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Abstract

As part of a forthcoming planetarium show about the human brain, we are producing
realistic models of the central nervous system at a variety of scales, from whole brain images to
images of individual neurons. We have focused on the visual system and especially the visual
cortex, and are building sets of simulated neurons using stochastic growth rules that mimic the
geometries of actual neurons. We anticipate that some of the techniques we have developed in
this work may also prove useful in various areas of computational neuroscience. ( 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

`The Brain Projecta [9] at Carnegie Mellon University is centered around the
production of a planetarium-based interactive show which will help to give students
a glimpse of how the brain operates. Though the show is targeted at the junior high
school level, we anticipate that many people of all ages will see it. Our role in this
project has been to produce animated visualizations that illustrate the structure and
function of several components of the visual pathway.

One of the weaknesses of many prior animations of neural behavior is that they
depict grossly oversimpli"ed neurons with little sense of scale of how those neurons "t
into the central nervous system as a whole. We are attempting to bridge this gap
between the whole brain level and the cellular level by smoothly zooming in and out of
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the cortex. At the highest level (10 cm scale) we see sulci and gyri, at the next level
(1 cm scale) a single gyrus, then (at 1 mm scale) distinct cortical layers with dense
populations of neurons; next (at 100 mm scale) individual neurons become prominent;
and "nally (at 10 mm scale) synapses are visible.

The general strategy of our approach has been to develop an overall structural
model of the brain's gray matter, and then to embed replicated copies of a more
detailed neural model within that gray matter surface. This is similar in many respects
to the &&Exploring the brain forest'' environment described in [12]. Since it would be
impossible to build a neural model for more than a miniscule area of visual cortex, we
construct a model only encompassing a 0.1 mm]0.1 mm area (with 2.0 mm thick-
ness), then tile the cortical surface with this pattern. The neural model is built in such
a way that axons and dendrites wrap-around so that the tiling appears seamless, and
one cannot easily discern the boundary where one tile ends and another begins.

2. Building a geometric model of gray matter

We begin with a conventionally obtained structural MRI image, in which di!erent
intensity levels roughly correspond to di!erences in fat/water ratios in the tissues.
Gray matter accordingly appears slightly darker than white matter in the images.

For the "rst step, we used the mrGray program [6] to apply a thresholding
operation to classify voxels into white matter or gray matter or CSF. It is impossibile,
however, to pick a threshold that will be entirely correct over the whole brain, so some
manual cleanup is necessary. We want to have a set of white matter voxels whose
surface is topologically equivalent to a sphere. Thus, we use another program (called
`handlera) to identify those small regions where white matter forms loops. Many of
these are due to white matter of adjacent folds coming very close together, and a few
voxels must be relabeled to eliminate these bridges. In other places, the proper
correction is to "ll in voxels to eliminate holes which should not be present. This step
turned out to be quite labor-intensive. Although the initial segmentation appeared
relatively clean, it turned out that we had over 200 handles that each had to be
inspected and manually corrected.

Once the handles had been removed, we `grewa one layer of gray matter using the
mrGray program, and saved the resulting surface. A single slice through the "nal
result is shown in Fig. 1, with the whitened voxels classi"ed as white matter, and
darkened voxels classi"ed as gray matter. The surface information consists of a list of
voxels, and the connectivity relationships among voxels. Voxels are connected if they
are adjacent in a 26-neighbor sense in 3-space, and if they arose from the same
underlying white matter. This means that gray matter voxels which happen to be
adjacent but which arose from white matter on opposite sides of a sulcus will not be
connected.

With this surface connectivity information we then attempted to `#attena the gray
matter using two di!erent #attening programs, mrUnfold [8] and CARET/FLAT-
MORPH [10]. Unfortunately, we ran into obstacles with both, as they are more
oriented toward #attening smaller regions than the entire cortical surface of both
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Fig. 1. Surface voxels in a single MRI slice.

hemispheres. We then developed a #attening method based on a relaxation/simulated
annealing approach. In the "rst phase of this, points on the cortical surface are
migrated until they lie approximately on the surface of a sphere, and also are
distributed fairly uniformly over the surface of the sphere. While gross spatial
relationships are roughly preserved during this step, there is no attempt to preserve
local spatial relationships, so many overlaps occur. As the `temperaturea of the
annealing process is reduced, we gradually transition to a relaxation process in which
local spatial relationships are restored, and these overlaps are removed. Unfortunate-
ly this is unstable, and if left to run too long, will begin to distort the overall map, with
points gradually becoming congested instead of spread over the entire sphere. By
terminating this second phase before much overall distortion has occurred, we end up
with the lower gray matter surface (bottom of layer 6) unfolded onto a sphere.

Once we have all the points mapped on the spherical surface, we simply use
a latitude/longitude projection to then map these onto a #at rectangle. Fig. 2 visualiz-
es the result of this #attening process, with each point representing one (bottom)
surface point on the gray matter. Points are colored according to how far they are
from the center point of the corpus callosum, with the color spectrum repeated several
times to show smaller distance changes more easily. The left hemisphere is on the left,
the right hemisphere on the right, with the occipital regions at the bottom of the
"gure.

We use this to interpolate locations (in original 3D space) for a rectangular grid in
#attened space (in our case every 0.53 of latitude and longitude). The interpolation
algorithm we used is ACM Algorithm 773 developed by Robert J. Renka [5], which
also incorporates smoothing. Finally, we calculate surface normals and take into
account the thickness of the gray matter, to produce a visualization of the top cortical
surface (top of layer 1) as seen in Fig. 3 from the top. Since we have e!ectively imposed
a grid onto the cortical surface, we also have a means of tiling this surface with our
neural model.
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Fig. 2. Flattened left and right hemispheres.

Fig. 3. Smooth brain surface reconstructed after un#attening the gridded surface.

3. Building a geometric model of a chunk of visual cortex

In building our geometric model of individual neurons of the visual cortex, we have
relied largely on the description of macaque visual cortex given in [3,4]. We are
extrapolating this to the human cortex by scaling layer thicknesses and making other
modi"cations according to data in [2]. In order to populate these layers with life-like
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Fig. 4. Arti"cial pyramidal cell.

1For details of this representation, please contact the authors.

neurons, we are `growinga simulated neurons that have geometries resembling those
of actual cortical neurons. We start each neuron o! as a bare soma, and then grow the
axon and dendritic tree using a set of stochastic growth rules (speci"c to that neuron
type) that empirically result in a realistic branching structure. An example of such
a `growna pyramidal cell is shown in Fig. 4.

One of the challenges of constructing realistic models of cortical neurons in the
computer has been their sheer size, since a typical neuron has thousands of connec-
tions to other neurons, and dendritic trees which extend through a matrix of other
neurons' dendritic trees. Even with the rapid increase in computer memory capacity
over the years, the size of primary memory still constrains the complexity of models
which may be built. We have therefore, attempted to eliminate redundancy in our
representations so as to minimize the storage consumed to encode the morphology of
the neurons. We model the neurons as a large number of cylinders, and have reduced
the storage requirements of each single cylinder to asymptotically approach 8 bytes as
their number becomes large, while still preserving the ability to randomly access
components geometrically in constant time and traverse dendritic trees in a forward
and backward direction.1

In order to present the model to the viewer we are exploring a variety of rendering
techniques. A key idea is to make smooth transitions during pans and zooms, so we
must be able to e$ciently display large numbers of small objects (e.g. sections of
dendrites) at reduced resolution. A naive mapping of every visible neuron into a "xed
number of polygons would quickly lead to impractically long rendering times.
Hence, we have adopted multi-resolution strategies that employ many polygons when
neurons are close-up but a smaller number when a neuron is distant. It is also
necessary to fade out a large percentage of neurons at certain times, since attempting
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Fig. 5. View looking from layer III up toward layer I in V1.

to present the complete model at realistic densities would likely produce the impres-
sion of an impenetrable thicket of dendrites and axonal arborizations. Finally, use of
a ray-tracing renderer (POV-Ray [11]) allows us to incorporate dramatic lighting and
surface e!ects such as translucency.

The "nal step is producing the visualizations is to map the cell-level neural model
into the tiles de"ned by the latitude}longitude grid on the #attened cortical surface.
For this, we are using a trans"nite interpolation technique [1,7]. In this process, we
use splines to ensure the smoothness of both the top and bottom surfaces of the gray
matter layers. An example scene resulting from this combination of low- and high-
level models is shown in Fig. 5. Approximately 30 of the 0.1 mm]0.1 mm tiles were
used to form this scene.

4. Conclusions

Although the primary goal of our work is to generate captivating visualizations of
the central nervous system for a general audience, we believe that some of our
techniques will transfer over to computational neuroscience. Since we are `growinga
neurons, the present work bears some resemblance to developmental modeling.
Whereas we use growth rules that depend on physical variables such as distance from
the soma, position within cortical layer, and direction relative to the cortical surface,
an accurate developmental model would also likely include dependencies on neural
activity, both of the neuron itself and that of adjacent neurons. Our data structures
could also be extended to support multi-compartment simulation of a neuron's
electrical activity, and form a substrate for investigating neural computation that
might be dependent on the geometric properties (e.g. dendritic branching patterns) of
particular neurons.
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Another application of the compact geometric representation scheme is in e$cient-
ly storing large quantities of experimentally obtained neural morphologies. With the
prospect that high-resolution scans of cortical tissue slices will generate petabytes of
raw data, e$cient schemes of encoding geometries will become important.

Finally, the brain `#atteninga method shows some potential for being used in the
context of psychological research involving brain mapping. We hope to more carefully
evaluate this technique in comparison with existing methods of #attening, since it
appears to take much less computational time, and is able to deal more easily with
larger cortical regions.
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