
ALGORITHM 596
A Program for a Locally Parameterized
Continuation Process

WERNER C. RHEINBOLDT and JOHN V. BURKARDT

University of Pittsburgh

Categories and SubJect Descriptors. G.1.5 [Numerical Analysis]: Roots of Nonlinear Equatmns--
~terative methods, systems of equatzons; G.M [Mathematics of Computing]' Miscellaneous--
FOR TRA N

General Terms' Algorithms, Design

Additional Key Words and Phrases: Equlhbrmm problems, underdetermmed systems of equations,
solution manifolds of parameterized equatmns, contmuatmn methods, local parameterization, limit
point computatmn

1. DESCRIPTION

Let F: R n --> R "-1, n - 2, be a given, c o n t i n u o u s l y d i f fe ren t iab le m a p p i n g for
which the r egu la r i ty set

~ (F) = (x ~ Rn; r a n k D F (x) ffi n - 1} (1.1)

is n o n e m p t y . Moreover , suppose t h a t the (u n d e r d e t e r m i n e d) s y s t e m of (n - 1)
e q u a t i o n s in n u n k n o w n s ,

F x ffi 0, (1.2)

has a t leas t one so lu t ion x ° ~ ~ (F) . T h e n the r egu la r so lu t i on se t

R (F) = (x ~ 9 t (F) ; F x ffi 0} (1.3)

is an open, o n e - d i m e n s i o n a l C L m a n i f o l d in R n. W e are i n t e r e s t ed in c o m p u t i n g

the c o n n e c t e d c o m p o n e n t 8R (F, x °) of £R (F) wh ich c o n t a i n s x °. B y a f u n d a m e n t a l
r esu l t of d i f ferent ia l geome t ry (see, e.g., [5]), 8R(F, x °) is d i f feomorphic e i t he r
to a circle or to some in t e rva l (connec ted subse t) of R ~. F o r s impl i c i ty we call
(~R (F, x 0) the so lu t ion curve of (1.2) t h r o u g h x °.

Received 28 November 1981, revised 22 July 1982, accepted 16 October 1982
This work was supported in part by National Sctence Foundation Grant MCS-78-05299 and in part by
the Office of Naval Research under Contract N000014-77-C-0623.
Authors' address" Institute for Computational Mathematics and Applications, Department of Math-
ematics and Statlstms, University of Pittsburgh, Pittsburgh, PA 15261.
Permission to copy without fee all or part of this material is granted provided that the copras are not
made or distributed for direct commercial advantage, the ACM copyright notme and the title of the
pubhcatlon and its date appear, and notme is given that copying is by permission of the Association
for Computmg Machinery To copy otherwise, or to republish, reqmres a fee and/or specific
permission.
© 1983 ACM 0098-3500/83/0600-0236 $00.75

ACM Transactions on Mathematical Software. Vot 9, No 2, June 1983, Pages 236-241

Algori~ms • 237

The design of an algori thm for computing a sequence of points along this
solution curve has been described in [3], [6], [7], and [8]. We sketch here only the
general outline of the procedure.

An impor tant role in the algori thm is played by the augmented mappings F[i] :
R n . . ~ R n, 1 --< i --< n, defined by

F[i]x --- (e~)Tx , V x ~ R n, (1.4)

where e ~ e ~ denote the natural basis vectors of R ~. Since for x E ~ (F) the
(n - 1) × n Jacobian matr ix D F (x) has rank n - 1, there exist indices i, 1 __ i --
n, such that the matr ix

[vr(xt
DF[i](x) = \(e,)W] {1.5)

is nonsingular.
A first use of the augmented operators is in the computat ion of the tangent

direction at any x E ~ (F). More specifically, if i is such tha t (1.5) is nonsingular,
then the tangent vector Tx is uniquely defined by the generic algori thm

(1) Solve DF[i] (x)v = e n,
(2) o := d • sgn(det DF[~](x)), (1.6)
(3) Tx := ov/[[v [[2,

where I[• [[2 is the Euclidean norm, and d = ± 1 is a given direction. Note tha t the
matr ix (1.5) is nonsingular for any index i, 1 <_ i <_ n, for which the component
(Tx), is nonzero.

The process uses a local parameter izat ion of the solution curve. Normal ly the
continuation parameter is the variable x~, for which the component [(Tx),[is
maximal. But in the case of certain curvature changes, where it appears tha t a
limit point for this variable x~ is approaching, o ther choices of the cont inuat ion
parameter are used.

If x denotes the current point, then prediction takes place along the Euler line

~r(h) = x + hTx. {1.7)

The choice of the step length h takes into account the quali ty of the corrector
i teration during the computat ion of x, as well as a prediction of the change
in curvature of the solution curve. Moreover, h is adjusted such tha t the
(secant) distance between x and the next computed point will be approximately
equal to h.

The corrector i teration starts f rom the predicted p o i n t p = or(h) and solves the
augmented equations

F[i]x = p,e". (1.8)

The user may specify as corrector i teration ei ther a full Newton process or a
modified Newton process with fixed Jacobian DF[i] (p) at the predicted point.

2. OUTLINE OF THE ALGORITHM

During the following description, we assume tha t we have entered the continua-
tion loop with an old point XL(*), a current point XC(*), the tangent TL(*) at

ACM Transact ions on Mathematmal Software, Vol. 9, No. 2, June 1983

2 3 8 • A l g o r i t h m s

XL(*), and certain scalar quantities associated with these vectors. We will check
first for any target or limit points between XL(*) and XC(*), then proceed to
compute a new continuation point XF(*). These names are not in precise
accordance with the storage arrangements until the end of a continuation step.

Step 1 For KSTEP > 0, the code goes to step 2. On the first call to PITCON()
for a given problem (KSTEP -- -1 or KSTEP = 0) problem-dependent
constants are set and user-control parameters are loaded or defaults
used. If KSTEP = 0, the program then proceeds to step 2. If KSTEP --
-1, the user requests that the input starting point XR(*) be checked for
the condition I F(XR)] _ ½ ABSERR. If this is not the case, the corrector
process is applied to the point XR(*) until the error condition is satisfied,
or a failure has occurred. An unimprovable point results in a return of
IRET = -6. If the starting point XR(*) was improved, the program
returns with IRET =- 0 and KSTEP = 0. If KSTEP = 0, the continuation
loop begins with the starting point XR(*) stored in XL(*) and XC(*),
the step size HTANCF set to the input value of H, and the continuation
parameter set to the input value of IPC. For KSTEP > 0, these quantities
are computed and updated by the program itself.

Step 2 Target point check. If IT # 0, a target point is desired. The values of
XL(IT) and XC(IT) are compared to XIT. If the target value is between
these two values, the program computes the target point, sets IRET =
1, and returns, temporarily interrupting normal continuation.

Step 3 Tangent and local continuation parameter calculation. If the loop was
suspended at the last call to PITCON() to allow the return of a limit
point, then the tangent has already been calculated and a limit point
check is superfluous, so the program skips to step 5. Otherwise, a vector
in the tangent plane at XC(*) is computed. Suppose that the previous
continuation parameter index was IPL, where on the first step IPL is
user supplied. The new tangent is normalized, and the IPL-th component
is forced to have the same sign as the IPL-th component of the previous
tangent (or on first step, the same sign as the user input direction
DIRIPC). Then the local continuation parameter IPC is determined.
IPC is set to the location of the largest component of the tangent vector,
unless a limit point for this choice appears to be approaching, in which
case the location of the second largest component may be tried. Once
IPC is set, certain quantities for step-length determination are com-
puted.

Step 4 Limit point check. If LIM#0, the LIM-th components of the old and new
tangents are compared. If these differ in sign, a limit point lies between
XL(*) and XC(*). The program attempts to find this limit point. If
found, it stores the limit point in XR(*), the tangent at XR(*) in TL(*),
sets IRET--2, and returns, temporarily interrupting the normal loop.

Step 5 Step-length computation. The program computes HTANCF, the step
size to be used along the tangent to obtain the predicted point
XPRED(*) = XC(*) + HTANCF*TC(*), the starting point for the
corrector process. In computing HTANCF, certain curvature and step-
size data are updated.

ACM TransacUons on Mathemat ica l Software, Vol 9, No 2, June 1983

Algorithms • 239

Step 6 Prediction and correction step. With the predicted point XPRED(*) as
a starting point, the corrector process is applied to correct the point
XCOR(*) until both the residual II F(XCOR(*))I1 and the last corrector
step II XSTEP(*) U are sufficiently small. If the size of a corrector step is
too large, or if a correction step increases the function value, or the
maximum number of steps are taken without convergence, the step size
HTANCF is reduced and the corrector step is attempted again. If the
step size shrinks below HMIN, the program sets an error flag and returns.

Step 7 Storing information before return. After a successful continuation step,
the program rearranges its storage so that the entries corresponding to
XC(*) and XF(*) hold the proper data, computes CORDXF, the size of
the correction to the predicted point, and modifies CORDXF to a value
that would correspond to an optimal number of corrector steps.

On normal return, the vector XR(*) contains a solution point on the curve
(1.2), and is either a continuation point, a target point, or a limit point, which is
indicated by the value of IRET. If IRET is negative, an error has occurred. If a
limit point is returned, the tangent vector at the limit point is contained in the
location TL(*). On first call, the user must set some of the scalar parameters, and
the starting point XR(*). Thereafter, only IT and XIT should be changed by the
user during a problem run.

If a new problem is to be run (whether a different function, or the same function
with different starting point or error controls), the program may be reset by using
KSTEP = -1 or 0, at which time the scalars and the point XR(*) must be set
again. Note that in this case the statistical data in the common blocks/COUNT1/
and /COUNT2/wi l l be reset to 0 as well.

3. ORGANIZATIONAL DETAILS

There are five basic subroutines: PITCON(), CORECT(), TANGNT(),
ROOT(), and FSOLVE(). The user need only call PITCON(). In addition, the
code uses internally eight subroutines from the LINPAK package [1] and the
BLAS package [4], namely, ISAMAX(), SAXPY(), SCOPY(), SDOT(),
SNRM2(), SSCAL(), SGEFA() , and SGESL(). PITCON() and SNRM2()
contain machine-dependent constants for which appropriate statements must be
chosen.

The user must supply two subroutines of the form FXNAME (NVAR, X, FX)
and FPNAME (NVAR, X, FPRYM, NROW, NCOL) with the actual names of
these subroutines being passed as external quantities. Subroutine FXNAME()
evaluates the mapping F at the point X(*) in R n, n = NVAR, and returns the
results in FX(*). Subroutine FPNAME() evaluates the Jacobian matrix DF(x)
of dimension (n - 1) x n, n = NVAR, at the point x = X and returns it in the
first n - 1 rows of the n × n array FPRYM(*). If DF(x) is not accessible, it is
possible to supply in FPNAME() some finite difference approximation of DF(x).
But the results will depend on the quality of this approximation and may be
unreliable.

All calls of FPNAME() and all solutions of the augmented equations occurring
in (1.6) and (1.8) are handled by the subroutine FSOLVE() . The subroutine
included in the code uses full-matrix storage and hence limits the applications of

ACM TransacUons on Mathematmal Software, Vol. 9, No 2, June 1983.

240 • Algorithms

the package to low-dimensional problems. It is easy to modify FSOLVE() for
the case of large, sparse problems by using instead of SGEFA() and SGESL()
some appropriate decomposition and backsubstitution programs. For example,
the Yale sparse matrix package [2] has been used for this purpose, but other
codes can be applied as well. We refer also to [7] for an approach in the case in
which the first n - 1 column of DF(x) has a band-form.

The codes have been tested on a large number of problems. For some compu-
tational results, we refer to [8].

REFERENCES

1. DONGARRA, J.J BUNCH, J.R., MOLER, C B., AND STEWART, G.W L I N P A C K User's Guzde
Society for Industrial and Apphed Mathematics, Philadelphia, Pa., 1979.

2. EISENSTAT, S C., GURSKY, M.C., SCHULTZ, M.H., AND SHERMAN, A.H Yale sparse matrix
package. Res. Reps 112 and 114, Yale University, Department of Computer Science, New Haven,
1977.

3. DEN HEIJER, C., AND RHEINBOLDT, W.C. On steplength algorithms for a class of continuation
methods S I A M J Numer Anal. 18 (1981), 925-947.

4. LAWSON, C.L., HANSON, R.J., KINCAID, D.R., AND KROGH, F.T Basra hnear algebra subprograms
for Fortran usage. A C M Trans. Math. Soft 5, 3(Sept. 1979), 308-323.

5. MILNOR, J.W. Topology from a D~fferential Viewpoint. University o~ Virgima Press, Charlottes-
ville, 1965

6 RHEINBOLDT, W.C Solution fields of nonlinear equations and continuation methods. S I A M J.
Numer. Anly 17 (1980), 221-237.

7. RHEINROLDT, W.C. Numerical analysis of contmuatmn methods for nonhnear structural prob-
lems. Comput Struct 13 (1981), 103-114

8 RHEINBOLDT, W C, AND BURKARDT, J.V A locally parameterized contmuation process A C M
Trans. Math. Softw 9, 2(June 1983), 215-235

ALGORITHM

[A part of the listing is printed here. The complete listing is available from the
ACM Algorithms Distribution Service (see page 269 for order form).]

SUBROUTINE PITCON(NVAR, LIM, IT, XIT, KSTEP, IPC, IPCFIX, DIRIPC, PIT 10
* HTANCF, IRET, MODCON, IPIVOT, HMAX, HMIN, HFACT, ABSERR, RELERR, PIT 20
* RWQRK, IS~ZE, NROW, NCOL, FXNAME, FPNAME, SLNAME, LUNIT) PIT 30

C PI* 40
*** 50
C PIT 60
* I. INTRODUCTION PIT 70
C PIT 80
C THIS IS THE 30 JUNE 1982 VERSION OF PIT*ON, PIT 90
C THE UNIVERSITY OF PITTSBURGH CONTINUATION PACKAGE. PIT 100
C THIS VERSION USES SINGLE PRECISION AND FULL MATRIX STORAGE. PIT 110
C PIT 120
C THIS PACKAGE WAS PREPARED WITH THE PARTIAL SUPPORT OF PIT 130
C THE NATIONAL SCIENCE FOUNDATION, UNDER GRANT MCS-78-05299, PIT 140
C BY WERNER C. RHEINBOLDT AND JOHN V. BURKARDT, PIT 150
C UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA 15261. PIT 160
C PIT 170
C SUBROUTINE PIT*ON COMPUTES POINTS ALONG A SOLUTION CURVE OF AN PIT 180
C UNDERDETERMINED SYSTEM OF NONLINEAR EQUATIONS OF THE FORM FX=0. PIT 190
C THE CURVE IS SPECIFIED TO BEGIN AT A GIVEN STARTING SOLUTION PIT 200
C X OF THE SYSTEM. HERE X DENOTES A REAL VECTOR OF NVAR PIT 210
C COMPONENTS AND FX A REAL VECTOR OF NVAR-I COMPONENTS. PIT 220
C NORMALLY EACH CALL TO PIT*ON PRODUCES A NEW POINT FURTHER ALONG PIT 230
C THE SOLUTION CURVE IN A USER-SPECIFIED DIRECTION. PIT 240
C PIT 250

ACM Transactions on Mathematical Software, Vol 9, No 2, June 1983

Algor i thms • 241

C AN OPTION ALLOWS THE SEARCH FOR AND COMPUTATION OF TARGET POINTS, PIT 260
C THAT IS, SOLUTION POINTS X FOR WHICH X(IT) = XIT FOR SOME USER PIT 27~
C SPECIFIED VALUES OF IT AND XIT. PIT 280
C PIT 290
C A FURTHER OPTION ALLOWS THE SEARCH FOR AND COMPUTATION OF LIMIT PIT 3%~
C POINTS FOR SPECIFIED COORDINATE LIM, THAT IS, SOLUTION POINTS FOR PIT 31~
C WHICH THE LIM-TH COMPONENT OF THE TANGENT VECTOR IS ZERO. PIT 320
C PIT 33~
C EXPLANATIONS OF THE ALGORITHMS USED IN THIS PACKAGE MAY PIT 340
C BE FOUND IN PIT 35~
C PIT 360
C WERNER RHEINBOLDT, PIT 37%
C SOLUTION FIELD OF NONLINEAR EQUATIONS AND CONTINUATION METHODS PIT 380
C SIAM JOURNAL OF NUMERICAL ANALYSIS, 17, 1980, PP 221-237 PIT 390
C PIT 400
C COR DEN HEIJER AND WERNER RHEINBOLDT, PIT 410
C ON STEPLENGTH ALGORITHMS FOR A CLASS OF CONTINUATION METHODS, PIT 420
C SIAM JOURNAL OF NUMERICAL ANALYSIS 18, 1981, PP 925-947 PIT 430
C PIT 440
C WERNER RHEINBOLDT, PIT 450
C NUMERICAL ANALYSIS OF CONTINUATION METHODS FOR NONLINEAR PIT 46@
C STRUCTURAL PROBLEMS, PIT 470
C COMPUTERS AND STRUCTURES, 13, 1981, PP 103-114 PIT 48~
C PIT 49~

500 C ~ ~ ~ ~ ~ ~ ~ ~ ~ p i T

ACM Transactions on Mathematmal Software, Vol. 9, No 2, June 1983.

