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1. DESCRIPTION 

Let  F:  R n --> R "-1, n - 2, be  a given,  c o n t i n u o u s l y  d i f fe ren t iab le  m a p p i n g  for 
which  the  r egu la r i ty  set  

~ ( F )  = (x ~ Rn; r a n k  D F ( x )  ffi n - 1} (1.1) 

is n o n e m p t y .  Moreover ,  suppose  t h a t  the  ( u n d e r d e t e r m i n e d )  s y s t e m  of (n - 1) 
e q u a t i o n s  in  n u n k n o w n s ,  

F x  ffi 0, (1.2) 

has  a t  leas t  one  so lu t ion  x ° ~ ~ (F) .  T h e n  the  r egu la r  so lu t i on  se t  

# R ( F )  = ( x  ~ 9 t (F ) ;  F x  ffi 0} (1.3) 

is an  open,  o n e - d i m e n s i o n a l  C L m a n i f o l d  in  R n. W e  are  i n t e r e s t ed  in  c o m p u t i n g  

the  c o n n e c t e d  c o m p o n e n t  8R (F, x °) of  £R (F)  wh ich  c o n t a i n s  x °. B y  a f u n d a m e n t a l  
r esu l t  of  d i f ferent ia l  geome t ry  (see, e.g., [5]), 8R(F, x °) is d i f feomorphic  e i t he r  
to a circle or to some in t e rva l  ( connec ted  subse t )  of  R ~. F o r  s impl i c i ty  we call  
(~R (F, x 0) the  so lu t ion  curve  of (1.2) t h r o u g h  x °. 
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The  design of an algori thm for computing a sequence of  points along this 
solution curve has been described in [3], [6], [7], and [8]. We sketch here  only the  
general outline of the procedure.  

An impor tant  role in the algori thm is played by the augmented  mappings F[ i ] :  
R n . . ~  R n, 1 --< i --< n, defined by 

F[i]x  --- (e~)Tx , V x  ~ R n, (1.4) 

where e ~ . . . . .  e ~ denote the natural  basis vectors of R ~. Since for x E ~ ( F )  the 
(n - 1) × n Jacobian matr ix D F ( x )  has rank n - 1, there  exist indices i, 1 __ i -- 
n, such that  the matr ix 

[vr(xt  
DF[i](x)  = \(e,)W ] {1.5) 

is nonsingular. 
A first use of the augmented operators is in the computat ion of the tangent  

direction at any x E ~ (F). More  specifically, if i is such tha t  (1.5) is nonsingular, 
then the tangent  vector  Tx  is uniquely defined by the generic algori thm 

(1) Solve DF[i] (x )v  = e n, 
(2) o := d • sgn(det DF[~](x)), (1.6) 
(3) Tx := ov/[[ v [[2, 

where I[ • [[ 2 is the Euclidean norm, and d = ± 1 is a given direction. Note  tha t  the  
matr ix (1.5) is nonsingular for any index i, 1 <_ i <_ n, for which the component  
(Tx),  is nonzero. 

The  process uses a local parameter izat ion of the solution curve. Normal ly  the 
continuation parameter  is the variable x~, for which the component  [(Tx),[ is 
maximal. But  in the case of certain curvature  changes, where it appears  tha t  a 
limit point  for this variable x~ is approaching, o ther  choices of the cont inuat ion 
parameter  are used. 

If  x denotes the current  point, then prediction takes place along the Euler  line 

~r(h) = x + hTx.  {1.7) 

The  choice of the step length h takes into account  the quali ty of the corrector  
i teration during the computat ion of x, as well as a prediction of  the change 
in curvature of the solution curve. Moreover,  h is adjusted such tha t  the 
(secant) distance between x and the next  computed  point  will be approximately  
equal to h. 

The  corrector  i teration starts  f rom the predicted p o i n t p  = or(h) and solves the 
augmented equations 

F[i]x  = p,e". (1.8) 

The  user may  specify as corrector  i teration ei ther  a full Newton  process or a 
modified Newton process with fixed Jacobian DF[ i ] (p )  at  the  predicted point.  

2. OUTLINE OF THE ALGORITHM 

During the following description, we assume tha t  we have entered  the  continua- 
tion loop with an old point  XL(*),  a current  point  XC(*),  the tangent  TL(* )  at  
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XL(*), and certain scalar quantities associated with these vectors. We will check 
first for any target or limit points between XL(*) and XC(*), then proceed to 
compute a new continuation point XF(*). These names are not in precise 
accordance with the storage arrangements until the end of a continuation step. 

Step 1 For KSTEP > 0, the code goes to step 2. On the first call to PITCON( ) 
for a given problem (KSTEP -- -1  or KSTEP = 0) problem-dependent 
constants are set and user-control parameters are loaded or defaults 
used. If KSTEP = 0, the program then proceeds to step 2. If KSTEP -- 
-1,  the user requests that  the input starting point XR(*) be checked for 
the condition I F(XR) ] _ ½ ABSERR. If this is not the case, the corrector 
process is applied to the point XR(*) until the error condition is satisfied, 
or a failure has occurred. An unimprovable point results in a return of 
IRET = -6.  If the starting point XR(*) was improved, the program 
returns with IRET =- 0 and KSTEP = 0. If KSTEP = 0, the continuation 
loop begins with the starting point XR(*) stored in XL(*) and XC(*), 
the step size HTANCF set to the input value of H, and the continuation 
parameter set to the input value of IPC. For KSTEP > 0, these quantities 
are computed and updated by the program itself. 

Step 2 Target point check. If IT # 0, a target point is desired. The values of 
XL(IT) and XC(IT) are compared to XIT. If the target value is between 
these two values, the program computes the target point, sets IRET = 
1, and returns, temporarily interrupting normal continuation. 

Step 3 Tangent and local continuation parameter calculation. If the loop was 
suspended at the last call to PITCON( ) to allow the return of a limit 
point, then the tangent has already been calculated and a limit point 
check is superfluous, so the program skips to step 5. Otherwise, a vector 
in the tangent plane at XC(*) is computed. Suppose that  the previous 
continuation parameter index was IPL, where on the first step IPL is 
user supplied. The new tangent is normalized, and the IPL-th component 
is forced to have the same sign as the IPL-th component of the previous 
tangent (or on first step, the same sign as the user input direction 
DIRIPC). Then the local continuation parameter IPC is determined. 
IPC is set to the location of the largest component of the tangent vector, 
unless a limit point for this choice appears to be approaching, in which 
case the location of the second largest component may be tried. Once 
IPC is set, certain quantities for step-length determination are com- 
puted. 

Step 4 Limit point check. If LIM#0, the LIM-th components of the old and new 
tangents are compared. If these differ in sign, a limit point lies between 
XL(*) and XC(*). The program attempts to find this limit point. If 
found, it stores the limit point in XR(*), the tangent at XR(*) in TL(*), 
sets IRET--2, and returns, temporarily interrupting the normal loop. 

Step 5 Step-length computation. The program computes HTANCF, the step 
size to be used along the tangent to obtain the predicted point 
XPRED(*) = XC(*) + HTANCF*TC(*), the starting point for the 
corrector process. In computing HTANCF, certain curvature and step- 
size data are updated. 
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Step 6 Prediction and correction step. With the predicted point XPRED(*) as 
a starting point, the corrector process is applied to correct the point 
XCOR(*) until both the residual II F(XCOR(*))I1 and the last corrector 
step II XSTEP(*) U are sufficiently small. If the size of a corrector step is 
too large, or if a correction step increases the function value, or the 
maximum number of steps are taken without convergence, the step size 
HTANCF is reduced and the corrector step is attempted again. If the 
step size shrinks below HMIN, the program sets an error flag and returns. 

Step 7 Storing information before return. After a successful continuation step, 
the program rearranges its storage so that the entries corresponding to 
XC(*) and XF(*) hold the proper data, computes CORDXF, the size of 
the correction to the predicted point, and modifies CORDXF to a value 
that would correspond to an optimal number of corrector steps. 

On normal return, the vector XR(*) contains a solution point on the curve 
(1.2), and is either a continuation point, a target point, or a limit point, which is 
indicated by the value of IRET. If IRET is negative, an error has occurred. If a 
limit point is returned, the tangent vector at the limit point is contained in the 
location TL(*). On first call, the user must set some of the scalar parameters, and 
the starting point XR(*). Thereafter, only IT and XIT should be changed by the 
user during a problem run. 

If a new problem is to be run (whether a different function, or the same function 
with different starting point or error controls), the program may be reset by using 
KSTEP = -1  or 0, at which time the scalars and the point XR(*) must be set 
again. Note that in this case the statistical data in the common blocks/COUNT1/  
and /COUNT2/wi l l  be reset to 0 as well. 

3. ORGANIZATIONAL DETAILS 

There are five basic subroutines: PITCON(),  CORECT(),  TANGNT(),  
ROOT(),  and FSOLVE().  The user need only call PITCON().  In addition, the 
code uses internally eight subroutines from the LINPAK package [1] and the 
BLAS package [4], namely, ISAMAX(),  SAXPY(),  SCOPY(),  SDOT(),  
SNRM2(), SSCAL(),  SGEFA() ,  and SGESL().  PITCON()  and SNRM2() 
contain machine-dependent constants for which appropriate statements must be 
chosen. 

The user must supply two subroutines of the form FXNAME (NVAR, X, FX) 
and FPNAME (NVAR, X, FPRYM, NROW, NCOL) with the actual names of 
these subroutines being passed as external quantities. Subroutine FXNAME()  
evaluates the mapping F at the point X(*) in R n, n = NVAR, and returns the 
results in FX(*). Subroutine FPNAME()  evaluates the Jacobian matrix DF(x) 
of dimension (n - 1) x n, n = NVAR, at the point x = X and returns it in the 
first n - 1 rows of the n × n array FPRYM(*). If DF(x) is not accessible, it is 
possible to supply in FPNAME( ) some finite difference approximation of DF(x). 
But the results will depend on the quality of this approximation and may be 
unreliable. 

All calls of FPNAME( ) and all solutions of the augmented equations occurring 
in (1.6) and (1.8) are handled by the subroutine FSOLVE() .  The subroutine 
included in the code uses full-matrix storage and hence limits the applications of 
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the package to low-dimensional problems. It is easy to modify FSOLVE()  for 
the case of large, sparse problems by using instead of SGEFA( ) and SGESL( ) 
some appropriate decomposition and backsubstitution programs. For example, 
the Yale sparse matrix package [2] has been used for this purpose, but other 
codes can be applied as well. We refer also to [7] for an approach in the case in 
which the first n - 1 column of DF(x) has a band-form. 

The codes have been tested on a large number of problems. For some compu- 
tational results, we refer to [8]. 
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ALGORITHM 

[A part of the listing is printed here. The complete listing is available from the 
ACM Algorithms Distribution Service (see page 269 for order form).] 

SUBROUTINE PITCON(NVAR, LIM, IT, XIT, KSTEP, IPC, IPCFIX, DIRIPC, PIT 10 
* HTANCF, IRET, MODCON, IPIVOT, HMAX, HMIN, HFACT, ABSERR, RELERR, PIT 20 
* RWQRK, IS~ZE, NROW, NCOL, FXNAME, FPNAME, SLNAME, LUNIT) PIT 30 

C PI* 40 
*************************************************************************** 50 
C PIT 60 
* I. INTRODUCTION PIT 70 
C PIT 80 
C THIS IS THE 30 JUNE 1982 VERSION OF PIT*ON, PIT 90 
C THE UNIVERSITY OF PITTSBURGH CONTINUATION PACKAGE. PIT 100 
C THIS VERSION USES SINGLE PRECISION AND FULL MATRIX STORAGE. PIT 110 
C PIT 120 
C THIS PACKAGE WAS PREPARED WITH THE PARTIAL SUPPORT OF PIT 130 
C THE NATIONAL SCIENCE FOUNDATION, UNDER GRANT MCS-78-05299, PIT 140 
C BY WERNER C. RHEINBOLDT AND JOHN V. BURKARDT, PIT 150 
C UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA 15261. PIT 160 
C PIT 170 
C SUBROUTINE PIT*ON COMPUTES POINTS ALONG A SOLUTION CURVE OF AN PIT 180 
C UNDERDETERMINED SYSTEM OF NONLINEAR EQUATIONS OF THE FORM FX=0. PIT 190 
C THE CURVE IS SPECIFIED TO BEGIN AT A GIVEN STARTING SOLUTION PIT 200 
C X OF THE SYSTEM. HERE X DENOTES A REAL VECTOR OF NVAR PIT 210 
C COMPONENTS AND FX A REAL VECTOR OF NVAR-I COMPONENTS. PIT 220 
C NORMALLY EACH CALL TO PIT*ON PRODUCES A NEW POINT FURTHER ALONG PIT 230 
C THE SOLUTION CURVE IN A USER-SPECIFIED DIRECTION. PIT 240 
C PIT 250 
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C AN OPTION ALLOWS THE SEARCH FOR AND COMPUTATION OF TARGET POINTS, PIT 260 
C THAT IS, SOLUTION POINTS X FOR WHICH X(IT) = XIT FOR SOME USER PIT 27~ 
C SPECIFIED VALUES OF IT AND XIT. PIT 280 
C PIT 290 
C A FURTHER OPTION ALLOWS THE SEARCH FOR AND COMPUTATION OF LIMIT PIT 3%~ 
C POINTS FOR SPECIFIED COORDINATE LIM, THAT IS, SOLUTION POINTS FOR PIT 31~ 
C WHICH THE LIM-TH COMPONENT OF THE TANGENT VECTOR IS ZERO. PIT 320 
C PIT 33~ 
C EXPLANATIONS OF THE ALGORITHMS USED IN THIS PACKAGE MAY PIT 340 
C BE FOUND IN PIT 35~ 
C PIT 360 
C WERNER RHEINBOLDT, PIT 37% 
C SOLUTION FIELD OF NONLINEAR EQUATIONS AND CONTINUATION METHODS PIT 380 
C SIAM JOURNAL OF NUMERICAL ANALYSIS, 17, 1980, PP 221-237 PIT 390 
C PIT 400 
C COR DEN HEIJER AND WERNER RHEINBOLDT, PIT 410 
C ON STEPLENGTH ALGORITHMS FOR A CLASS OF CONTINUATION METHODS, PIT 420 
C SIAM JOURNAL OF NUMERICAL ANALYSIS 18, 1981, PP 925-947 PIT 430 
C PIT 440 
C WERNER RHEINBOLDT, PIT 450 
C NUMERICAL ANALYSIS OF CONTINUATION METHODS FOR NONLINEAR PIT 46@ 
C STRUCTURAL PROBLEMS, PIT 470 
C COMPUTERS AND STRUCTURES, 13, 1981, PP 103-114 PIT 48~ 
C PIT 49~ 

500 C ~ ~ ~ ~ ~ ~ ~ ~ ~ p i  T 
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