult.TheHaltonresultis considerablyimproved
by CVT iterations.Within theuncertaintyin thereference
result it cannot be determined whether CVT actually did
improvetheHammersley result,but asignificantimprove-
mentaccordingto thenominalvaluesin the tableis indi-
cated.

2.2.2. Standard Deviation of Response. Tables3 and4
show the estimatesof the standarddeviation of our
response.Nominal errors from the reference value

=0.343208arealsoshown. This valueis theaverage
of the threestandarddeviationscalculatedfrom the three
106 SRS sets. The standarddeviation of these three
estimatesis =0.000327.Empirical95%half-CI by EQ
4 are 0.000813.We can then say that to at least 95%
certaintythat the true responsestandarddeviation lies
within the range ± ±0.000813 = (0.344021, 0.342395)

From Table 3, even accounting for uncertainty in the
referencevalue,wecanconcludeto well over95%certain-
ty thattheSRSandLHS errorsarefor all threetrialsanor-
derof magnitudegreaterthantheCVT errors.This is true
of individual errors and for average error magnitude as
well. Thealgebraicaverageof thesignederrorsshowsthat
theaveragebiasin theLHS andCVT resultsis similar, and
smallerthantheaveragebiasin theSRSresultsby anorder
of magnitude. The standard deviation of the estimates is
similar for LHS andSRS,andtheseareanorderof magni-
tudelargerthanwith CVT. Thus,in thesethreetrial calcu-
lationsof responsestandarddeviation, CVT shows anor-
derof magnitudeimprovementoverSRSandLHS in both
the error magnitude and standard deviation of the esti-
mates.

Table 4 shows that, even given the uncertainty in the
referencevalue,wecandefinitively saythattheHaltonand
Hammersley errorsarereducedby anorderof magnitude
with the CVT iterations. The initial and improved Ham-
mersley results are an order of magnitude better than the
initial and improved Halton results.

2.2.3. Response Exceedence Probability for rT=0.2. The
reference value for exceedence probability (EP)

correspondingto a responsethresholdlevel of rT=0.2 is
=0.870984.Thisvalueis theaverageof thethreeEPs

calculatedfrom the three 106 SRS sets. The standard
deviation of these three estimatesis =0.000257.
Empirical 95% half-CI by EQ 4 are0.000639.Whenthe
referenceEP is calculatedbasedon the entirepopulation
of N=3x106 samples,the value doesn’t changefrom the
averagedvalue basedon threeseparate106-samplesets,
but classicalCI canbecomputed.Theclassical95%half-
CI from standardstatisticalformulasis somewhatsmaller,
at 0.000379.Usingthelarger(empirical)95%half-CI we
can then say that at least to 95% certainty the true
probabilityP0.2 of responseexceedingthethresholdvalue
rT=0.2 lies within therange ±0.000639= (0.871623,
0.870345).

Since the test sets were limited to 100 sample points,
derivedprobabitiescanonly beresolved in incrementsof
0.01.Thus,for therT=0.2case,a derivedresultcannotbe
moreaccuratethan0.87or 0.88–bothof whichareequally
val i d est i mates of the t rue probabi l i t y,
0.870984±0.000639, which lies between the attainable
values0.87and0.88.In otherwords,any error in anesti-
mateof 0.87or 0.88is dueto resolutionerrorfrom thelim-
ited numberof samples,andnot to a fault or inferiority of
thesamplingmethod’s point placementschemeor result-
ing pattern.Hence,in judgingtheperformanceof oursam-
pling methods, in Tables 5 and 6 we take results of 0.87
and 0.88 as exact results, and quantify errors therefrom.
Accordingly, a sample-setresultof e.g. 0.89would entail
anerrorof +0.01here,andaresultof e.g. 0.85wouldentail
an error of -0.02.

From Table 5 we can conclude to well over 95% cer-
tainty that theSRSandLHS errorsarefor all threetrials
significantlygreaterthantheCVT errors.Thisis trueof in-
dividual errors, and for average error magnitude as well
(which for CVT is anorderof magnitudelessthanthatof
SRS and LHS –LHS actually being significantly worse
thanSRSin thissetof trials).Thealgebraicaverageof the
signederrorsshows that theaveragebiasin theLHS and
SRS results is similar, and about 50% smaller for CVT.
Thestandarddeviationof theestimatesis anorderof mag-
nitudelessfor theCVT resultsthanfor theLHS andSRS,
with SRS significantly better than LHS according to this
metric.Thus,in thesecalculationsof exceedenceprobabil-
ity, CVT shows anorderof magnitudeimprovementover
SRSandLHS in boththeerrormagnitudeandstandardde-
viation of the estimates.

Table6 showsthattheHaltonerroris significantlylarg-
er thantheHammersley error. CVT reducesthe-0.02Hal-
tonerrortozerowithin ourability todistinguisherrorhere,
but doesnotimprovethe-0.01errorof theHammersley re-
sult.

σ̂ref

σ̂est

σ
σ̂ref

P̂ref

σ̂est
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2.2.3. Response Exceedence Probability for rT=0.5. The
referencevaluefor exceedenceprobabilitycorresponding
to a responsethresholdlevel of rT=0.5 is =0.555050.
This valueis theaverageof thethreeEPscalculatedfrom
the three106 SRSsets.The standarddeviation of these
threeestimatesis =0.000209.Empirical95%half-CI
by EQ 4 are0.000519.ThereferenceEPwhencalculated
basedon theentirepopulationof N=3x106 samplesyields
classical 95% half-CI of 0.000562,very close to the
empiricalvalue.Using the larger (classical)95% half-CI
we can then say to at least 95% certainty that the true
probabilityP0.5 of responseexceedingthethresholdvalue
rT=0.5 lies within therange ±0.000562= (0.555612,
0.554488).

Since the test sets were limited to 100 sample points,
for the rT=0.5 casea derivedresultcannotbemoreaccu-
ratethan0.55or 0.56–bothof whichareequallyvalid es-
timatesof thetrueprobability, 0.555050±0.000562,which
liesbetweentheattainablevalues0.55and0.56.Hence,in
judgingtheperformanceof our samplingmethods,in Ta-
bles7 and8 we take resultsof 0.55and0.56asexact re-
sults, and quantify errors therefrom. Accordingly, a sam-
ple-set result of e.g. 0.57 would entail an error of +0.01
here,andaresultof e.g. 0.53wouldentailanerrorof -0.02.

From Table7 we seethat the averagebiasof the SRS
samplesis anorderof magnitudelarger for SRSthanfor
LHS andCVT. In thecase,LHS biasis smallerthanCVT
biasby about50%,but botharesmall.Thestandarddevi-
ation of the estimatesis the sameorderof magnitudefor
SRS,LHS, andCVT, with CVT having thesmalleststan-
darddeviation,thenLHS, thenSRS.Averageerrormagni-
tude is also least for CVT, then for LHS, then for SRS.

Table9 shows thatfor this problemtheHaltonerrorof
0.02is actuallybetterthantheHammersley errorof -0.03.
CVT reducesboththeseerrorsto zerowithin ourability to
distinguish error here.

3. Relationship of Statistical Sampling to
Function Integration

The volume integral of a continuousdifferentiable
functionf over some parameter volumeV can be written

EQ 5

where are the coordinatesof a differential volume
elementof integrationwithin V, andthefinite summation
is the discrete analogue approximation of the integral.

Following the most common precepts of discrete nu-
mericalintegration,theN subvolumes arenon-over-
lappingregionswhich takentogetheroccupy theentirein-

tegrationdomain,anda functionevaluationpoint i asso-
ciated with each subvolume is located within the
subvolume.Ideally the locationis suchthat thevaluefi =
f( i) is best representative over the subvolume so that

, EQ 6

where is the mean value of the function f over
subvolume . If equalities EQ 6 hold for all N
subvolumes,thenEQ5 becomesanequalityandthefinite
discrete summation equals the exact integral.

In practice,whenknowing nothingaboutthefunctionf
before hand, we can general ly best hope to approach
equalitiesEQ6asfollows.Weattemptto subdividethedo-
main into “ compact” subdomains of nearly or exactly
equal volumes and place the function-evaluation or sam-
pling points i at the effective centers (usually center of
“mass” ) of their compactly surrounding regions (subvol-
umes).In this way we improve theprospectsthat fi is rep-
resentative of the mean of f over the subvolume so that
equality in EQ 6 is approached.

functionvalueover thesubvolumesuchthattheequal-
ity EQ6 is mostcloselyapproached.Thisis directlyin line
with theCentroidalVoronoiprinciple thatgovernssubdi-
vision of thespaceinto equalCentroidalVoronoi regions
and locates CVT points at the centers of those regions.
Therefore,asexplainednext thereis reasonto expectthat
CVT samplingwill performrelatively well for functionin-
tegration.

If wesubdividethedomaininto N compactlysurround-
ing Voronoicells, in the ideal limit of equalcell volumes
wehave = V/N andthediscretesummationin EQ5
becomes

. EQ 7

ComparingEQ 5, EQ 7, andEQ 2 we have, in theter-
minology of EQ 2,

. EQ 8

We seethat the volume integral of a function r( ) over
somedomain is equal to the volume V of the domain
multiplied by themeanof thePDF(r) which resultsfrom
mappinga uniform PDF over V( ) throughthe function
r( ). That is, we canestimatethe integral of a function
over somedomain by uniformly samplingthe function
overthedomainandmultiplying themean of thesample
resultsby the volumeV of the integrationregion. This is
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the connectionbetweenstatisticalsamplingandfunction
integration.

For ¹notequalto V/N, EQ7 is notanequalityand
thereforeEQ8 is notanequalityandhencethecorrespon-
dence between statistical sampling and function integra-
tion suffers.However, thecorrespondenceimprovesasthe
numberof samplesincreases–providedthesamplepoints
remainwell spreadout over thedomainso theassociated
subvolumesbecomesmorenearlyequalin sizeapproach-
ing V/N. If compactness of the subvolumes is retained
aboutcentrallylocatedsamplepoints,thenthedecreasing
subvolumesize(asN increases)alsomeansthat thepoint
valuefi becomesmoreandmorerepresentativeof themean
of f over the subvolume so that equality in EQ 6 is ap-
proached.

Becauseof thepropertiesof CVT, therateof expected
errordecreaseassamplesizeN increaseswould appearto
be superior to other unstructured sampling methods (at
least the ones examined here: SRS, LHS, Halton, and
Hammersley). Weplanto explorethis in futurepapers,es-
peciallytheconnectionbetweenexpectedrateof errorde-
creaseandsamplinguniformity (which governstheasso-
ciated subvolumes’ size equivalence, compactness, and
sample-point centrality).

4. Concluding Remarks

UniformCVT samplingwouldseemtobeanaturalbest
choice among other unstructured sampling methods for
function integration –certainly better than the commonly
used SRS ([14]). CVT’s better performance than SRS,
LHS, Halton,andnominallyHammersley on estimatesof
mean response tend to support this conjecture.

Certainly, in non-adaptive function integration(andby
association, in uniform sampling to find the mean of a
function over some parameter space), it stands to reason
thatuniformity of thesamplepointsover thespaceis de-
sirable.Thus,someregionsof thespacewouldnotbeover-
sampled -where a high density of samples would tend to
marginalizetheinformationvalueof eachindividual sam-
ple-attheexpenseof undersamplingor notsamplingother
regionsof thespace.Informationmarginalizationincreas-
es with redundancy in the sampling, which accompanies
point “clustering” or “clumping”.

Examplesof pointclusteringandclumping,with corre-
sponding relative under-sampling in other regions, are
shown in Figures1-3(andmany morefiguresin [18]) to be
most pronounced for SRS, next most for LHS, then Hal-
ton, then Hammersley, and finally CVT. Certainly, CVT
yields themostuniform placementof samples.In fact, in
all CVT pointsets there are no instances of discernable
variationin samplingdensityover theparameterspace-no
clumping or clustering.

In our results,greatersamplinguniformity generally
correlatedwith betteraccuracy in thecalculatedresponse
statistics.SRSusuallybut not alwaysperformedworstof
all methods.LHS andHalton weregenerallybetterthan
SRSandnotquiteasgoodasHammersley andCVT. Ham-
mersley was often, but not always, as good as CVT.

The variability of CVT results (standard deviation of
theestimates)wasconsiderablysmallerthanfor SRSand
usuallyLHS aswell, generallyshowing bothmorepreci-
sion and accuracy than the more popular SRS and LHS
methods.

However, much more work needs to be done before
CVT canbeconcludedto betypically bestfor generalap-
plicationsof statisticalsamplingandfunction integration.
In particular, wehavenotyetassessedCVT statisticalper-
formance under the much more common situation where
non-uniform input random variables yield a non-uniform
JPDFover theparameterspace.This will be thenext im-
portanttestfor CVT concerningits prospectsasa general
statistical sampling method.

Certainly, for functionintegrationandpoint placement
for response-surface generation (see [18]), CVT already
appearsverypromisingrelativeto otherstructuredandun-
structured sampling methods. Especial ly for irregular
(non-hypercube) interpolation and integration domains,
theregularity of CVT samplingover thedomainis a large
partof thereasonwhy CVT is alreadyrecognizedto hold
greatpromisefor theapplicationof 2-D and3-D meshless
finite-element methods.
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Level 4 Level 6

Figure 1. 100-point sample sets on a 2-D unit hypercube for: A) Left Column– uniform JPDF LHS
Monte Carlo with three different initial seeds; and B) Right Column– corresponding
uniform JPDF CVT sets starting from LHS sets as initial conditions.

LHS2 pointset (from seed 2) CVT-LHS2 pointset (from LHS2)

LHS3 pointset (from seed 3) CVT-LHS3 pointset (from LHS3)

LHS1 pointset (from seed 1) CVT-LHS1 pointset (from LHS1)



Figure 2. 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Halton QMC sequence;
B) Right plot– corresponding CVT set starting from the Halton set as initial
conditions.

Figure 3. 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Hammersley QMC sequence;
B) Right plot– corresponding CVT set starting from the Hammersley set as initial
conditions.



Table 1.  Calculated response means (100 samples, Uniform 2D JPDF)

SRS LHS CVT (LHS)

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.63153 +0.0499 0.58472 +0.0031 0.57948 -0.0021

2 0.62511 +0.0435 0.58035 -0.0013 0.58675 0.0051

3 0.61019 +0.0286 0.57891 -0.0027 0.58035 -0.0013

average 0.622277 +0.0407 0.581327 -0.0003 0.582193 +0.00059

std. dev. 0.010949 0.0109 0.003026 0.00302 0.003970 0.00400

avg.error
magnitude

0.0407 0.0024 0.0020

Table 2.  Calculated response means (100 samples, Uniform 2D JPDF)

Halton Hammersley CVT

 error  error  error

0.56891 -0.0127 0.57455 -0.0071

0.57533 -0.0063 0.58719 +0.0056

Figure 4. 2-D model function for system response as a function of
input parameters p1 and p2.

µ̂r µ̂r µ̂r µ̂r µ̂r µ̂r

µ̂r µ̂r µ̂r µ̂r µ̂r µ̂r



Table 3. Calculated response standard deviations (100 samples, Uniform 2D JPDF)

SRS LHS CVT (LHS)

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.39227 +0.04906 0.37505 +0.03184 0.34135 -0.00186

2 0.37978 +0.03657 0.35397 +0.01076 0.33821 -0.00500

3 0.32844 -0.01477 0.30729 -0.03592 0.33800 -0.00521

average 0.366830 +0.023622 0.345437 +0.002228 0.339187 -0.003428

std. dev. 0.033828 0.033828 0.034677 0.034677 0.001876 0.002220

avg.error
magnitude

0.033467 0.026174 0.003428

Table 4.  Calculated response standard deviations (100 samples, Uniform 2D JPDF)

Halton Hammersley CVT

 error  error  error

0.32942 -0.01379 0.34565 -0.00600

0.34565 +0.00244 0.34392 +0.00071

Table 5. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Uniform 2D JPDF)

SRS LHS CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.85 -0.02 0.84 -0.03 0.86 -0.01

2 0.86 -0.01 0.86 -0.01 0.87 0.0

3 0.89 +0.01 0.90 +0.02 0.87 0.0

average 0.867 -0.0067 0.867 -0.0067 0.867 -0.0033

std. dev. 0.021 0.0153 0.031 0.0252 0.006 0.0058

avg.error
magnitude

0.0133 0.02 0.0033

σ̂r σ̂r σ̂r σ̂r σ̂r σ̂r

σ̂r σ̂r σ̂r σ̂r σ̂r σ̂r

P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2



Table 6. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Uniform 2D JPDF)

Halton Hammersley CVT

 error  error  error

0.85 -0.02 0.87 0.0

0.86 -0.01 0.86 -0.01

Table 7. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Uniform 2D JPDF)

SRS LHS CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.56 0. 0.53 -0.02 0.55 0.

2 0.57 +0.01 0.55 0. 0.58 0.02

3 0.62 +0.06 0.57 +0.01 0.56 0.

average 0.5833 +0.023 0.550 -0.003 0.563 +0.007

std. dev. 0.0321 0.032 0.020 0.015 0.015 0.012

avg.error
magnitude

0.023 0.01 0.007

Table 8. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Uniform 2D JPDF)

Halton Hammersley CVT

 error  error  error

0.58 +0.02 0.56 0.

0.52 -0.03 0.56 0.

P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2

P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5

P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5


