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A computational study of mixed states in mesoscopic type-II superconducting cylinders is presented. The
dependence of transient behaviors and steady-state configurations on the value of the applied magnetic field is
examined as are the effects of sample size and cross-sectional shape on vortex nucleation and penetration. As
is well known, more vortices enter the sample as the sample size grows. It is also found that if a small
indentation is made on the sample boundary, vortices can be made to enter the system one by one from the tip
of the indentation. An efficient scheme to determine, for any applied field, the equilibrium vortex configuration
in mesoscopic samples in a way that is not constrained by sample symmetries, is devised and demonstrated.
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I. INTRODUCTION

Recent advances in microfabrication and experimental
techniques have drawn much attention to mesoscopic super-
conductors. Important fundamental and technological ques-
tions concerning magnetic properties and phase transitions in
such small, bounded systems need to be considered. The dy-
namics of magnetic vortices plays a key role in understand-
ing the magnetization process of type-II superconductors. As
the size of the sample considered is reduced, the interaction
between vortices and sample surfaces becomes increasingly
important as does the sample shape.

Among the several phenomenological theories that have
been developed for describing the magnetic behavior of su-
perconductors, one popular choice is the Ginzburg-Landau
theory.1,2 Its time-dependent extension is referred to as the
time-dependent Ginzburg-Landau �TDGL� theory.3 Our com-
putational study is based on finite-element discretizations of
the TDGL equations. Such methods are well known to pro-
vide a powerful computational tool for the approximate so-
lution of partial differential equations; they are particularly
well suited for samples having complex shapes. See, e.g.,
Refs. 4 and 5 for an introduction to finite-element discretiza-
tions of the Ginzburg-Landau model. In this paper, we ex-
amine the effects of surface defects and sample geometry on
the vortex dynamics using computational results obtained by
using a finite-element method applied to the TDGL equa-
tions.

Several studies6–11 have been devoted to the magnetiza-
tion of a mesoscopic superconductor without pinning cen-
ters. Calculations on the superconducting state in mesos-
copic, type-I, superconducting thin films have, in most cases,
found transitions between giant vortex states of different cir-
culation quantum numbers L, with some multivortex states
occasionally appearing as thermodynamically stable states,
but mostly as metastable states. Another study12 of both
type-I and type-II mesoscopic triangular cylinders has shown
that a vortex-antivortex molecule appears only if the sample
is type I. Only one field value for which L=2 is favored was
considered; how changes in the value of the field affect the

configuration of vortices was not considered. Further
studies13 of the mixed state in a mesoscopic type-II super-
conducting cylinder revealed that the system passes through
nearly metastable intermediate configurations as it seeks the
one that minimizes the Gibbs free energy; the steady-state
configuration was consistent with the square symmetry of the
sample. In this study, vortices were “seeded” into the sample;
i.e., at the beginning of the calculations, a given number of
vortices were introduced into the sample at random positions
and then were allowed to relax into more energetically favor-
able positions. The values of the Gibbs free energies of the
final steady states that evolved from initial configurations
having different numbers of vortices were used to determine
the equilibrium vortex configuration in the mesoscopic
sample. Note that in this study, vortices were “artificially”
introduced into the sample, as opposed to allowing them to
nucleate on their own.

For type-II superconductors,14 the magnetic field, in the
form of singly quantized vortices, penetrates into a supercon-
ducting sample through its boundary. Circulating around
each vortex is a supercurrent that confines a single quantum
of magnetic flux within it. Thus, the penetration of the mag-
netic field into a superconductor in the form of quantized
vortices is greatly affected by the interaction of the vortices
with the sample surface and results in an energy barrier,
which is manifest in the hysteretic behavior of the system
even without pinning centers. Due to the surface barrier, the
lowest critical field for which penetration occurs, denoted by
Hp �and referred to as the superheating field for vortex en-
try�, is higher than the first critical field Hc1 for samples
having no boundaries. The effects of sample surfaces on the
first vortex entry were considered in a number of studies15–17

for bulk superconductors. It was shown that vortices start
penetrating into bulk type-II superconductors at a critical
field Hp that is close to the thermodynamic critical field Hc
but larger than Hc1. In another study,18 a version of the
TDGL equations that accounts for thermal fluctuations was
used to computationally evaluate the effect of the surface
barrier on magnetic flux penetration for a square, type-II su-
perconducting sample of size 256��256�, where � denotes
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the coherence length. It was found that the superheating field
Hp is a decreasing function of temperature and also of the
degree of sample shape deformation. The surface barrier was
also found to be suppressed by surface irregularities which
were modeled by randomly distributed surface defects of the
size of �, the magnetic penetration depth. Yet another version
of TDGL theory, consisting of the time-dependent Ginzburg-
Landau equation for the order parameter and an equation for
the scalar potential arising from the equation of continuity,
was used to study square mesoscopic superconducting
samples of sizes small in comparison with the magnetic pen-
etration depth to obtain vortex states and magnetization
curves.19 A small defect �normal metal� was introduced on
the boundary of the samples to disturb the fourfold symmetry
of their numerical scheme �explicit Euler�, leaving the order
parameter and current distribution almost undisturbed. This
way they could obtain the branches on the magnetization
curve with an odd total vorticity besides the even vorticity
branches which they could already obtain without introduc-
ing any defects into the sample. Although one steady-state
solution was found for each and every allowed vortex num-
ber, the equilibrium solution having minimum energy at any
given magnetic field was not explicitly sought. Also, they
used larger defects to examine the stability of a maximally
symmetric vortex configuration with four vortices on the di-
agonals and one antivortex at the center of a square sample
and showed that such a vortex state is very sensitive to any
perturbation of the sample symmetry by defects or fluctua-
tions. The antivortex was easily attracted off its original po-
sition to annihilate with a vortex by the introduction of a
symmetry-breaking defect at the sample boundary. The
TDGL equations �without thermal fluctuations� were also
used20 to study the surface barrier for both type-I and type-II
mesoscopic superconducting samples. The dependence of the
superheating field Hp on the Ginzburg-Landau parameter �
and on the boundary conditions was investigated. Multiple
penetration fields Hp,i=Hp,1 ,Hp,2 ,Hp,3 , . . ., were observed in
the magnetization curves and were interpreted using an ex-
tended Bean-Livingston surface barrier model, assuming that
i−1 vortices were already inside the sample. The effect of
rectangular-shaped surface defects on the magnetic field for
the first vortex entry using TDGL theory for isotropic, bulk
type-II superconductors has also been studied.21 It was
shown that the first-vortex-entry field decreases monotoni-
cally with growing lengths and decreasing widths of the de-
fect. We note that the influence of small-size ���� and large-
size ���� surface defects on the value of Hp for bulk type-II
superconductors has been studied22–25 using the London
model.

This article is organized as follows. In the next section,
the TDGL equations and the computational approach used
are briefly discussed. In Sec. III, we study the magnetization
process for type-II, cylindrical, mesoscopic, superconducting
samples having different cross-sectional shapes and sizes.
We find that whenever a sample has perfect symmetry, vor-
tices nucleate at the boundary in multiples of the symmetry
number and that more vortices enter the sample as its size
grows. However, if a small indentation in the shape of a
sliver is made at the sample boundary, vortices enter the
system one by one from the tip of the indentation. In Sec. IV,

a novel strategy for finding equilibrium states having an ar-
bitrary number of vortices is presented. Steady-state vortex
configurations are first created taking advantage of the one-
by-one vortex nucleation feature of indented samples. These
vortex states are then relaxed to new steady states after re-
moval of the indentation. By comparing the Gibbs free ener-
gies of the steady states as a function of the number of vor-
tices, the equilibrium state is determined. Finally, in Sec. V, a
summary of the results of the article and concluding remarks
are provided.

II. TIME-DEPENDENT GINZBURG-LANDAU MODEL

The TDGL equations are given by26
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where �·�* denotes complex conjugation. The variables in the
model are 	, the complex-valued order parameter; 
, the
scalar-valued electric potential; and A, the vector-valued
magnetic potential. The derived variables of physical interest
include the induced magnetic field h=��A, the density of
superconducting charge carriers �	�2, and the supercurrent

density js=−
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�	�2A. In the above, es

denotes the “effective charge” of a Cooper pair which is
twice the charge of an electron; ms its “effective mass,”
which, although it can be selected arbitrarily, is usually cho-
sen to be twice the mass of an electron; c is the speed of
light; and �=h /2�, where h is Planck’s constant.

For simplicity, we assume that the region exterior to the
sample is a vacuum so that, along with the TDGL equations
�1� and �2�, we have that1,3

n · �i� � +
es

c
A�	 = 0 �3�

at the boundary of the sample, where n denotes the unit
normal pointing out of the sample. We also only consider
cylindrical samples and constant applied magnetic fields Hext
that are parallel to the generators of the cylinder—i.e., are
perpendicular to the cross section of the sample. In this case,
the magnetic potential is described by two components in the
cross-sectional plane and the magnetic field outside the
sample is constant everywhere. Thus, due to the continuity of
the tangential components of the magnetic field across the
sample boundary, we also have that

h � n = �� � A� � n = Hext � n �4�

along that surface. In addition, we apply the zero electric
potential gauge 
=0.
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Characteristic scales and parameters are defined as fol-
lows: �	0�= ���� /��1/2, the value of the magnitude of the order
parameter that minimizes the Gibbs free energy in the ab-
sence of a field; the thermodynamic critical field strength
Hc= �4�����1/2�	0�, which separates the normal and supercon-
ducting states in the phase diagram for type-I superconduct-
ors; the London penetration depth �= �msc

2 /4��	0�2es
2�1/2

and the coherence length �= ��2 /2ms����1/2, the length scales
over which one can see appreciable changes in the value of
the induced field and order parameter, respectively; and the
Ginzburg-Landau parameter �=� /�. Dimensionless vari-
ables are defined as follows: x→ x

� , Hext→
Hext
�2Hc

, h→ h
�2Hc

,

j→ 2�2��
cHc

j, A→ A
�2Hc�

, 	→ 	
	0

, and t→ ���
�� t. After nondimen-

sionalization, the ratio of the relaxation time of the order

parameter to that of the vector potential is R�
�es

2�

�ms
. We

chose R=10.27

The TDGL equations are discretized in time by the back-
ward Euler method and, in space, by a Galerkin finite-
element method using continuous piecewise quadratic poly-
nomials defined with respect to a triangulation of the sample.
The resulting nonlinear discrete system is solved, at each
time step, by Newton’s method. Figure 1 provides examples

of the triangulations used in our computational studies. On
the top is a uniform mesh in a square sample, while on the
bottom is a conforming Delaunay triangulation created using
the TRIANGLE software package.28 The triangulations used
typically contain from 300 to 1000 triangles.

III. EFFECTS OF SAMPLE SHAPE AND SIZE ON
VORTEX NUCLEATION AND CONFIGURATION

We begin by presenting computational simulations show-
ing how, when a mesoscopic type-II superconductor is
cooled below the critical temperature and then an external
magnetic field is applied, vortices nucleate at the boundary,
enter into the sample, and settle into stable arrangements.
This process is often referred to as zero-field cooling.

In Fig. 2, the magnetization and the corresponding num-
ber of vortices are plotted versus the value of the applied
field for a cylindrical sample having a square cross section of
area 200�2 and for �=2. For each value of the applied field,
the simulation starts from the Meissner state and is subse-
quently allowed to reach a steady state. For this mesoscopic
sample, jumps in the magnetization occur whenever vortices
enter into the sample and the corresponding number of vor-
tices increases by the multiple of 4. At Hext�0.84, the
Meissner state is destroyed and vortices enter the sample; see
Fig. 3�a�. �Note that all plots of vortex configurations display
the values of �	�, with red indicating the highest values and
blue the lowest. Thus, the vortex cores are found in the blue
regions of the plots. In a grayscale version of the plot, the
vortex cores and the superconducting region appear dark,
while the intermediate region is light.� Due to the square
symmetry of the sample geometry, an equal number of vor-
tices nucleate at each side of the square. Thus, for the higher
value Hext�1.01, two vortices enter from each side, resulting
in eight vortices in the sample 	see Fig. 3�b�
 and so on. Note
that for Hext�1.8, the vortices become so closely packed that
they become very difficult to count.

(a)

(b)

FIG. 1. �Color online� Examples of the triangulations used in the
computational studies. Top: a uniform mesh in a square sample.
Bottom: a conforming Delaunay triangulation in an equilateral
triangle.
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FIG. 2. The magnetization ��� and the corresponding number of
vortices �°� vs the value of the external magnetic fields for a sample
having square cross section of area 200�2 and for �=2.
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Figures 3�c� and 3�d� show the steady-state vortex con-
figurations for an equilateral triangle having the same area—
i.e., 200�2. The same trend occurs as for the square sample;
i.e., the same number of vortices nucleate at each side and, as
the applied magnetic field increases, more vortices enter each
side simultaneously. Thus, if a cylindrical sample has a per-
fectly symmetric cross section, only configurations consis-
tent with the sample symmetry can appear under a uniform
magnetic field. This allows vortices to nucleate and enter the
sample only in multiples of the number of sides—e.g., mul-
tiples of 4 in squares and 3 in triangles.

For the square, there are four vortices for Hext=0.84 and 8
for Hext=1.01, as shown in Figs. 3�a� and 3�b�. For an equi-
lateral triangle of the same area, there are three vortices for
Hext=0.84 and 6 for Hext=0.96. For the latter case, two vor-
tices enter the sample at each side.

Although we did not conduct as many simulations for
equilateral triangles as for squares, we have found that for
triangles, Hext=0.84 is the magnetic field for the first vortex
entry and Hext=0.96 is the magnetic field for which the tran-
sition from the three-vortex configuration to six-vortex con-
figuration occurs. The corresponding values for the square
are Hext=0.84 and Hext=1.01. Since the sides of the equilat-
eral triangle are longer than the sides of the square, this
indicates that it is easier for vortices to enter along longer
surfaces.

This trend was examined more closely by considering
samples with rectangular cross sections. Figure 4�a� shows
the steady-state vortex configuration for a rectangle of aspect
ratio 2 and having the same area as the square of Fig. 3. For
the rectangular sample, two vortices entered the system
through each of the two longer sides and none through the
shorter sides. The shorter sides of the rectangle are “choked”
for vortex penetration. On the other hand, adding a concavity
on one of the shorter sides as in Fig. 4�b�, while keeping the
same area, allows for the nucleation of an additional vortex
at the concavity, resulting in a total of five vortices in the
steady-state configuration. For both cases shown in Fig. 4 we
have set �=2 and Hext=1.0.

Additional simulations for rectangles with other aspect
ratios and for isosceles triangles with and without concave
indentations indicate that there is a competition between the
longer sides and concave surfaces. However, it is clear that
concavity provides a localized area where the surface barrier
is lower than in its neighborhood which could prove very
useful for technological applications.

Enomoto and Okada18 examined the effect of surface ir-
regularities on the surface barrier by randomly placing sur-
face defects of the size of the London penetration depth �
along the sample boundary. We also examine the effect of a
surface defect, but we choose a single defect in the form of a
sliver-shaped indentation at one location on the boundary.

(b)

(c)

(d)

(a) H ext extH

extH
extH

=0.84 =0.84

=1.01 =0.96

FIG. 3. �Color online� Steady-
state vortex configurations for cy-
lindrical samples with symmetric
cross sections of area 200�2 and
for �=2.
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We then study how such a small perturbation in the sample
geometry affects the vortex states. Figure 5 illustrates the
types of meshes we use for both indented and unindented
samples; these meshes were created using the TRIANGLE soft-
ware package.

The thin sliver �concave surface� is placed at the middle
of the bottom side of a square sample having area 346�2 and
�=4 that is subject to a magnetic field Hext=0.84. Figure 6
shows time snapshots of the vortex nucleation and penetra-
tion process. Starting from the Meissner state, magnetic
fields attempt to penetrate from all four sides of the square.
However, vortices nucleate only at the tip of the sliver and
enter the system one by one. Note that without the indenta-
tion the system has four vortices.13 The curvature of the vec-
tor curves of the shielding current is the largest around the
tip of the indentation, resulting in the most severe suppres-
sion of the value of the order parameter21,29 and the nucle-
ation of a vortex at that location. Due to the small, mesos-
copic size of the sample, for this value of the applied field,
vortices do not nucleate at the sides of the square sample
when the indentation is present. Note that there is a tendency
for the vortices to conform, as well as they can, to the sym-
metry of the sample �which is now limited to reflections
about the vertical midline�, even at the time t=4491.5 as well
as at the steady state.

For Fig. 7, we have the same setting as that for Fig. 6,
except that now the applied field has the higher value Hext
=0.9. While the number of vortices entering the sample is the
same as for Hext=0.84, now one vortex enters �at t�18.9�
from the top side.

The angle between the two surfaces of the slender inden-
tation is small so that the surfaces can be regarded as being

nearly parallel. Thus, the currents along the surfaces of the
slender indentation flow in nearly opposite directions and,
hence, induce negligible magnetic fields. Therefore, the over-
all shielding current profile for the indented sample does not
differ much from that for an unindented sample, and, in par-
ticular, away from the indentation, the shielding currents
along the surface of the sample are not appreciably affected
by the indentation. However, since the “extra” current due to
the indentation increases the total energy of the system, the
overall level of the shielding current that repel vortices15

should be slightly lower for an indented sample. This means
that the surface barrier is not as strong, making it easier for
vortices to enter the sample along the sides as well as from
the tip of the indentation.

The resultant vortex dynamics is seen to involve strong
magnetic interactions and is influenced by the magnetic
fields at all sample boundary surfaces. In a previous study21

of a bulk superconductor with a single surface defect, the
variation of the first-vortex-entry field was attributed solely
to the size of the defect; i.e., the first-vortex-entry field de-
creases as the length �depth into the sample� of defect in-
creases and increases as the width of defect increases. How-
ever, in our study for finite samples of mesoscopic size, there
are always strong magnetic interactions between different

(a)

(b)

FIG. 4. �Color online� Steady-state vortex configurations in a
rectangle �a� and a rectangular sample with the same area but hav-
ing a concave indentation �b�; Hext=1.0 and �=2.

(a)

(b)

FIG. 5. �Color online� Examples of the triangulations used for
dented and unindented samples.
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boundary surfaces of the sample; e.g., the magnetic field on
one side tends to repel the magnetic fields coming from the
other sides.

However, this effect is reduced as the sample size in-
creases. Figure 8 shows the penetration process in a sample
having area 1024�2. At an early stage, a single vortex nucle-
ates at the tip of the indentation and, due to their longer
length, each of the three unindented sides allows two vorti-
ces to simultaneously nucleate. No vortices nucleate along
the side of the square along which the indentation is located.
Once these seven vortices have entered the system, any ad-
ditional vortices attempting to nucleate anywhere on the
boundary should experience a higher surface barrier due to
the repulsion force exerted by the vortices already inside the
sample.15,20 In fact, only the tip of the indentation has a low
enough surface barrier to allow for further vortex nucleation.
Thus, at later stages, no more vortices nucleate along the
unindented sides, but seven more vortices do enter the
sample at the tip of the indentation.

Since vortices can be made to enter one by one by using
indentations of the type discussed above, it should be pos-

sible to obtain a specified number and arrangement of vorti-
ces in a sample through careful control of the magnetization
process. Thus, our method provides a good potential for
nanoscience applications. For example, a controlled local
magnetic field �vortices� in a domain of submicron scale
�only tens of coherence lengths� can provide resolutions that
may surpass those of existing high-precision devices such as
scanning superconducting quantum interference device
�SQUID� microscopes.30

Experimental studies of superconducting and normal
phase boundaries are carried out by electrical transport mea-
surements on mesoscopic samples. Wedge-shaped electrical
contact leads are commonly used to minimize their influence
on the superconducting properties of the sample. However,
starting from the normal state in a nonzero magnetic field, as
the temperature decreases the contacts become superconduct-
ing first and induce the nucleation of superconductivity in the
sample. Thus, the shape of the resistive transition is quite
sensitive to the presence of contacts and displays double-
transition points.31 This is somewhat a reversed physical pic-
ture �normal to superconducting transition� compared to our

t=0

t=111.7

t=201.3

t=4585.25

t=9.3

t=162.9

t=4491.5

t=40000

FIG. 6. �Color online� Time history of the vortex nucleation and
penetration process for an indented sample; the area is 346�2,
Hext=0.84, and �=4.

t=0

t=18.9

t=124.5

t=207.7

t=9.3

t=86.1

t=188.5

t=40000

FIG. 7. �Color online� Time history of the vortex nucleation and
penetration process for an indented sample; the area is 346�2,
Hext=0.9, and �=4.
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study for which vortices penetrate the samples in the Meiss-
ner state. However, it is clear that the “indentation method”
may also be used for the computational modeling of such
situations.

IV. UTILIZING SURFACE DEFECTS FOR DETERMINING
EQUILIBRIUM STATES

Our simulations, such as those depicted in, e.g., Fig. 3,
result in steady-state arrangements of vortices that conform
to the symmetry of the samples. Round-off error alone is not
sufficient to break symmetry, even over the long times over
which one sometimes has to integrate. Steady-state vortex
configurations that conform to sample symmetries do not
necessarily correspond to �global� minimizers of the Gibbs
free energy. It may not even have the same number of vorti-
ces as does the configuration that minimizes that energy. In
real situations, symmetry is broken in two ways. First, one
has imperfections in the data; e.g., the sample surface invari-
ably is slightly imperfect or even the applied field is not
perfectly uniform. Second, thermal fluctuations introduce
random, and therefore nonsymmetric, perturbations into the
system. The TDGL model we use does not account for the
effects of thermal fluctuations so that our results correspond
to samples at a low enough temperature so that thermal fluc-

tuations are not able to overcome any energy barrier that
prevents escape from a configuration that corresponds to a
local minimizer of the energy.

It is well known that the configurational space of super-
conducting states has �possibly infinitely� many local mini-
mizers of the Gibbs free energy. The inherent tendency of
vortices to configure themselves into a triangular lattice in a
bulk sample competes with the effects due to boundaries. For
samples of small enough size, the geometry wins this battle.
The surface barrier can trap the system in a metastable state
with a vortex configuration consistent with the symmetry of
the sample without allowing for the entry or exit of addi-
tional vortices.

Determining equilibrium states having minimum Gibbs
free energies through computational simulations is a chal-
lenging task since one often needs to escape from a local
minimizer. To determine the equilibrium state, one needs to
make sure the system has sufficient energy to overcome local
energy barriers in configurational space. For example, a
Langevin force term can be added to the TDGL equation to
model the effects of thermal fluctuation.32–34 This term
breaks the symmetry of the computational model by energiz-
ing the system to jump out of the local minimum in the
energy and over the energy barrier.3 However, this approach
increases the computing time greatly. �This method is essen-
tially the same as “simulated annealing.”32,35� Furthermore,
we believe that this approach is not practical since it is likely
to be difficult to determine the appropriate rate of cooling
and the starting temperature.

In a previous study,13 a controlled number of vortices,
located at random positions, were “seeded” into a sample
and then allowed to evolve to a steady-state configuration.
The Gibbs free energy of each of the states so obtained were
compared to determine what number of vortices yielded the
minimum energy configuration. This approach, which seeks
the equilibrium state among possible vortex configurations
already inside the sample, does not have to deal directly with
surface barrier, unlike the approach we use.

We now examine the possibility of finding equilibrium
states by using the property that vortices can be made to
enter a sample one at a time at the tip of a thin indentation of
the boundary. The presence of the thin indentation lowers the
surface barrier and, when placed at an asymmetric position,
can also be used to break the symmetry. Once a steady-state
configuration is attained, the indentation is removed and the
vortices are allowed to further evolve to a steady-state con-
figuration for an unindented sample—i.e., for a symmetric
sample. We then compare the Gibbs free energies of configu-
rations having different numbers of vortices to determine the
one that minimizes the energy.

As was shown in Sec. III �see Figs. 6–8�, the surface
barrier at smooth surfaces can be as low as that at indenta-
tion, unless the magnetic field is sufficiently low. Thus, it is
difficult to confine the vortex nucleation and penetration pro-
cess to just the indentation. Since vortices simultaneously
enter from all the smooth sides of the boundary, this situation
makes it difficult to produce configurations with an arbitrary
specified number of vortices. However, we do know that, at a
fixed value of the applied magnetic field, vortices entering
the sample from the boundary add to the repulsion prevent-

t=0 t=9.3 t=38.1

t=278.9 t=1028.9 t=2078.9

t=4928.9 t=8828.9 t=15128.9

t=40000

FIG. 8. �Color online� The vortex nucleation and penetration
process in a sample of area 1024�2 for Hext=0.84 and �=4.
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ing additional vortices from entering. We believe that by
raising the applied magnetic field from zero by small incre-
ments, the vortex penetration process can be controlled to
occur only at the indentation until a specified number of
vortices have entered the sample. We leave this approach for
future study.

Instead, here we simply create, for several different Hext,
steady-state vortex configurations in a sample with square
cross section which has a thin indentation in the bottom side.
Since the area removed by the indentation is a small fraction
of the total area of the square, for the same number of vor-
tices the magnetic fluxes inside the samples with and without
the indentation are close to each other. We use the steady-
state configurations for the indented sample as initial condi-
tions for determining the vortex dynamics in the unindented
sample. All of these are carried out using a single value of
the applied field—i.e., the value for which we are trying to
determine the equilibrium configuration. The steady-state
configurations obtained for the latter case will, most of the
time, conserve the number of vortices due to surface barrier.
By comparing the Gibbs free energies of the steady states so
obtained that have a different number of vortices, we can
determine which state-state configuration has lowest energy;
we identify that configuration with the equilibrium state.36

We now illustrate how this approach is used to obtain
steady-state vortex configurations containing different num-
bers of vortices, n�, and in particular, configurations that do
not conform to the symmetry of a sample. For Fig. 9, we
have a square sample of area 346�2 with a small indentation
asymmetrically placed along its bottom side. We also have

that �=4 and Hext=1.0. Vortices enter the sample from both
the tip of the indentation and from the sides of the square.

By varying the value of the applied field, vortex configu-
rations having different values of n� are created. Figure 10
presents the results of nine cases, labeled �a� through �i�. For
each case, two figures are shown, presenting the steady-state
vortex configuration in the indented sample �left, called “left
figure” henceforth� and the nonindented square �right, called
“right figure” henceforth�. The left figures of Fig. 10 show
the steady-state configurations for the indented sample ob-
tained for the applied field values Hext=1.0, 1.05, 1.10,
1.144, 1.357, 1.429, 1.454, 1.593, and 1.732, respectively.
These values were rather arbitrarily chosen to obtain the de-
sired number of vortices. Note that these configurations con-
tain 4–12 vortices plus an additional vortex at the tip of the
indentation.

We next remove the indentation, set the applied field to
Hext=1.144, and let each of the nine steady-state configura-
tions displayed in the left figure of Fig. 10 evolve to new
steady-state configurations which are shown in the right fig-
ure of Fig. 10. We emphasize that the configurations shown
in the left figures of Fig. 10 were determined using different
values for the applied field; after the indentation is removed,
the same applied field value is used for all configurations.
The vortex formed around the tip of the indentation remains
inside the sample in cases �a�–�f�, but is expelled from the
sample for cases �g�–�i�. The resulting configurations in the
right figures of Fig. 10 have different numbers of vortices,
with the exception of �f� and �g�, both of which not only have
ten vortices each, but, although having evolved from differ-
ent initial states, have vortex configurations which are
merely rotated versions of each other. Also, one observes in
the right figures of rows �g� and �h� the competition between
the desire of the vortices to arrange themselves in the Abri-
kosov lattice and to conform with the sample boundary.

The Gibbs free energies G corresponding to each of con-
figurations in the right figure of Fig. 10 are plotted, in Fig.
11, versus the number of vortices present in the configura-
tions. From that plot, we see that the configuration having
the smallest Gibbs free energy �e� is the one with nine vor-
tices. Thus, we conclude that for the square sample of area
346�2 and for �=4 and for Hext=1.144, the equilibrium con-
figuration contains nine vortices and is given by the figure in
the right figure of Fig. 10�e�. Note that the nine vortices in
that configuration are symmetrically arranged and that, if one
started a simulation for Hext=1.144 from the Meissner state,
one would obtain a steady-state configuration having only
eight vortices.

Another example is provided in Fig. 12. On the top is the
steady-state configuration for an indented square of area
346�2 with Hext=1.0 and �=4. But now that result is used as
an initial condition for a simulation for an unindented region
with Hext=0.84. The steady-state configuration for the latter
case is shown on the bottom of Fig. 12. This configuration is
identical with the equilibrium state found in a previous
study13 for a square of the same area, applied field, and �.

V. SUMMARY AND CONCLUSION

Steady-state configurations and transient behaviors of
magnetic vortices for various values of the applied magnetic

t=0

t=14.1

t=279.7

t=9.3

t=260.5

t=40000

FIG. 9. �Color online� Vortex nucleation and penetration for an
indented square sample having area 346�2 and �=4 for Hext=1.0.
The location of indentation is chosen to break symmetry.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

(i)

FIG. 10. �Color online� Steady-state vortex configurations for a square sample of area 346�2 with �=4. Left figures: configurations for
an indented sample obtained using different values for the applied field. Right figures: configurations for an unindented sample obtained from
the corresponding configurations in the left column using the applied field value Hext=1.144.
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field Hext have been presented. The effect of sample dimen-
sion and shape on the surface barrier was examined. When
we start the solution with a uniformly superconducting initial
condition and the sample has perfect square or triangular
symmetry, both the number of vortices and their steady-state
configurations are governed by the sample geometry. In par-
ticular, vortices enter the samples in multiples of the symme-
try number. More vortices enter as the sample dimension
grows, and when a small indentation is made on the sample
boundary, vortices enter the system one by one from the tip
of the indentation.

Equilibrium states in actual samples may not have such
symmetric configurations due to symmetry-breaking surface
defects that form vortex-nucleation centers or when thermal
fluctuations are sufficiently strong to move the system out of
metastable states but are not too strong to melt the vortex
lattice. One could have determined these true equilibrium
states by adding additional terms in the equations to simulate
thermal fluctuations, but here, we have devised a different
approach which we believe is more efficient. Since thin in-
dentations lower the surface barrier and also break the sym-
metry when placed at an asymmetric position, the resulting
steady-state configuration is expected to be close to a steady-
state configuration of an unindented sample. �This follows
because the area removed by the indentation is a small frac-
tion of the whole area and the magnetic fluxes inside the
systems with and without the indentation are close to each
other, for the same number of vortices.� Thus, further relax-
ation from this state after removing the indentation will find
a steady-state configuration for the symmetric sample. Since
the surface barrier at smooth surfaces can be as low as that at
indentation �unless the magnetic field is sufficiently low�,
vortices have also entered from the boundary surfaces and
add to the repulsion preventing additional vortices from en-
tering at a fixed magnetic field. The number of vortices in the
symmetric sample is, for the most part, kept the same as for
the indented samples due to surface barrier. In this manner,
we can create steady-state vortex configurations in a square

sample with differing number of vortices for the same value
of the applied field. By comparing the Gibbs free energies of
these steady-state vortex configurations, we can determine
which one has the lowest Gibbs free energy. We identify that
configuration as the equilibrium state for the given value of
the applied field and, in this way, we determine the number
of vortices present in the equilibrium configuration.

Our indentation method is an alternative to the vortex
“seeding” method13 �for which vortices are artificially intro-
duced into a sample at random locations� for finding equilib-
rium configurations. We believe that, by raising the external
magnetic field from zero using small increments, the vortex
penetration process can be controlled to occur only at the
indentation until the desired number of vortices have entered.
In this way, we can obtain a vortex state very close to the
equilibrium state in a square without an indentation. We in-
tend to pursue this approach in a future study.
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FIG. 11. �Color online� The steady-state total Gibbs free ener-
gies G of the steady-state configurations in the right figure of Fig.
10 vs the number of vortices n�, in the configurations.
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FIG. 12. �Color online� Top: initial configuration determined
using an indented sample and Hext=1.0. Bottom: equilibrium con-
figuration for the unindented sample for Hext=0.84.

KIM et al. PHYSICAL REVIEW B 76, 024509 �2007�

024509-10



1 V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064
�1950�.

2 P. G. de Gennes, Superconductivity in Metals and Alloys
�Addison-Wesley, Reading, MA, 1989�.

3 M. Tinkham, Introduction to Superconductivity �McGraw-Hill,
New York, 1996�.

4 Q. Du, M. D. Gunzburger, and J. S. Peterson, SIAM Rev. 34, 54
�1992�.

5 Q. Du, M. D. Gunzburger, and J. S. Peterson, Phys. Rev. B 51,
16194 �1995�.

6 B. J. Baelus and F. M. Peeters, Phys. Rev. B 65, 104515 �2002�.
7 V. A. Schweigert and F. M. Peeters, Phys. Rev. B 57, 13817

�1998�.
8 V. A. Schweigert, F. M. Peeters, and P. Singha Deo, Phys. Rev.

Lett. 81, 2783 �1998�.
9 P. Singha Deo, V. A. Schweigert, F. M. Peeters, and A. K. Geim,

Phys. Rev. Lett. 79, 4653 �1997�.
10 J. Bonca and V. V. Kabanov, Phys. Rev. B 65, 012509 �2001�.
11 V. R. Misko, V. M. Fomin, J. T. Devereese, and V. V. Mosh-

chalkov, Physica C 369, 361 �2002�.
12 V. R. Misko, V. M. Fomin, J. T. Devreese, and V. V. Mosh-

chalkov, Phys. Rev. Lett. 90, 147003 �2003�.
13 S. Kim, C.-R. Hu, and M. J. Andrews, Phys. Rev. B 69, 094521

�2004�.
14 A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 �1957� 	Sov.

Phys. JETP 5, 1174 �1957�
.
15 C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14 �1964�.
16 P. G. de Gennes, Solid State Commun. 3, 127 �1965�.
17 H. J. Fink and A. G. Presson, Phys. Rev. 182, 498 �1969�.
18 Y. Enomoto and K. Okada, J. Phys.: Condens. Matter 9, 10203

�1997�.
19 A. S. Mel’nikov, I. M. Nefedov, D. A. Ryzhov, I. A. Shere-

shevskii, V. M. Vinokur, and P. P. Vysheslavtsev, Phys. Rev. B
65, 140503�R� �2002�.

20 A. D. Hernández and D. Domínguez, Phys. Rev. B 65, 144529
�2002�.

21 D. Y. Vodolazov, Phys. Rev. B 62, 8691 �2000�.
22 L. Burlachkov, M. Konczykowski, Y. Yeshurun, and F. Holtzberg,

J. Appl. Phys. 70, 5759 �1991�.
23 F. Bass, V. D. Freilikher, B. Ya. Shapiro, and M. Shvaster,

Physica C 260, 231 �1996�.
24 A. Yu. Aladyshkin, A. S. Mel’nikov, I. A. Shereshevsky, and I. D.

Tokman, Physica C 361, 67 �2001�.
25 A. Buzdin and M. Daumens, Physica C 294, 257 �1998�.
26 L. P. Gor’kov and N. B. Kopnin, Sov. Phys. Usp. 18, 496 �1976�.
27 According to microscopic theories R would be either 5.79 in the

case of strong electron-phonon relaxation 	R. J. Watts-Tobin, Y.
Krähenbühl, and L. Kramer, J. Low Temp. Phys. 42, 459
�1981�
 or 12 for superconductors with a high concentration of

paramagnetic impurities �L. P. Gor’kov and G. M. Éliashberg,
Zh. Eksp. Teor. Fiz. 54, 612 �1968� 	Sov. Phys. JETP 27, 328
�1968�
�. See also Ref. 19 and R. S. Thompson and C.-R. Hu,
Phys. Rev. Lett. 27, 1352 �1971�. Note that there is only one
relaxation time in the simplified TDGL equation considered in
Ref. 19, whereas there are two relaxations times in the TDGL
equation solved here.

28 Jonathan Richard Shewchuk, in Applied Computational Geom-
etry: Towards Geometric Engineering, edited by Ming C. Lin
and Dinesh Manocha, Volume 1148 of Lecture Notes in Com-
puter Science �Springer-Verlag, Berlin, 1996�, pp. 203–222.

29 A. C. Rose-Innes and E. H. Rhoderick, Introduction to Supercon-
ductivity �Pergamon Press, New York, 1978�.

30 S. Kim, C.-R. Hu, and M. J. Andrews, Phys. Rev. B 74, 214511
�2006�.

31 M. Morelle, G. Teniers, L. F. Chibotaru, A. Ceulemans, and V. V.
Moshchalkov, Physica C 369, 351 �2002�; M. Morelle, Y.
Bruynseraede, and V. V. Moshchalkov, Phys. Status Solidi B
237, 365 �2003�.

32 M. M. Doria, J. E. Gubernatis, and D. Rainer, Phys. Rev. B 41,
6335 �1990�.

33 R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B 47, 8016
�1993�.

34 J. Deang, Q. Du, and M. D. Gunzburger, Phys. Rev. B 64,
052506 �2001�.

35 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes �Cambridge University Press, Cambridge,
England, 1989�, Sec. 10.9.

36 Mel’nikov et al. �Ref. 19� used a small defect �normal metal� on
the boundary of the samples to disturb the fourfold symmetry of
their numerical scheme to obtain the vortex states with odd total
vorticity. With our deep-cut defect, we can more likely find the
lowest-energy vortex configuration at each applied field and vor-
ticity, since a small surface defect cannot change much of the
local surface magnetic pressure, which is the driving force for
vortex entry, and only a highly symmetric steady state can be
affected drastically by the symmetry-breaking small surface de-
fect. Note also that in our paper, sample defects were used
merely as a tool to more quickly find the true equilibrium states
of the perfectly symmetric samples with no defects. This trick
allows the true equilibrium solutions that do not have the sym-
metry of the sample to be more easily obtained. In addition,
Mel’nikov et al., used larger defects to examine the stability of a
maximally symmetric vortex configuration near the critical field
Hc3. However, we have considered applied fields substantially
below Hc2, so we found no antivortices or multiply quantized
vortices, but equilibrium vortex configurations composed of sin-
gly quantized vortices only.

EFFECTS OF SAMPLE GEOMETRY ON THE DYNAMICS… PHYSICAL REVIEW B 76, 024509 �2007�

024509-11


