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Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) meth-
ods are attractive techniques for uncertainty quantification (UQ) due to their strong math-
ematical basis and ability to produce functional representations of stochastic variability.
PCE estimates coefficients for known orthogonal polynomial basis functions based on a set
of response function evaluations, using sampling, linear regression, tensor-product quadra-
ture, or Smolyak sparse grid approaches. SC, on the other hand, forms interpolation
functions for known coefficients, and requires the use of structured collocation point sets
derived from tensor-products or sparse grids. When tailoring the basis functions or inter-
polation grids to match the forms of the input uncertainties, exponential convergence rates
can be achieved with both techniques for general probabilistic analysis problems. In this
paper, we explore relative performance of these methods using a number of simple alge-
braic test problems, and analyze observed differences. In these computational experiments,
performance of PCE and SC is shown to be very similar, although when differences are
evident, SC is the consistent winner over traditional PCE formulations. This stems from
the practical difficulty of optimally synchronizing the form of the PCE with the integration
approach being employed, resulting in slight over- or under-integration of prescribed ex-
pansion form. With additional nontraditional tailoring of PCE form, it is shown that this
performance gap can be reduced, and in some cases, eliminated.

I. Introduction

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response
metrics of interest. These input uncertainties may be characterized as either aleatory uncertainties, which
are irreducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties
resulting from a lack of knowledge. Since sufficient data is generally available for aleatory uncertainties,
probabilistic methods are commonly used for computing response distribution statistics based on input
probability distribution specifications. Conversely, for epistemic uncertainties, data is generally sparse,
making the use of probability distribution assertions questionable and typically leading to nonprobabilistic
methods based on interval specifications.

One technique for the analysis of aleatory uncertainties using probabilistic methods is the polynomial
chaos expansion (PCE) approach to UQ. In this work, we focus on generalized polynomial chaos using the
Wiener-Askey scheme,1 in which Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre orthogonal
polynomials are used for modeling the effect of uncertain variables described by normal, uniform, exponential,
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beta, and gamma probability distributions, respectivelya. These orthogonal polynomial selections are optimal
for these distribution types since the inner product weighting function and its corresponding support range
correspond to the probability density functions for these continuous distributions. In theory, exponential
convergence rates can be obtained with the optimal basis. When transformations to independent standard
random variables (in some cases, approximated by uncorrelated standard random variables) are used, the
variable expansions are uncoupled, allowing the polynomial orthogonality properties to be applied on a per-
dimension basis. This allows one to mix and match the polynomial basis used for each variable without
interference with the spectral projection scheme for the response.

In non-intrusive PCE, simulations are used as black boxes and the calculation of chaos expansion coef-
ficients for response metrics of interest is based on a set of simulation response evaluations. To calculate
these response PCE coefficients, two primary classes of approaches have been proposed: spectral projection
and linear regression. The spectral projection approach projects the response against each basis function
using inner products and employs the polynomial orthogonality properties to extract each coefficient. Each
inner product involves a multidimensional integral over the support range of the weighting function, which
can be evaluated numerically using sampling, quadrature, or sparse grid approaches. The linear regression
approach (also known as point collocation or stochastic response surfaces) uses a single linear least squares
solution to solve for the PCE coefficients which best match a set of response values obtained from a design
of computer experiments.

Stochastic collocation (SC) is another stochastic expansion technique for UQ that is closely related
to PCE. Whereas PCE estimates coefficients for known orthogonal polynomial basis functions, SC forms
Lagrange interpolation functions for known coefficients. Since the ith interpolation function is 1 at collocation
point i and 0 for all other collocation points, it is easy to see that the expansion coefficients are just the
response values at each of the collocation points. The formation of multidimensional interpolants with this
property requires the use of structured collocation point sets derived from tensor products or sparse grids.
The key to the approach is performing collocation using the Gauss points and weights from the same optimal
orthogonal polynomials used in generalized PCE, which results in the same exponential convergence rates.
A key distinction is that, whereas PCE must define an expansion formulation and a corresponding coefficient
estimation approach (which may not be perfectly synchronized), SC requires only a collocation grid definition
from which the expansion polynomials are derived based on Lagrange interpolation.

Section II describes the orthogonal polynomial and interpolation polynomial basis functions, Section III
describes the generalized polynomial chaos and stochastic collocation methods in additional detail, Section IV
describes non-intrusive approaches for calculating the polynomial chaos coefficients or forming the set of
stochastic collocation points, Section V presents computational results for a number of benchmark test
problems, and Section VI provides concluding remarks.

II. Polynomial Basis

A. Orthogonal polynomials in the Askey scheme

Table 1 shows the set of polynomials which provide an optimal basis for different continuous probability
distribution types. It is derived from the family of hypergeometric orthogonal polynomials known as the
Askey scheme,2 for which the Hermite polynomials originally employed by Wiener3 are a subset. The
optimality of these basis selections derives from their orthogonality with respect to weighting functions that
correspond to the probability density functions (PDFs) of the continuous distributions when placed in a
standard form. The density and weighting functions differ by a constant factor due to the requirement that
the integral of the PDF over the support range is one.

Note that Legendre is a special case of Jacobi for α = β = 0, Laguerre is a special case of generalized
Laguerre for α = 0, Γ(a) is the Gamma function which extends the factorial function to continuous values,

and B(a, b) is the Beta function defined as B(a, b) = Γ(a)Γ(b)
Γ(a+b) . Some care is necessary when specifying the

α and β parameters for the Jacobi and generalized Laguerre polynomials since the orthogonal polynomial
conventions4 differ from the common statistical PDF conventions. The former conventions are used in
Table 1.

aOrthogonal polynomial selections also exist for discrete probability distributions, but are not explored here.
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Table 1. Linkage between standard forms of continuous probability distributions and Askey scheme of contin-
uous hyper-geometric polynomials.

Distribution Density function Polynomial Weight function Support range

Normal 1√
2π
e

−x2

2 Hermite Hen(x) e
−x2

2 [−∞,∞]

Uniform 1
2 Legendre Pn(x) 1 [−1, 1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P

(α,β)
n (x) (1 − x)α(1 + x)β [−1, 1]

Exponential e−x Laguerre Ln(x) e−x [0,∞]

Gamma xαe−x

Γ(α+1) Generalized Laguerre L
(α)
n (x) xαe−x [0,∞]

B. Numerically generated orthogonal polynomials

If all random inputs can be described using independent normal, uniform, exponential, beta, and gamma
distributions, then generalized PCE can be directly applied. If correlation or other distribution types are
present, then additional techniques are required. One solution is to employ nonlinear variable transformations
as described in Section III.C such that an Askey basis can be applied in the transformed space. This can
be effective as shown in Ref. 5, but convergence rates are typically degraded. In addition, correlation
coefficients are warped by the nonlinear transformation,6 and transformed correlation values are not always
readily available. An alternative is to numerically generate the orthogonal polynomials, along with their
Gauss points and weights, that are optimal for given random variable sets having arbitrary probability
density functions.7, 8 This not only preserves exponential convergence rates, it also eliminates the need to
calculate correlation warping. This topic is explored in Ref. 9.

C. Interpolation polynomials

Lagrange polynomials interpolate a set of points in a single dimension using the functional form

Lj =

m
∏

k=1
k 6=j

ξ − ξk

ξj − ξk
(1)

where it is evident that Lj is 1 at ξ = ξj , is 0 for each of the points ξ = ξk, and has order m− 1.
For interpolation of a response function R in one dimension over m points, the expression

R(ξ) ∼=

m
∑

j=1

r(ξj)Lj(ξ) (2)

reproduces the response values r(ξj) at the interpolation points and smoothly interpolates between these
values at other points. For interpolation in multiple dimensions, a tensor-product approach is used wherein

R(ξ) ∼=

mi1
∑

j1=1

· · ·

min
∑

jn=1

r
(

ξi1
j1
, . . . , ξin

jn

) (

Li1
j1
⊗ · · · ⊗ Lin

jn

)

=

Np
∑

j=1

rj(ξ)Lj(ξ) (3)

where i = (m1,m2, · · · ,mn) are the number of nodes used in the n-dimensional interpolation and ξik

jl
is the

jl-th point in the k-th direction. As will be seen later (Section IV.A.3), interpolation on sparse grids involves
a summation of these tensor products with varying i levels.

III. Stochastic Expansion Methods

A. Generalized Polynomial Chaos

The set of polynomials from Section II.A are used as an orthogonal basis to approximate the functional form
between the stochastic response output and each of its random inputs. The chaos expansion for a response
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R takes the form

R = a0B0 +

∞
∑

i1=1

ai1B1(ξi1 ) +

∞
∑

i1=1

i1
∑

i2=1

ai1i2B2(ξi1 , ξi2) +

∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi3) + ... (4)

where the random vector dimension is unbounded and each additional set of nested summations indicates
an additional order of polynomials in the expansion. This expression can be simplified by replacing the
order-based indexing with a term-based indexing

R =

∞
∑

j=0

αjΨj(ξ) (5)

where there is a one-to-one correspondence between ai1i2...in
and αj and between Bn(ξi1 , ξi2 , ..., ξin

) and
Ψj(ξ). Each of the Ψj(ξ) are multivariate polynomials which involve products of the one-dimensional
polynomials. For example, a multivariate Hermite polynomial B(ξ) of order n is defined from

Bn(ξi1 , ..., ξin
) = e

1
2
ξT ξ(−1)n ∂n

∂ξi1 ...∂ξin

e−
1
2
ξT ξ (6)

which can be shown to be a product of one-dimensional Hermite polynomials involving a multi-index mj
i :

Bn(ξi1 , ..., ξin
) = Ψj(ξ) =

n
∏

i=1

ψ
m

j
i
(ξi) (7)

The first few multidimensional Hermite polynomials for a two-dimensional case (covering zeroth, first, and
second order terms) are then

Ψ0(ξ) = ψ0(ξ1) ψ0(ξ2) = 1

Ψ1(ξ) = ψ1(ξ1) ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ0(ξ1) ψ1(ξ2) = ξ2

Ψ3(ξ) = ψ2(ξ1) ψ0(ξ2) = ξ21 − 1

Ψ4(ξ) = ψ1(ξ1) ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ0(ξ1) ψ2(ξ2) = ξ22 − 1

1. Expansion truncation and tailoring

In practice, one truncates the infinite expansion at a finite number of random variables and a finite expansion
order

R ∼=

P
∑

j=0

αjΨj(ξ) (8)

Traditionally, the polynomial chaos expansion includes a complete basis of polynomials up to a fixed total-
order specification, in which case the total number of terms Nt in an expansion of total order p involving n
random variables is given by

Nt = 1 + P = 1 +

p
∑

s=1

1

s!

s−1
∏

r=0

(n+ r) =
(n+ p)!

n!p!
(9)

This traditional approach will be referred to as a “total-order expansion.”
An important alternative approach is to employ a “tensor-product expansion,” in which polynomial order

bounds are applied on a per-dimension basis (no total-order bound is enforced) and all combinations of the
one-dimensional polynomials are included. In this case, the total number of terms Nt is

Nt = 1 + P =
n

∏

i=1

(pi + 1) (10)
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where pi is the polynomial order bound for the i-th dimension.
It is apparent from Eq. 10 that the tensor-product expansion readily supports anisotropy in polynomial

order for each dimension, since the polynomial order bounds for each dimension can be specified indepen-
dently. It is also feasible to support anisotropy with total-order expansions, although this involves pruning
polynomials that satisfy the total-order bound (potentially defined from the maximum of the per-dimension
bounds) but which violate individual per-dimension bounds. In this case, Eq. 9 does not apply.

Additional expansion form alternatives can also be considered. Of particular interest is the tailoring of
expansion form to target specific monomial coverage as motivated by the integration process employed for
evaluating chaos coefficients. If the specific monomial set that can be resolved by a particular integration
approach is known or can be approximated, then the chaos expansion can be tailored to synchonize with
this set. Tensor-product and total-order expansions can be seen as special cases of this general approach
(corresponding to tensor-product quadrature and Smolyak sparse grids with linear growth rules, respectively),
whereas, for example, Smolyak sparse grids with nonlinear growth rules could generate synchonized expansion
forms that are neither tensor-product nor total-order (to be discussed later in association with Figure 3).
In all cases, the specifics of the expansion are codified in the multi-index, and subsequent machinery for
estimating response values at particular ξ, evaluating response statistics by integrating over ξ, etc., can be
performed in a manner that is agnostic to the exact expansion formulation.

2. Dimension independence

A generalized polynomial basis is generated by selecting the univariate basis that is most optimal for each ran-
dom input and then applying the products as defined by the multi-index to define a mixed set of multivariate
polynomials. Similarly, multivariate weighting functions involve a product of the one-dimensional weighting
functions and multivariate quadrature rules involve tensor products of the one-dimensional quadrature rules.

The use of independent standard random variables is the critical component that allows decoupling of
the multidimensional integrals in a mixed basis expansion. It is assumed in this work that the uncorrelated
standard random variables resulting from the transformation described in Section III.C can be treated
as independent. This assumption is valid for uncorrelated standard normal variables (and motivates the
approach of using a strictly Hermite basis), but may be an approximation for uncorrelated standard uniform,
exponential, beta, and gamma variables. For independent variables, the multidimensional integrals involved
in the inner products of multivariate polynomials decouple to a product of one-dimensional integrals involving
only the particular polynomial basis and corresponding weight function selected for each random dimension.
The multidimensional inner products are nonzero only if each of the one-dimensional inner products is
nonzero, which preserves the desired multivariate orthogonality properties for the case of a mixed basis.

B. Stochastic Collocation

The SC expansion is formed as a sum of a set of multidimensional Lagrange interpolation polynomials, one
polynomial per collocation point. Since these polynomials have the feature of being equal to 1 at their
particular collocation point and 0 at all other points, the coefficients of the expansion are just the response
values at each of the collocation points. This can be written as:

R ∼=

Np
∑

j=1

rjLj(ξ) (11)

where the set of Np collocation points involves a structured multidimensional grid. There is no need for
tailoring of the expansion form as there is for PCE (see Section III.A.1) since the polynomials that appear
in the expansion are determined by the Lagrange construction (Eq. 1). That is, any tailoring or refinement
of the expansion occurs through the selection of points in the interpolation grid and the polynomial orders
of the basis adapt automatically.

As mentioned in Section I, the key to maximizing performance with this approach is to use the same
Gauss points defined from the optimal orthogonal polynomials as the collocation points (using either a
tensor product grid as shown in Eq. 3 or a sum of tensor products defined for a sparse grid as shown later
in Section IV.A.3). Given the observation that Gauss points of an orthogonal polynomial are its roots, one
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can factor a one-dimensional orthogonal polynomial of order p as follows:

ψj = cj

p
∏

k=1

(ξ − ξk) (12)

where ξk represent the roots. This factorization is very similar to Lagrange interpolation using Gauss points
as shown in Eq. 1. However, to obtain a Lagrange interpolant of order p from Eq. 1 for each of the collocation
points, one must use the roots of a polynomial that is one order higher (order p+ 1) and then exclude the
Gauss point being interpolated. As discussed later in Section IV.A.2, one also uses these higher order p+ 1
roots to evaluate the PCE coefficient integrals for expansions of order p. Thus, the collocation points used for
integration or interpolation for expansions of order p are the same; however, the polynomial bases for PCE
(scaled polynomial product involving all p roots of order p) and SC (scaled polynomial product involving p
root subset of order p+ 1) are closely related but not identical.

C. Transformations to uncorrelated standard variables

Polynomial chaos and stochastic collocation are expanded using polynomials that are functions of indepen-
dent standard random variables ξ. Thus, a key component of either approach is performing a transformation
of variables from the original random variables x to independent standard random variables ξ and then apply-
ing the stochastic expansion in the transformed space. The dimension of ξ is typically chosen to correspond
to the dimension of x, although this is not required. In fact, the dimension of ξ should be chosen to represent
the number of distinct sources of randomness in a particular problem, and if individual xi mask multiple
random inputs, then the dimension of ξ can be expanded to accommodate.10 For simplicity, all subsequent
discussion will assume a one-to-one correspondence between ξ and x.

This notion of independent standard space is extended over the notion of “u-space” used in reliability
methods11, 12 in that in includes not just independent standard normals, but also independent standardized
uniforms, exponentials, betas and gammas. For problems directly involving independent normal, uniform,
exponential, beta, and gamma distributions for input random variables, conversion to standard form involves
a simple linear scaling transformation (to the form of the density functions in Table 1) and then the corre-
sponding chaos/collocation points can be employed. For correlated normal, uniform, exponential, beta, and
gamma distributions, the same linear scaling transformation is applied followed by application of the inverse
Cholesky factor of the correlation matrix (similar to Eq. 14 below, but the correlation matrix requires no
modification for linear transformations). As described previously, the subsequent independence assumption
is valid for uncorrelated standard normals but may introduce error for uncorrelated standard uniform, expo-
nential, beta, and gamma variables. For other distributions with a close relationship to variables supported
in the Askey scheme (i.e., lognormal, loguniform, and triangular distributions), a nonlinear transformation is
employed to transform to the corresponding Askey distributions (i.e., normal, uniform, and uniform distri-
butions, respectively) and the corresponding chaos polynomials/collocation points are employed. For other
less directly-related distributions (e.g., extreme value distributions), the nonlinear Nataf transformation is
employed to transform to uncorrelated standard normals as described below and Hermite polynomials are
employed.

The transformation from correlated non-normal distributions to uncorrelated standard normal distribu-
tions is denoted as ξ = T (x) with the reverse transformation denoted as x = T−1(ξ). These transformations
are nonlinear in general, and possible approaches include the Rosenblatt,13 Nataf,6 and Box-Cox14 trans-
formations. The nonlinear transformations may also be linearized, and common approaches for this include
the Rackwitz-Fiessler15 two-parameter equivalent normal and the Chen-Lind16 and Wu-Wirsching17 three-
parameter equivalent normals. The results in this paper employ the Nataf nonlinear transformation, which
is suitable for the common case when marginal distributions and a correlation matrix are provided, but
full joint distributions are not knownb. The Nataf transformation occurs in the following two steps. To
transform between the original correlated x-space variables and correlated standard normals (“z-space”), a
CDF matching condition is applied for each of the marginal distributions:

Φ(zi) = F (xi) (13)

where Φ() is the standard normal cumulative distribution function and F () is the cumulative distribution
function of the original probability distribution. Then, to transform between correlated z-space variables

bIf joint distributions are known, then the Rosenblatt transformation is preferred.
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and uncorrelated ξ-space variables, the Cholesky factor L of a modified correlation matrix is used:

z = Lξ (14)

where the original correlation matrix for non-normals in x-space has been modified to represent the corre-
sponding “warped” correlation in z-space.6

IV. Non-intrusive methods for expansion formation

The major practical difference between PCE and SC is that, in PCE, one must estimate the coefficients for
known basis functions, whereas in SC, one must form the interpolants for known coefficients. PCE estimates
its coefficients using any of the approaches to follow: random sampling, tensor-product quadrature, Smolyak
sparse grids, or linear regression. In SC, the multidimensional interpolants need to be formed over structured
data sets, such as point sets from quadrature or sparse grids; approaches based on random sampling may
not be used.

A. Spectral projection

The spectral projection approach projects the response against each basis function using inner products and
employs the polynomial orthogonality properties to extract each coefficient. Similar to a Galerkin projection,
the residual error from the approximation is rendered orthogonal to the selected basis. From Eq. 8, it is
evident that

αj =
〈R,Ψj〉

〈Ψ2
j〉

=
1

〈Ψ2
j〉

∫

Ω

RΨj ̺(ξ) dξ, (15)

where each inner product involves a multidimensional integral over the support range of the weighting
function. In particular, Ω = Ω1 ⊗ · · · ⊗ Ωn, with possibly unbounded intervals Ωj ⊂ R and the tensor
product form ̺(ξ) =

∏n

i=1 ̺i(ξi) of the joint probability density (weight) function. The denominator in
Eq. 15 is the norm squared of the multivariate orthogonal polynomial, which can be computed analytically
using the product of univariate norms squared

〈Ψ2
j〉 =

n
∏

i=1

〈ψ2
m

j
i

〉 (16)

where the univariate inner products have simple closed form expressions for each polynomial in the Askey
scheme.4 Thus, the primary computational effort resides in evaluating the numerator, which is evaluated
numerically using sampling, quadrature or sparse grid approaches (and this numerical approximation leads
to use of the term “pseudo-spectral” by some investigators).

1. Sampling

In the sampling approach, the integral evaluation is equivalent to computing the expectation (mean) of the
response-basis function product (the numerator in Eq. 15) for each term in the expansion when sampling
within the density of the weighting function. This approach is only valid for PCE and since sampling does
not provide any particular monomial coverage guarantee, it is common to combine this coefficient estimation
approach with a total-order chaos expansion.

In computational practice, coefficient estimations based on sampling benefit from first estimating the
response mean (the first PCE coefficient) and then removing the mean from the expectation evaluations for
all subsequent coefficients.10 While this has no effect for quadrature/sparse grid methods (see following two
sections) and little effect for fully-resolved sampling, it does have a small but noticeable beneficial effect for
under-resolved sampling.

2. Tensor product quadrature

In quadrature-based approaches, the simplest general technique for approximating multidimensional inte-
grals, as in Eq. 15, is to employ a tensor product of one-dimensional quadrature rules. In the case where
Ω is a hypercube, i.e. Ω = [−1, 1]n, there are several choices of nested abscissas, included Clenshaw-Curtis,
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Gauss-Patterson, etc.18–20 However, in the tensor-product case, we choose Gaussian abscissas, i.e. the ze-
ros of polynomials that are orthogonal with respect to a density function weighting, e.g. Gauss-Hermite,
Gauss-Legendre, Gauss-Laguerre, generalized Gauss-Laguerre, and Gauss-Jacobi.

We first introduce an index i ∈ N+, i ≥ 1. Then, for each value of i, let {ξi
1, . . . , ξ

i
mi

} ⊂ Ωi be a sequence
of abscissas for quadrature on Ωi. For f ∈ C0(Ωi) and n = 1 we introduce a sequence of one-dimensional
quadrature operators

U
i(f)(ξ) =

mi
∑

j=1

f(ξi
j)w

i
j , (17)

with mi ∈ N given. When utilizing Gaussian quadrature, Eq. 17 integrates exactly all polynomials of degree
less than or equal to 2mi − 1, for each i = 1, . . . , n. Given an expansion order p, the highest order coefficient
evaluations (Eq. 15) can be assumed to involve integrands of at least polynomial order 2p (Ψ of order p and
R modeled to order p) in each dimension such that a minimal Gaussian quadrature order of p + 1 will be
required to obtain good accuracy in these coefficients.

Now, in the multivariate case n > 1, for each f ∈ C0(Ω) and the multi-index i = (i1, . . . , in) ∈ N
n
+ we

define the full tensor product quadrature formulas

Qn
i
f(ξ) =

(

U
i1 ⊗ · · · ⊗ U

in
)

(f)(ξ) =

mi1
∑

j1=1

· · ·

min
∑

jn=1

f
(

ξi1
j1
, . . . , ξin

jn

) (

wi1
j1
⊗ · · · ⊗ win

jn

)

. (18)

Clearly, the above product needs
∏n

j=1mij
function evaluations. Therefore, when the number of input

random variables is small, full tensor-product quadrature is a very effective numerical tool. On the other
hand, approximations based on tensor-product grids suffer from the curse of dimensionality since the number
of collocation points in a tensor grid grows exponentially fast in the number of input random variables. For
example, if Eq. 18 employs the same order for all random dimensions, mij

= m, then Eq. 18 requires mn

function evaluations.
Figure 1 displays the monomial coverage for an integrand evaluated using an isotropic Gaussian quadra-

ture rules in two dimensions (m1 = m2 = 5). Given this type of coverage, the traditional approach of
exploying a total-order chaos expansion (involving integrands indicated by the red horizontal line) neglects
a significant portion of the monomial coverage and one would expect a tensor-product expansion to provide
improved synchronization and more effective usage of the Gauss point evaluations. Note that the integrand
monomial coverage must resolve 2p, such that p1 = p2 = 4 would be selected in this case.

x9y9

y9x9

Figure 1. Pascal’s triangle depiction of integrand monomial coverage for two dimensions and Gaussian tensor-
product quadrature order = 5. Red line depicts maximal total-order integrand coverage.

3. Smolyak sparse grids

If the number of random variables is moderately large, one should rather consider sparse tensor product spaces
as first proposed by Smolyak21 and further investigated by Refs. 18–20,22–24 that reduce dramatically the
number of collocation points, while preserving a high level of accuracy.
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Here we follow the notation and extend the description in Ref. 18 to describe the Smolyak isotropic

formulas A (w, n), where w is a level that is independent of dimensionc. The Smolyak formulas are just
linear combinations of the product formulas in Eq. 18 with the following key property: only products with
a relatively small number of points are used. With U 0 = 0 and for i ≥ 1 define

∆i = U
i − U

i−1. (19)

and we set |i| = i1 + · · · + in. Then the isotropic Smolyak quadrature formula is given by

A (w, n) =
∑

|i|≤w+n

(

∆i1 ⊗ · · · ⊗ ∆in
)

. (20)

Equivalently, formula Eq. 20 can be written as25

A (w, n) =
∑

w+1≤|i|≤w+n

(−1)w+n−|i|
(

n− 1

w + n− |i|

)

·
(

U
i1 ⊗ · · · ⊗ U

in
)

. (21)

Given an index set of levels, growth rules must be defined for the one-dimensional quadrature orders. In
order to take advantage of nesting and provide similar growth behavior for fully nested and weakly nested
integration rules, the following nonlinear growth rules are currently employed:

Clenshaw − Curtis : m =

{

1 w = 0

2w + 1 w ≥ 1
(22)

Gaussian : m = 2w+1 − 1 (23)

Examples of isotropic sparse grids, constructed from the fully nested Clenshaw-Curtis abscissas and the
weakly-nested Gaussian abscissas are shown in Figure 2, where Ω = [−1, 1]2. There, we consider a two-
dimensional parameter space and a maximum level w = 5 (sparse grid A (5, 2)). To see the reduction in
function evaluations with respect to full tensor product grids, we also include a plot of the corresponding
Clenshaw-Curtis isotropic full tensor grid having the same maximum number of points in each direction,
namely 2w + 1 = 33. Whereas an isotropic tensor-product quadrature scales as mn, an isotropic sparse grid
scales as mlog n, significantly mitigating the curse of dimensionality.

Figure 2. For a two-dimensional parameter space (n = 2) and maximum level w = 5, we plot the full tensor
product grid using the Clenshaw-Curtis abscissas (left) and isotropic Smolyak sparse grids A (5, 2), utilizing
the Clenshaw-Curtis abscissas (middle) and the Gaussian abscissas (right).

Figure 3 displays the monomial coverage for an isotropic sparse grid with level w = 4 employing Gaussian
integration rules in two dimensions. Figure 3(a) shows the case of nonlinear growth rules as given in Eq. 23
and Figure 3(b) shows an alternative linear growth rule of m = 2w + 1. Given this type of coverage, the
traditional approach of exploying a total-order chaos expansion (maximal resolvable total-order integrand

cOther common formulations use a dimension-dependent level q where q ≥ n. We use w = q − n, where w ≥ 0 for all n.
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depicted with red horizontal line) can be seen to be well synchronized for the case of linear growth rules
and to be somewhat conservative for nonlinear growth rules. Again, the integrand monomial coverage must
resolve 2p, such that p = 9 would be selected in the nonlinear growth rule case and p = 7 would be selected
in the linear growth rule case.

61yx

x y529

x13y13

x5y29

xy61

19

(a) Nonlinear growth rule.

x13y5 x5y13x9y9 xy17x17y

15

(b) Linear growth rule.

Figure 3. Pascal’s triangle depiction of integrand monomial coverage for two dimensions and Gaussian sparse
grid level = 4. Red line depicts maximal total-order integrand coverage.

B. Linear regression

The linear regression approach (also known as point collocation or stochastic response surfaces26, 27) uses a
single linear least squares solution of the form:

Ψα = R (24)

to solve for the complete set of PCE coefficients α that best match a set of response values R. The set
of response values is typically obtained by performing a design of computer experiments within the density
function of ξ, where each row of the matrix Ψ contains the Nt multivariate polynomial terms Ψj evaluated at
a particular ξ sample. An over-sampling is generally advisable (Ref. 27 recommends 2Nt samples), resulting
in a least squares solution for the over-determined system. In the case of 2Nt oversampling, the simulation

requirements for this approach scale as 2(n+p)!
n!p! , which can be significantly more affordable than isotropic

tensor-product quadrature (e.g., (p+ 1)n) for larger problems. As for sampling-based coefficient estimation,
this approach is only valid for PCE and does not provide any particular monomial coverage guarantee; thus
it is common to combine this coefficient estimation approach with a total-order chaos expansion.

A closely related technique is known as the “probabilistic collocation” approach. Rather than employ-
ing random over-sampling, this technique uses a selected subset of Nt Gaussian quadrature points (those
with highest tensor-product weighting), which provides more optimal collocation locations and preserves
interpolation properties.

Finally, additional regression equations can be obtained through the use of derivative information (gra-
dients and Hessians) from each collocation point, which aids greatly in scaling with respect to the number
of random variables.

V. Computational Results

Generalized polynomial chaos and stochastic collocation have been implemented in DAKOTA,28 an open-
source software framework for design and performance analysis of computational models on high performance
computers. This section compares PCE and SC performance results for several algebraic benchmark test
problems. These results build upon PCE results for UQ presented in Ref. 5. In addition, PCE-based and
SC-based optimization under uncertainty computational experiments and results are presented in Ref. 29.
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A. Lognormal ratio

This test problem has a limit state function (i.e., a critical response metric which defines the boundary
between safe and failed regions of the random variable parameter space) defined by the ratio of two correlated,
identically-distributed random variables.

g(x) =
x1

x2
(25)

The distributions for both x1 and x2 are Lognormal(1, 0.5) with a correlation coefficient between the two
variables of 0.3. A nonlinear variable transformation is applied and Hermite orthogonal polynomials are
employed in the transformed space.

1. Uncertainty quantification with PCE

For the UQ analysis, 24 response levels (.4, .5, .55, .6, .65, .7, .75, .8, .85, .9, 1, 1.05, 1.15, 1.2, 1.25, 1.3, 1.35,
1.4, 1.5, 1.55, 1.6, 1.65, 1.7, and 1.75) are mapped into the corresponding cumulative probability levels. For
this problem, an analytic solution is available and is used for comparison to CDFs generated from sampling
on the chaos expansions using 104, 105, or 106 samples.

In Figure 4, CDF residuals are plotted for each of the four PCE coefficient estimation approaches on a log-
log graph as a function of increasing simulation evaluations. In all cases, an isotropic total-order expansion is
used. For the quadrature approach, the expansion order p is varied from 0 to 10, with the quadrature order
set at p + 1. For the Smolyak sparse grid approach, the level w is varied from 0 to 4, with the expansion
order p set based on the empirically-derived heuristic 2p ≤ m where m is defined from Eq. 23. For the
point collocation approach, the expansion order is varied from 0 to 10 with the over-sampling ratio set at
2. And for the sampling approach, the expansion order is fixed at 10 and the expansion samples are varied
between 1 and 105 by orders of 10. It is evident that the convergence rates for quadrature, sparse grid, and
point collocation are super-algebraic/exponential in nature with respect to simulation evaluations, whereas
the convergence rate for sampling is algebraic with the expected slope of − 1

2 (sample estimates converge as
the square root of the number of samples). Increasing the number of samples used to numerically evaluate
the expansion CDFs (104, 105, or 106 samples) demonstrates that the flat regions in the former three plots
are artifacts of the resolution of the sample set, such that these convergence trajectories could be extended
further with additional CDF sampling.
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quad m = 1−11, 104 CDF samples

quad m = 1−11, 105 CDF samples

quad m = 1−11, 106 CDF samples

pt colloc ratio = 2, 104 CDF samples

pt colloc ratio = 2, 105 CDF samples

pt colloc ratio = 2, 106 CDF samples

exp samples, p = 10, 104 CDF samples

exp samples, p = 10, 105 CDF samples

exp samples, p = 10, 106 CDF samples

sparse w = 0−4, 104 CDF samples

sparse w = 0−4, 105 CDF samples

sparse w = 0−4, 106 CDF samples

Figure 4. Convergence of traditional PCE with each of the coefficient estimation approaches for the lognormal
ratio test problem. CDF residual is shown versus increasing simulation evaluations on a log-log scale.

In Figure 5, the effects of expansion tailoring are demonstrated through use of tensor-product chaos
expansions that are synchronized with tensor-product quadrature and use of total-order expansions that
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are synchronized with Smolyak sparse grids. The synchronization process in the tensor-product case is
straightforward (pi = mi−1), whereas the synchronization process in the sparse grid case involves calculation
of the maximal total-order expansion that can be resolved within the set of monomials that are integrable
by a particular sparse grid, using the process depicted graphicallyd in Figure 3. It is evident that significant
accuracy benefits are gained through the use of the tensor-product (tailored) expansions in place of total-
order (traditional) expansions when using tensor-product quadrature. For sparse grids, the heuristic rule of
thumb (traditional) is shown to be relatively accurate for low dimensions and low levels and only slight gains
are realized with the tailored approach for higher levels.
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Tailored PCE quad m = 1−11, 104 CDF samples

Tailored PCE quad m = 1−11, 105 CDF samples

Tailored PCE quad m = 1−11, 106 CDF samples

Tailored PCE sparse w = 0−4, 104 CDF samples

Tailored PCE sparse w = 0−4, 105 CDF samples

Tailored PCE sparse w = 0−4, 106 CDF samples

Tradtnl PCE quad m = 1−11, 104 CDF samples

Tradtnl PCE quad m = 1−11, 105 CDF samples

Tradtnl PCE quad m = 1−11, 106 CDF samples

Tradtnl PCE sparse w = 0−4, 104 CDF samples

Tradtnl PCE sparse w = 0−4, 105 CDF samples

Tradtnl PCE sparse w = 0−4, 106 CDF samples

Figure 5. Effect of expansion tailoring on PCE convergence for lognormal ratio test problem.

2. Uncertainty quantification with SC

In Figure 6, convergence results for traditional PCE and SC using quadrature and sparse grids are compared.
It is evident that SC outperforms traditional PCE in all cases for this problem.

Finally, Figure 7 compares tensor-product quadrature for traditional PCE (total-order expansion), tai-
lored PCE (tensor-product expansion), and SC and Smolyak sparse grids with nonlinear growth rules for
traditional PCE (heuristic total-order), tailored PCE (synchronized total-order), and SC. To reduce clutter,
only the most resolved cases (106 CDF samples) are shown. It is evident for tensor-product quadrature that
tailored PCE not only closes the performance gap between traditional PCE and SC, it completely eliminates
it. In fact, a recent analysis30 demonstrates that synchronized tensor-product PCE and SC can be proven
identical for the tensor-product quadrature case. For Smolyak sparse grids, it is evident that tailored PCE
is an improvement, but it still falls short of SC performance. It is anticipated that this gap will close fur-
ther with the use of linear growth rules that reduce computational effort spent resolving polynomials that
do appear in the total-order expansion (i.e., polynomials beyond red line in Figure 3(b) versus those in
Figure 3(a)).

B. Rosenbrock

The two-dimensional Rosenbrock function is a popular test problem for gradient-based optimization algo-
rithms due to its difficulty for first-order methods. It turns out that this is also a challenging problem for
certain UQ methods (especially local reliability methods), since a particular response level contour involves
a highly nonlinear curve that may encircle the mean point (leading to multiple most probable points of

dA software implementation for the general multidimensional case must track polynomial coverage for both the resolvable
integrand and the candidate total-order expansion, which can be done efficiently by storing only the set of Pareto/nondominated
monomials for each portion.
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Tradtnl PCE quad m = 1−10, 104 CDF samples

Tradtnl PCE quad m = 1−10, 105 CDF samples

Tradtnl PCE quad m = 1−10, 106 CDF samples

Tradtnl PCE sparse w = 0−4, 104 CDF samples

Tradtnl PCE sparse w = 0−4, 105 CDF samples

Tradtnl PCE sparse w = 0−4, 106 CDF samples

SC quad m = 1−10, 104 CDF samples

SC quad m = 1−10, 105 CDF samples

SC quad m = 1−10, 106 CDF samples

SC sparse w = 0−4, 104 CDF samples

SC sparse w = 0−4, 105 CDF samples

SC sparse w = 0−4, 106 CDF samples

Figure 6. Comparison of SC with traditional PCE for lognormal ratio test problem. CDF residual is shown
versus increasing simulation evaluations on a log-log scale.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Simulations

C
D

F
 R

es
id

ua
l

 

 

Tailored PCE quad m = 1−10
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Tailored PCE sparse w = 0−4
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SC sparse w = 0−4

Figure 7. Closing of PCE/SC performance gap using tailored PCE for lognormal ratio test problem. CDF
residual evaluated with 106 samples.
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failure). The function is a fourth order polynomial of the form:

f(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)
2 (26)

A three-dimensional plot of this function is shown in Figure 8(a), where both x1 and x2 range in value
from -2 to 2. Figure 8(b) shows a contour plot for Rosenbrock’s function where the encircling of a mean
value at (0,0) is evident.
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Figure 8. Rosenbrock’s function.

Variables x1 and x2 are modeled as independent random variables using normal, uniform, exponential,
beta, and gamma probability distributions. A linear variable transformation is used to account for scaling
and Askey orthogonal polynomials are employed in the transformed space.

1. Uncertainty quantification with PCE

For the UQ analysis, six response levels (.1, 1., 50., 100., 500., and 1000.) are mapped into the corresponding
cumulative probability levels. Since analytic CDF solutions are not available for this problem, accuracy com-
parisons involve comparisons of statistics generated by sampling on the PCE approximation with statistics
generated by sampling on the original response metric, where the sampling sets are of the same size and
generated with the same random seed.

In Ref. 5, the expansion order is fixed at four and the exact coefficients are obtained for a quadrature
order of five or greater, as expected for integrals (Eq. 15) involving a product of a fourth order function
and fourth order expansion terms (refer to Section IV.A.2). Furthermore, with anisotropic quadrature and
tensor-product expansions, the function can be integrated exactly with fifth order quadrature in x1 and third
order quadrature in x2, further reducing the expense from 25 simulations (isotropic) to only 15 simulations
(anisotropic).

In Figure 9, the expansion order is again fixed at four, and we vary the distribution type and polynomial
basis, including two standard normal variables using a Hermite basis, two uniform variables on [−2, 2] using
a Legendre basis, two exponential variables with β = 2 using a Laguerre basis, two beta variables with
α = 1 and β = 0.5 using a Jacobi basis, two gamma variables with α = 1.5 and β = 2 using a generalized
Laguerre basis, and five variables (normal, uniform, exponential, beta, and gamma with the same distribution
parameters) using a mixed basis. For the mixed expansion over five variables, the standard two-dimensional
Rosenbrock is generalized to n-dimensions as defined in Ref. 31. In each case, fifth-order tensor product
quadrature is used (25 evaluations each for Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre
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cases, and 3125 evaluations for the mixed case). For the sparse grids over two variables, the Gaussian cases
require level = 3 for exact results, at a cost of 73 evaluations for weakly nested (Gauss-Hermite) and 95
evaluations for non-nested (Gauss-Laguerre, Gauss-Jacobi, and generalized Gauss-Laguerre), and the fully-
nested Clenshaw-Curtis case requires level = 5 at a cost of 145 evaluations. The five variable mixed Gaussian
case requires level = 4 at a cost of 3579 evaluations. In all cases, a fourth-order expansion with sufficient
integration is exact as expected, which provides verification of the Askey basis implementation.
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Figure 9. Varying distribution type, PCE basis, and integration approach for Rosenbrock test problem with
fixed expansion order = 4.

2. Uncertainty quantification with SC

In Figure 10, we reperform the verification tests for SC and the expansion is again exact for sufficient
quadrature and sparse grid integration levels. Whereas the integration requirements are the same for PCE
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Figure 10. Varying distribution type and collocation point set for SC on the Rosenbrock test problem.

and SC using tensor-product quadrature, an important difference is observed here for sparse grid integration.
Whereas PCE requires sparse grid level = 3 for two-dimensional Gaussian rules, sparse grid level = 4 for five-
dimensional Gaussian rules, and sparse grid level = 5 for two-dimensional Clenshaw-Curtis to obtain exact
results, SC obtains exact results with at least one lower level (level = 2 for two-dimensional Gaussian rules and
level = 3 for both two-dimensional Clenshaw-Curtis and five-dimensional Gaussian). In terms of function
evaluations, this corresponds to a reduction from 73 to 21 evaluations (two-dimensional Gauss-Hermite,
weakly nested), 95 to 29 evaluations (two-dimensional Gauss-Laguerre, Gauss-Jacobi, and generalized Gauss-
Laguerre, non-nested), 145 to 29 evaluations (two-dimensional Clenshaw-Curtis, fully nested), and 3579 to
700 evaluations (five-dimensional mixed Gaussian, weakly and non-nested).
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C. Short column

This test problem involves the plastic analysis of a short column with rectangular cross section (width b = 5
and depth h = 15) having uncertain material properties (yield stress Y ) and subject to uncertain loads
(bending moment M and axial force P ).32 The limit state function is defined as:

g(x) = 1 −
4M

bh2Y
−

P 2

b2h2Y 2
(27)

The distributions for P , M , and Y are Normal(500, 100), Normal(2000, 400), and Lognormal(5, 0.5),
respectively, with a correlation coefficient of 0.5 between P and M (uncorrelated otherwise). A nonlinear
variable transformation is applied and Hermite orthogonal polynomials are employed in the transformed
space.

1. Uncertainty quantification with PCE and SC

Figure 11 shows convergence of mean and standard deviation of the limit state function for increasing
quadrature orders and sparse grid levels using tailored PCE, traditional PCE, and SC. Since an analytic
solution is not available, residuals are measured relative to an “overkill” solution. The quality of this overkill
solution and the effect of compounded roundoff errors can be seen to hinder the convergence trajectories at
residual values below 1010 (short of double precision machine epsilon). In Figure 11(a), the only discernable
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(a) Mean residual.
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(b) Standard deviation residual.

Figure 11. Convergence of mean and standard deviation for the short column test problem.

difference appears between the set of quadrature results and the set of sparse grid results, with similar
performance between the two sets. In Figure 11(b), however, significant differences are evident. First,
for tensor-product quadrature, tensor-product PCE (tailored) is again shown to completely eliminate the
performance gap between total-order PCE (traditional) and SC. For sparse grids, the heuristic total-order
PCE approach (traditional) is shown to be nonconservative for this problem in its estimation of the order
of expansion to employ. Through inclusion of monomials that exceed the order of what can be resolved,
the expansion standard deviation fails to converge. The synchronized total-order PCE approach (tailored)
is shown to be more rigorous, although its performance falls well short of that of SC with sparse grids.
Without this rigorous estimation, however, one would be left with the undesirable alternative of trial and
error in synchronizing the sparse grid with a PCE expansion order. Whereas tensor-product quadrature
outperformed sparse grids for the two-dimensional problem in Figure 7 (such that the equivalent tailored
PCE and SC tensor-product quadrature approaches performed the best), this trend has started to reverse
with the increase to three dimensions and SC with sparse grids stands alone as the most efficient technique.
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D. Cantilever beam

The next test problem involves the simple uniform cantilever beam33, 34 shown in Figure 12. Random

L = 100”

w

t
X

Y

Figure 12. Cantilever beam test problem.

variables in the problem include the yield stress R and Youngs modulus E of the beam material and the
horizontal and vertical loads, X and Y , which are modeled with normal distributions using N(40000, 2000),
N(2.9E7, 1.45E6), N(500, 100), and N(1000, 100), respectively. Problem constants include L = 100 in. and
D0 = 2.2535 in. The beam response metrics have the following analytic form:

stress =
600

wt2
Y +

600

w2t
X ≤ R (28)

displacement =
4L3

Ewt

√

(
Y

t2
)2 + (

X

w2
)2 ≤ D0 (29)

These stress and displacement response functions are scaled using stress
R

− 1 and displacement
D0

− 1, such that
negative values indicate safe regions of the parameter space. A linear variable transformation is used to
account for scaling of the normal PDFs and Hermite orthogonal polynomials are employed in the transformed
space.

1. Uncertainty quantification with PCE and SC

Figure 13 shows convergence of the mean residuals and Figure 14 shows convergence of the standard deviation
residuals for scaled stress and displacement for increasing quadrature orders and sparse grid levels using
tailored PCE, traditional PCE, and SC. An analytic solution is again unavailable, so residuals are measured
relative to an “overkill” solution such that convergence again slows at residual values below 10−10. In
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(a) Scaled stress.
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(b) Scaled displacement.

Figure 13. Convergence of mean for PCE and SC in the cantilever beam test problem.

17 of 20

American Institute of Aeronautics and Astronautics Paper 2009–0976



10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Simulations

S
ta

nd
ar

d 
D

ev
ia

tio
n 

R
es

id
ua

l

 

 

Tailored PCE quad m = 1−10
Traditional PCE quad m = 1−10
SC quad m = 1−10
Tailored PCE sparse lev = 0−5
Traditional PCE sparse lev = 0−5
SC sparse lev = 0−5

(a) Scaled stress.
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(b) Scaled displacement.

Figure 14. Convergence of standard deviation for PCE and SC in the cantilever beam test problem.

Figure 13, the only discernable difference appears between the set of quadrature results and the set of sparse
grid results, with sparse grids outperforming tensor-product quadrature for this four-dimensional problem.
In Figure 14, additional differences are again evident. For tensor-product quadrature, the performance gap
between total-order PCE (traditional) and SC is relatively small, but tensor-product PCE (tailored) is again
shown to completely eliminate it. For sparse grids, the heuristic total-order PCE approach (traditional) is
again shown to be nonconservative in its estimation of the order of expansion to employ, and the synchronized
total-order PCE approach (tailored) is shown to be more rigorous, although it again falls short of the
performance of SC. As for the previous three-dimensional problem (Figure 11(b)), SC with sparse grids
stands alone as the most efficient technique.

VI. Conclusions

This paper has investigated the relative performance of non-intrusive generalized polynomial chaos and
stochastic collocation methods applied to several algebraic benchmark problems with known solutions. The
primary distinction between these methods is that PCE must estimate coefficients for a known basis of
orthogonal polynomials (using sampling, linear regression, quadrature, or sparse grids) whereas SC must
form an interpolant for known coefficients (using quadrature or sparse grids).

Performance between these methods is shown to be very similar and both demonstrate impressive effi-
ciency relative to Monte Carlo sampling methods and impressive accuracy relative to reliability methods.
When a difference is observed between traditional PCE and SC, SC has been the consistent winner, typi-
cally manifesting in the reduction of the required integration by one order or level. This difference can be
largely attributed to expansion/integration synchronization issues with PCE, motivating the approaches for
tailoring of chaos expansions that are explored in this paper.

For the case of tensor-product quadrature, tailored tensor-product PCE is shown to perform identically
to SC such that the performance gap is completely eliminated. Both methods consistently outperform
traditional PCE. However, tensor-product quadrature approaches only outperform sparse grid approaches
for the lowest dimensional problems.

For problems with greater than two dimensions, sparse grid approaches are shown to outperform tensor-
product quadrature approaches. For sparse grids, selection of a synchronized PCE formulation is nontrivial
and the tailored total-order PCE approach, which computes the maximal total-order expansion that can be
resolved by a particular sparse grid, is shown to be more rigorous and reliable than heuristics and eliminates
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inefficiency due to trial and error. A significant performance gap relative to SC with sparse grids still
remains for the case of nonlinear sparse grid growth rules, but replacement of these rules with linear ones (at
least for Gaussian quadratures that are not fully nested) will reduce the set of resolvable polynomials that
do not appear in the total-order expansion. This is expected to close the performance gap to some degree.
However, it is not expected that any nonintrusive PCE approach will outperform SC when using the same set
of collocation points. Rather, usage of PCE remains motivated by other practical considerations, in particular
its greater flexibility in collocation point selection (i.e., cubature grids as well as unstructured/random point
sets that can support greater simulation fault tolerance).

Future work will investigate these linear sparse grid growth rules as well as sparse grids that support
anisotropy in level and numerically-generated polynomials that preserve exponential convergence rates for
arbitrary input PDFs.
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