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Abstract. The Heston stochastic volatility model extends the Black-Scholes-Merton
model by allowing the volatility to vary stochastically. Exact solutions are derivable
for special cases but, in general, approximate solutions obtained through numerical
simulations are needed. Previous approaches have concentrated on finite difference
methods (FDMs). The current study demonstrates how the Heston model can be sim-
ulated using finite element methods (FEMs). This approach can more efficiently re-
produce the results obtained using FDMs, but can also be applied to far more general
cases in which the boundary conditions, domain shape, or limited regularity of the
data limit or forbid the use of FDMs. FEMs for the Heston model are discussed and
the results of computational experiments are provided that demonstrate their accura-
cy and efficiency. Then, FEMs are applied to case studies for European vanilla option
pricing.
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1 Introduction

The problem of option pricing is central to modern financial theory and practice. In
1993, Heston [8] produced an extension of the Black-Scholes-Merton model in which the
volatility was modeled by a stochastic process rather than being treated as a constant.
The Heston model provides a more accurate evaluation of financial derivatives. Also,
for European vanilla options, it allows for the derivation of a closed-form exact solution
whereas other stochastic volatility models can only be treated numerically.

Closed-form solutions are rarely obtainable, and accurate estimates from Monte Carlo
simulations can often be expensive to compute. As a result, most option value calcula-
tions are done by a numerical approximation of the solution of the partial differential
equation (PDE) system. The most commonly used solution approaches are finite dif-
ference methods (FDMs); these methods have some severe limitations such as requiring
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sufficiently smooth terminal and boundary conditions, a rectilinear domain, and logi-
cally rectangular (i.e., Cartesian) grids. Moreover, the solutions produced is available
only at the grid points; at other points, one has to rely on interpolation of the grid val-
ues. By contrast, finite element methods (FEMs) can handle a wider variety of boundary
and terminal conditions; curved, irregular, or hollow domains; and fairly arbitrary grids
that conform to the geometry. Moreover, approximate solutions obtained are piecewise-
smooth functions defined over all points in the solution domain.

A comprehensive overview and demonstration of how the finite element method may
be used in solving option pricing problems can be found in [17], including specific in-
formation on applications to quantitative finance. To date, most studies of the Heston
model have focused on FDMs; see [4, 7, 10, 11, 16]. One of the first papers employing fi-
nite element methods was Winkler et al. [18], which carried out a valuation of European
vanilla options and showed that the problem was well-posed; however, the paper did
not address convergence behavior, in particular the expected convergence rates of the
approximate solution. The thesis of Xiong [19], which mostly uses a 150×150×150 grid
for temporary and spatial resolutions by linear FEM basis functions, similarly does not
investigate the convergence behavior of the solution to the Heston model. In Schwab
et al, [15], the convergence rate of Heston model is considered, but the computation of
convergence rates is again not carried out in accordance with PDE theory.

The goal of this paper is to apply the finite element method to the Heston model and
show that good approximate solutions can be determined efficiently, that the error in an
initial solution estimate can be driven down rapidly, that the expected rate of error de-
cay can easily be determined, and that comparison to the observed rate of error decay is
an important guarantee that the method has been implemented correctly and that suit-
able spatial and temporal resolutions have been chosen. Several variations of the Heston
model will be considered, and optimal convergence will be expected. It is hoped that this
discussion will demonstrate some advantages that the finite element method enjoys as
an alternative to finite difference methods. These advantages should recommend wider
familiarity and use of the FEM for option pricing and similar problems in financial theory
that have an underlying PDE formulation.

In Section 2, the Heston stochastic volatility model is introduced and the correspond-
ing PDE is derived along with appropriate terminal and boundary conditions. FDMs for
the Heston model are then briefly discussed in Section 3. Then, in Section 4, the math-
ematical framework associated with FEMs is presented; the Heston model is recast in
a form suitable for discretization by FEMs, and the notion of approximating spaces is
discussed; this allows us to seek an approximate solution that is a continuous piecewise-
linear or quadratic polynomial. Computational issues such as numerical integration, lin-
ear system solving, and convergence detection are also considered. In Section 5, we use
several numerical experiments to demonstrate the flexibility and effectiveness of FEMs
for the Heston stochastic volatility model, focusing on obtaining accurate approximate
solutions for European vanilla option pricing.
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2 The Heston model

2.1 Motivation

In the forty years since its publication in 1973 [2], Black-Scholes-Merton model has be-
coming the most widely used mathematical model for option pricing problems, not only
it gives an analytical solution of the price of Vanilla options, i.e., Black-Scholes formula,
it also serves as a robust foundation for more refined or extensional models.

However, it has shown that the Black-Scholes model disagrees with reality in a num-
ber of ways, for instance, the most questionable assumption is that continuously com-
pounded stock returns are normally distributed with constant volatility. Since many
empirical studies and economic arguments, especially after the stock market crash in
1987, have shown that equity return distributions exhibit skewness and kurtosis and are
always negatively correlated with implied volatility, which all conflict with normality
assumption made in the Black-Scholes-Merton model.

In order to eliminate this normality assumption by allowing time-varying volatility,
many researchers specify the volatility to be driven by its own stochastic process, i.e.,
stochastic volatility models, see [6, 9]. Among these stochastic volatility models, Heston
model has becoming one of the most important benchmark to be compared with by other
stochastic models.

The Heston stochastic model is formally defined as the system of stochastic differen-
tial equations given by





dS(t)=S(t)
[
(r−q)dt+

√
v(t)dW1(t)

]

dv(t)=κ(θ−v(t))dt+ξ
√

v(t)dW2(t)

dW1(t)dW2(t)=ρdt,

(2.1)

where S(t) denotes the spot process at time t, v(t) the volatility, r the risk free interest
rate, q the continuous dividend rate, κ the mean reversion speed for the variance, θ the
mean reversion level for the variance, ξ the volatility of the variance, and Wi(t), i= 1,2,
two Brownian motions with correlation ρ. The model for the volatility v(t) is the same as
the one used by Cox, et al. [3] for short-term interest rates.

The Heston model includes parameters ρ, ξ, and κ, which provide the ability to cap-
ture observed features of the market and to produce a wide range of distributions. For
instance, the parameter ρ, the correlation between the log-returns and the asset volatili-
ty, affects the skewness of the distribution and hence the shape of the implied volatility
surface; the parameter ξ, the volatility of the variance, affects the kurtosis of the distri-
bution; the mean reversion parameter κ can be interpreted as representing the degree of
volatility clustering. This phenomenon has been observed repeatedly in the market; the
occurrence of large price variations makes it more likely that further large price variations
will follow. More details about parameters’ effect are introduced in [14].
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Additionally, the model provides a closed-form (exact solution) for European options,
making it more tractable and easier to implement than other stochastic volatility model-
s. Hence, the Heston stochastic model becomes a robust and flexible alternative to the
Black-Scholes-Merton model, providing a more realistic framework for option pricing.

2.2 The partial differential equation form of the Heston model

Let g(t,v,S) denotes the price of an option at time t, with volatility v and spot process S;
then g(t,v,S) := e−r(T−t)E[h(V(T),S(T))], where h(V(T),S(T)) is the payoff of the option
at time T. By the Feynman-Kac Theorem, we than have that the function g(t,v,S) satisfies
the PDE

gt+
1

2
ξ2vgvv+ρξSvgSv+

1

2
S2vgSS+κ(θ−v)gv+(r−q)SgS−rg=0 (2.2)

along with the condition g(T,v,S)=h(v,S) imposed at the final time T; the values g(0,v,S)
at the initial time are unknown and need to be determined. Equation (2.2) can be simpli-
fied by the changes of variable y= log(S/K) and τ=T−t, resulting in

Uτ−
1

2
ξ2vUvv−ρξvUyv−

1

2
vUyy−κ(θ−v)Uv−(r−q−

1

2
v)Uy+rU=0 (2.3)

along with the initial condition U(0,v,y)= h(v,Key) imposed at τ=0, where U(τ,v,y)=
g(t,v,S). Note that the change of variables replaces the calendar time t by the time-to-
maturity τ=T−t so that resulting problem (2.3) has the more familiar form of an initial-
value problem with the solutions to be determined at τ=T.

To solve (2.3), boundary conditions need to be specified. Let Ω={(v,y) : v∈(vmin ,vmax) , y∈
(ymin,ymax)} with ymin = log(Smin/K) and ymax = log(Smax/K)) denote the computational
domain with the boundaries





Γ1=
{
(v,y) : v=vmin , y∈ (ymin,ymax))

}

Γ2=
{
(v,y) : y=ymax , v∈ (vmin,vmax)

}

Γ3=
{
(v,y) : v=vmax , y∈ (ymin,ymax)

}

Γ4=
{
(v,y) : y=ymin , v∈ (vmin,vmax)

}
.

Then the Dirichlet boundary condition and initial condition for a European vanilla option
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(call: η=1; put: η=−1) are defined as





U(t,vmin,y)=
[
η(Keye−qτ−Ke−rτ)

]+

U(t,v,ymax)=
1+η

2

[
η(Keymaxe−qτ−Ke−rτ)

]+

U(t,vmax,y)=
1+η

2
Keye−qτ+

1−η

2
Ke−rτ

U(t,v,ymin)=
1−η

2

[
η(Keymine−qτ−Ke−rτ)

]+

U(0,v,y)=
[

η(Key−K)
]+

.

(2.4)

In order to describe the finite element method, it is useful to highlight the differen-
tial operators involved so that we rewrite (2.3) in terms of the gradient and divergence
operators as

Uτ−∇·A∇U+b·∇U+rU=0, (2.5)

where

A=




1

2
vξ2 αvρξ

(1−α)vρξ
1

2
v


 and b=




−κ(θ−v)+
1

2
ξ2

−(r−q)+
1

2
v+αρξ


 (2.6)

for α∈ [0,1]. Note that in most of the literature, e.g., [8], these matrices are written as

A=




1

2
vξ2 1

2
vρξ

1

2
vρξ

1

2
v


 and b=




−κ(θ−v)+
1

2
ξ2

−(r−q)+
1

2
v+

1

2
ρξ


 (2.7)

which corresponds to the specific choice α = 1
2 . However, our numerical experiments

given in Section 5 show that α can be any number in the interval [0,1] so that, in order to
simplify the computational work, it may be beneficial to use α=1 or α=0.

3 Finite difference methods

In general, an exact solution of the Heston model cannot be obtained. One has to be con-
tent with obtaining an approximate solution through a discretization process. Previous
efforts [4, 7, 10, 11, 16] in this direction use finite difference methods (FDMs) for this pur-
pose. Here, we briefly discuss such an approach so that it can be contrasted with finite
element methods that are the main concern of this paper.

To define a finite difference method for the Heston model (2.3) and (2.4), we begin by
choosing two positive integers I and J and then defining the Carteisan grid vi=vmin+i∆v
for i=0,.. . , I with ∆v=(vmax−vmin)/I and yj =ymin+ j∆y for j=0,.. . , J with ∆y=(ymax−
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ymin)/J. We also define a temporal grid by choosing a positive integer N and then letting
∆τ = T/N and setting τn = n∆τ for n = 0,.. .,N. By replacing the derivative in (2.3) by
difference quotients, we then define the discretized system for the approximation un

i,j ≈

U(vi,yj,τn) given by

un+1
i,j −un

i,j

∆τ
−θLhun+1

i,j −(1−θ)Lhun
i,j=0 (3.1)

for i=1,.. . , I−1, j=1,.. . , J−1, and n=1,.. .,N, where

Lhun
i,j=

1

2
ξ2vi

un
i+1,j−2un

i,j+un
i−1,j

(∆v)2
+ρξvi

un
i+1,j+1+un

i−1,j−1−un
i−1,j+1−un

i+1,j−1

4∆v∆y

+
1

2
vi

un
i,j+1−2un

i,j+un
i,j−1

(∆y)2
+κ(θ−vi)

un
i+1,j−un

i−1,j

2∆v

+(r−q−
1

2
vi)

un
i,j+1−un

i,j−1

2∆y
−rui,j.

(3.2)

The values of un
0,j, un

I,j, un
i,0, un

i,J, and u0
i,j needed to close the system (3.1) are obtained from

(2.4).
The parameter θ allows us to consider three common time-stepping schemes at once.

Setting θ = 0 results in the explicit forward-Euler FDM scheme which is conditionally
stable, with a first-order convergence rate in the time step ∆τ. The value θ = 1 defines
the implicit backward-Euler scheme which is unconditionally stable, also with a first-
order convergence rate in ∆τ. The intermediate value θ = 0.5 yields the implicit Crank-
Nicolson method; it shares the unconditional stability of the backward-Euler method, but
has a second order convergence rate in ∆τ, and hence is the most attractive of the three
options. All three options have second-order convergence rates in ∆v and ∆y.

The FDM method exhibited here is highly popular because it is relatively simple to
implement. However, the accuracy of the method is limited by the fineness of the mesh,
both in time and space; if greater accuracy is desired, the temporal and spatial meshes
must be refined. When an implicit time integration approach is used, the corresponding
linear system can grow rapidly in size. Those committed to using an FDM-style approach
have therefore explored variations involved higher-order compact FDM methods [5] for
the spatial derivatives, or ADI methods [12] for the linear system associated with the time
integration. We instead consider finite element methods as an alternative to FDMs.

4 Finite element methods

Finite element methods (FEMs) are an alternative to the FDMs discussed in the previous
section; FEMs are widely used, at least outside the financial community, for discretizing
systems of partial differential equations. Their popularity arises in part from the fact
that they can offer more and better information than FDMs for a given problem and can
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handle many problems for which an FDM approach would be difficult or impossible.
Before describing the implementation details of an FEM approach, it is worth discussing,
in greater detail, the advantages FEMs afford.

For the finite element approach, although input data is only specified at finitely many
locations, the solution is returned as a (piecewise) smooth function defined over the entire
domain, so that it can be evaluated, integrated, or contoured. By contrast, FDMs return
the solution only at a discrete set of grid points so that to obtain values at other points,
interpolation is required.

PDEs most often involve boundary and/or initial conditions. Whereas FDM can easi-
ly handle Dirichlet conditions for which the value of the solution is specified, they can be
awkward in handling conditions involving a derivative, often referred to as Neumann or
Robin conditions. However, this type of boundary condition is common when estimating
the behavior of an option as the underlying price goes to infinity. FEMs incorporate such
boundary conditions in a natural and accurate fashion.

The shape of the computational domain can also become a problem for FDMs. Instead
of the rectangular domain treated in Section 3, irregular domains can arise, e.g., when
knock-out barriers are imposed on a multiple-asset option, or in the pricing of convertible
bonds, or when the PDE only needs to be solved over a portion of the domain because
some parts can be determined by financial reasoning. FDMs rely on the use of a regular
Cartesian grid of sample points, as was done in Section 3; FEMs can handle irregular
regions by decomposing them into the sum of simple shapes such as triangles. Moreover,
FEMs make possible local refinement of the mesh. If areas of the computational domain
are known to represent regions of rapid change of the solution, the grid can automatically
detect this and there exist standard methods for reducing the mesh size there. This can
be useful when computations are being made near the strike price or close to the barrier.

If the computational domain is semi-infinite, FEMs can be implemented using infinite
elements or boundary elements, resulting in the correct treatment of the domain. This is
common practice in engineering, whereas, in finance, FDMs are used, requiring the use
of artificial boundary conditions applied at some large but finite value.

Whereas most papers limit their concern to pricing, the majority of practitioners are
also very interested in measures of sensitivity of those prices, i.e., the degree to which the
computed answers change if some input quantity is varied. Some of these measures of
sensitivity, commonly called Greeks, can be obtained more easily and accurately using
FEMs.

The greater flexibility and power of FEMs are associated with a more complicated
computational procedure. We now consider the mathematical background and compu-
tational issues associated with the method.

4.1 Weak formulation and finite element discretization

Let Ω denote the computational domain and let Γ denote its boundary. Let S(Ω)⊂L2(Ω)
denote the space of functions having first derivatives that also belong to L2(Ω); here L2(·)
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denotes the space of square integrable functions. Given f ∈L2(Γ), define the affine space
S f (Ω)= {U ∈ S(Ω) |U = f on Γ} and the subspace S0(Ω)= {φ∈ S(Ω) | φ= 0 on Γ}. We
then pose the problem:

given f ∈L2(Γ), seek U∈S f (Ω) satisfying
∫

Ω
Uτ ·φdΩ+B(U,φ)=0 for all φ∈S0(Ω),

(4.1)

where

B(U,φ)=
∫

Ω

(
∇φ·(A∇U)+φ(b·∇U+rU)

)
dΩ.

Equation (4.1) is referred to as a weak formulation of (2.5) and is obtained by multiplying
the latter by a general function φ∈ S0(Ω), then integrating the result over Ω, and then
integrating the term involving the matrix A by parts, taking notice that φ = 0 on the
boundary of Ω. The well-posedness of the equivalent version of weak formulation (4.1)
has been proved in [18].

To effect discretization, let Sh⊂S(Ω) denote a family of finite-dimensional subspaces
parameterized by a parameter h tending to zero; in our setting, h is a measure of the grid
size. Let x= (v , y)T . Then for x∈ Γ, let f h(x) denote an approximation of f (x); if f (x)
is continuous, we can choose f h(x) to be the interpolant of f (x) in Sh|Γ; otherwise, we
can choose f h(x)∈Sh|Γ to be the L2(Γ) projection of f (x). We then define the affine space
Sh

f ={Uh∈Sh |Uh= f hon Γ} and the subspace Sh
0 ={φh∈Sh | φh=0 on Ω}⊂S0(Ω). Then,

the semi-discrete spatial discretization of (2.5) is defined by

given f h ∈Sh|Γ, seek Uh∈Sh
f satisfying

∫

Ω
Uh

τ ·φ
hdΩ+B(Uh,φh)=0 for all φh∈Sh

0 .
(4.2)

Using the same time discretization scheme as used in Section 3, we arrive at the fully
discrete system: for n=0,1,.. .,N,

∫

Ω

Un+1
h −Un

h

∆τ
φhdΩ+θB(Un+1

h ,φh)+(1−θ)B(Un
h ,φh)=0 for all φh ∈Sh

0. (4.3)

The connection between θ and the three types of time-stepping schemes is the same as
that in Section 3. In Section 5, we report the results of numerical experiments using all
three of the choices for θ.

4.1.1 Continuous piecewise-linear finite element spaces

An important step in the finite element method involves choosing the finite dimension-
al space Sh within which the test functions φh and solution Un

h are sought. The most
common choice Sh is the space of continuous piecewise-linear polynomials defined with
respect to a partition of the domain Ω into triangles. In this case, there will be three
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degrees of freedom associated with each triangle, with a basis function associated with
each of the vertices. A example partition is shown in Figure 1, where the vertices and
elements have been numbered; the grid size parameter can be chosen to be the length of
the side of the triangles. It is known that if Sh is chosen in this manner, the L2-norm of
the error in the finite element solution is of order h2 whereas the L2-norm of the error in
the derivatives of that solution is of order h; this latter norm is often referred to as the H1

semi-norm. The numerical experiments described in Section 5 illustrate these results.
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Figure 1: An example of two-dimensional grid and the grid numbering for continuous piecewise-linear finite
elements.

4.1.2 Continuous piecewise-quadratic finite element spaces

More accurate approximate solutions can be constructed by choosing higher degree poly-
nomials, e.g., by letting Sh be the space of continuous piecewise-quadratic polynomials.
These can be defined with respect to the same type of partition of the domain Ω as used
in Section 4.1.1. However, now one locates grid points not only at the three vertices of the
triangles, but also the three mid-side points. The additional mesh points are illustrated
in Figure 2 which should be compared to Figure 1. It is known that for this choice of
finite element space, the L2 error is now of order h3 and the H1-norm error is of order h2.
Thus, at the cost of a greater number of degrees of freedom, i.e., grid points, this choice
produces approximate solutions having greater accuracy, compared to using piecewise-
linear finite elements.

4.2 Implementation issues

We now consider some issues that arise in the implementation and testing of finite ele-
ment methods.
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Figure 2: An example of two-dimensional grid and the grid numbering for continuous piecewise-quadratic finite
elements.

4.2.1 Numerical integration

The integrals appearing in (4.3) are usually approximated using a quadrature rule that
must be chosen to be of sufficient accuracy so that the accuracy of the finite element
approximation is not compromised while also not causing an excessive computational
burden. Every integral is decomposed into a sum of integrals over the elements, e.g.,
over the triangles, and each of the latter is approximated using a quadrature rule which
takes the form of a sum of products of constant weights times the integrand evaluated
at several points in the triangle. The number of evaluations may be used as measure of
the cost of the rule so that one wants to choose a rule that uses as few points as possible.
Depending on the finite element space chosen, it is usually appropriate to use a 3 point
rule for the piecewise-linear case and a 7 point rule for the piecewise linear case for the
piecewise-quadratic case. A very accurate 13 point rule is always used to estimate the
error norms.

4.2.2 Linear System Solver

After all the integrals have been approximated, we are left with, at every time step, a
large linear algebraic system of the form B~Un =~Fn, where the components of ~U are the
values of the approximate solution at the grid points; note that the coefficient matrix B

does remains the same at all time levels. Then, we have that the approximation to the
solution at time τn is given by Un

h (x)=∑(~Un)kφk(x). In general, the matrix B is banded
so that a compact storage and solution scheme can be applied. In our computational
experiments, we use the subroutines with DGB prefix from the standard LAPACK linear
algebra package [1]. Larger problems than the ones we consider here can be handled
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efficiently using sparse matrix storage or iterative techniques.

4.2.3 Estimates for the convergence rates of FEM approximations

FEMs, of course, produce an approximation of the solutions of (2.3), or equivalently (2.5).
The analysis of FEMs allows one to estimate how the error in the approximation behaves
as a function of the grid sizes h and ∆τ, even before one implements the method into a
computer code. Knowing what is the expected error is a valuable tool in verifying the
correctness of the code and also allows one to choose grid sizes such that the error will
be smaller than a prescribed tolerance.

From the general theory of FEM for PDE, see [13], we may expect to have the follow-
ing convergence results for both forward Euler scheme ( θ = 0 in (4.3) ) and Backward
Euler scheme ( θ=1 in (4.3) ):

‖u(τn)−un
h‖0=O(hk+1+∆τ), (4.4)

Also for Crank-Nicolsen scheme ( θ=0.5 in (4.3) ),

‖u(τn)−un
h‖0=O(hk+1+∆τ2), (4.5)

where k is the degree of piecewise polynomial used for specific FEM. Table 1 provides
convergence rates, as predicted by analyses, with respect to the spatial gird size h and
temporal grid size ∆τ for the linear and quadratic FEMs.

Table 1: Summary of the general convergence rate of FEM schemes with respect to the spatial grid size h and
temporal step size ∆τ.

||u−uh||L2 |u−uh|H1

spatial linear FEM O(h2) O(h)
error quadratic FEM O(h3) O(h2)

temporal forward Euler O(∆τ) O(∆τ)
error backward Euler O(∆τ) O(∆τ)

Crank-Nicolson O(∆τ2) O(∆τ2)

5 Computational experiments

Unless otherwise noted, the parameters use for the numerical experiments are given in
Table 2.
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Table 2: Default model parameters used in the computational experiments.

Initial spot price S0=100.0

Initial variance v0=0.25

Mean reversion rate κ=1.0

Mean variance θ=0.09

Risk free interest rate r=0.05

Dividend yield rate q=0.01

Volatility of variance ξ=0.4

Correlation ρ=−0.7

Time to maturity T=1.0

Call strike Kc=110.0

Put strike Kp=90.0

5.1 Manufactured solution and code verification

Before applying our methodology for pricing an option, we first test the methodology
and the code that implements it in order to verify that we obtain the convergence rates
predicted by the analysis; see Table 1. To this end, we use the method of manufactured
solutions to define a problem for which the exact solution is known. Specifically, we use
the solution

Û(v,y,τ)=cos(πv)cos(πy)e−τ . (5.1)

This exact solution is smooth and satisfies inhomogeneous Dirichlet boundary condi-
tions. Note that this type of boundary condition is applied below when we apply our
methodology to option pricing. Also, note that to accommodate this exact solution, we
must add a right-hand side forcing function to (2.2) or equivalently (2.5); this function is
determined by substituting Û(v,y,τ) in to the left-hand side.

To simplify the problem, we choose the spatial domain [0,1]×[0,1] and temporal
interval [0,0.25], with spatial resolution h = ∆v = ∆y and temporal step size ∆τ. We
present results of computational experiments for the model problem having exact so-
lution Û(v,y,τ) for each of the three time discretization schemes discussed in Section 4.1
and for both the linear and quadratic FEMs. In the tables and figures, we provide the
L2(Ω) norms and H1(Ω) semi-norms of the error and the corresponding rates of conver-
gence for a sequence of grid sizes.

We begin with the continuous piecewise-linear finite element discretization discussed in
Section 4.1.1. Specifically, for the smooth exact solution Û(v,y,τ), we provide, respective-
ly, in Tables 3, 4, 5, and 6, results for the forward Euler (FE)(unstable and stable cases),
backward Euler (BE), and Crank-Nicolson(CN) time discretization schemes. From these
tables, we make the following observations. For smooth solutions such as Û(v,y,τ), using
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continuous piecewise-linear finite element approximations of the model (2.2) or equiva-
lently (2.5):

• The forward Euler time discretization scheme converges at the optimal rates, i.e.,
the L2 norm of errors are roughly of O(∆τ+h2) and the H1 semi-norm of errors are
roughly of O(h). However, the scheme is only conditionally stable, i.e., the L2 norm
of errors and the H1 semi-norm of the errors may blow up if the chosen ∆τ is not
sufficiently small.

• The backward Euler time discretization scheme is unconditionally stable and con-
verges at the optimal rates, i.e., the L2 norm of errors are roughly of O(∆τ+h2) and
the H1 semi-norm of errors are roughly of O(h).

• The Crank-Nicolson time discretization scheme is unconditionally stable and con-
verges at the optimal rates, i.e., the L2 norm of errors are roughly of O(∆τ2+h2)
and the H1 semi-norm of errors are roughly of O(h).

Table 3: Errors and convergence rates of continuous piecewise-linear approximations and the forward Euler

scheme with (2∆t)1/2=h for the smooth exact solution Û(v,y,τ).

||U−Uh||L2 |U−Uh|H1

h error rate error rate

2−2 5.0409E-002 − 6.6377E-001 −
2−3 1.3430E-002 − 3.3792E-001 −
2−4 6.3602E+014 − 3.8775E+016 −
2−5 1.0769E+108 − 1.3574E+110 −

Table 4: Errors and convergence rates of continuous piecewise-linear approximations and the forward Euler

scheme with (3∆t)1/2=h for the smooth exact solution Û(v,y,τ).

||U−Uh||L2 |U−Uh|H1

h error rate error rate

2−2 5.0267E-002 − 6.6349E-001 −
2−3 1.3392E-002 1.9082 3.3788E-001 0.9736

2−4 3.4164E-003 1.9708 1.6967E-001 0.9938

2−5 8.6030E-004 1.9896 8.4911E-002 0.9987

Next, we repeat the experiments, but now use the continuous piecewise-quadratic finite
element discretization discussed in Section 4.1.2; the results are given in Tables 7, 8, and
9; note that we omit results for unstable choices of the time step for the forward Euler
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Table 5: Errors and convergence rates of continuous piecewise-linear approximations and the backward Euler

scheme with ∆t1/2=h for the smooth exact solution Û(v,y,τ).

||U−Uh||L2 |U−Uh|H1

h error rate error rate

2−2 4.9320E-002 − 6.6179E-001 −
2−3 1.3105E-002 1.9121 3.3769E-001 0.9707

2−4 3.3379E-003 1.9731 1.6963E-001 0.9933

2−5 8.3961E-004 1.9911 8.4905E-002 0.9985

Table 6: Errors and convergence rates of continuous piecewise-linear approximations and the Crank-Nicolson

scheme with ∆t=h for the smooth exact solution Û(v,y,τ).

||U−Uh||L2 |U−Uh|H1

h error rate error rate

2−2 5.0844E-002 − 6.6563E-001 −
2−3 1.3384E-002 1.9256 3.3788E-001 0.9782

2−4 3.4083E-003 1.9734 1.6966E-001 0.9939

2−5 8.5779E-004 1.9904 8.4910E-002 0.9986

method. For all three time stepping schemes, we observe that the L2 norm and H1 semi-
norm of the errors converge at roughly the optimal rates, namely:

• Forward Euler: O(∆τ+h3) and O(h2), if ∆τ is small enough;

• Backward Euler: O(∆τ+h3) and O(h2);

• Crank-Nicolson: O(∆τ2+h3) and O(h2).

5.2 European vanilla option pricing

In this section, we present the results of applying the finite element method to European
option pricing. For this purpose, we use the higher-order accurate piecewise-quadratic
finite element basis functions and the Crank-Nicolson time discretization scheme so that
we expect good convergence behavior. The computational domain is set as v∈ [0.0,3.0]
and S∈ [25,400].

5.2.1 European vanilla call option pricing

In Table 10, we present the results of estimating the European vanilla call option price for
the case of a single fixed strike price Kc=110 and for several spatial resolutions and time
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Table 7: Errors and convergence rates of continuous piecewise-quadratic approximations and the forward Euler

scheme with (3∆t)1/3=h for the smooth exact solution Û(v,y,τ).

||U−Uh||L2 |U−Uh|H1

h error rate error rate

2−1 2.8554E-002 − 3.9581E-001 −
2−2 3.6179E-003 2.9805 1.0636E-001 1.8959

2−3 4.4290E-004 3.0300 2.6699E-002 1.9941

2−4 5.4576E-005 3.0206 6.6293E-003 2.0099

Table 8: Errors and convergence rates of continuous piecewise-quadratic approximations and the backward Euler

scheme with ∆t1/3=h for the smooth exact solution Û(v,y,τ).

||U−Uh||L2 |U−Uh|H1

h error rate error rate

2−1 2.6392E-002 − 3.8679E-001 −
2−2 3.5225E-003 2.9054 1.0622E-001 1.8645

2−3 4.3757E-004 3.0090 2.6709E-002 1.9917

2−4 5.4381E-005 3.0083 6.6308E-003 2.0101

Table 9: Errors and convergence rates of continuous piecewise-quadratic approximations and the Crank-Nicolson

scheme with ∆t1/3=h for the smooth exact solution Û(v,y,τ).

||U−Uh||L2 |U−Uh|H1

h error rate error rate

2−1 2.9630E-002 − 4.1040E-001 −
2−2 3.5908E-003 3.0447 1.0546E-001 1.9603

2−3 4.4203E-004 3.0221 2.6687E-002 1.9825

2−4 5.4500E-005 3.0198 6.6292E-003 2.0092

2−5 6.7711E-006 3.0088 1.6509E-003 2.0056

step sizes. By reducing the spatial and temporal resolutions, we see that the relatively
coarse 40×40 spatial resolution has already reduced the relative error to 10−4.

In Tables 11 and 12, we consider several strike prices and maturity times, respective-
ly. For both, the Crank-Nicolson piecewise-quadratic scheme is able to produce results
having relative error on the order of 10−4, using the same relatively coarse spatial and
time resolutions used for the last row of Table 10.
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Table 10: European call option results of the Crank-Nicolson piecewise-quadratic scheme for several spatial
resolutions and number of time step sizes.

Spatial Number of C-N Quadratic Closed-Form Relative
Resolution Time Step Results Results Error

4 41.5 10.453414 2.4542E-001
8 81.5 14.015178 1.1683E-002
16 161.5 13.79445 13.853335 4.2506E-003
32 321.5 13.866203 9.2887E-004
40 401.5 13.860441 5.1295E-004

Table 11: European call option results of the Crank-Nicolson piecewise-quadratic scheme for several strike
prices.

Strike C-N Quadratic Closed-Form Relative
Price Kc Results Results Error

105.0 15.942248 15.935692 4.1140E-004
110.0 13.860441 13.853335 5.1295E-004
115.0 11.958893 11.975267 1.3673E-003
130.0 7.4806089 7.4758044 6.4267E-004
150.0 3.6895155 3.6874922 5.4869E-004

Table 12: European call option results of the Crank-Nicolson piecewise-quadratic scheme for several maturity
times.

Maturity C-N Quadratic Closed-Form Relative
Time T Results Results Error

1/12 2.1961129 2.180542 7.1408E-003
1/4 5.8037129 5.7929266 1.8619E-003
1/2 9.3250843 9.3177983 7.8194E-004

1 13.860441 13.853335 5.1295E-004

5.2.2 European vanilla put option pricing

We now consider the problem of estimating the European vanilla put option price, to
be compared with benchmark closed-form results implemented from Rouah-Vainbergh’s
Excel spreadsheet, with an assumed dividend rate q = 0.0. In Table 13, we fix a single
strike price Kp = 90, and observe the result of refining the spatial and temporal resolu-
tion. We observe that the Crank-Nicolson piecewise-continuous FEM scheme converges
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at the predicted rate, with the relative error dropping to 10−4 using only a 40×40 spatial
resolution.

Table 13: European put option results of the Crank-Nicolson piecewise-quadratic scheme for several spatial
resolutions and number of time step sizes.

Spatial Temporary C-N Quadratic Rouah-Vainbergh Relative
Resolution Stepsize Results Result Error

4 41.5 7.8940148 1.9683E-001
8 81.5 10.326659 5.0669E-002

16 161.5 9.8072108 9.8286519 2.1815E-003
32 321.5 9.8338375 5.2760E-004
40 401.5 9.8272034 1.4738E-004

In Tables 14 and 15, we fix the spatial and temporal resolutions to be those of the
last row of Table 13 and consider several values of the strike price and maturity times,
respectively, resulting in relative errors of about 10−4.

Table 14: European put option results of the Crank-Nicolson piecewise-quadratic scheme for several strike prices.

Strike C-N Quadratic Rouah-Vainbergh Relative
Price Kp Results Results Error

95.0 11.821462 11.8021007 1.6405E-003
90.0 9.8272034 9.8286519 1.4738E-004
85.0 8.0546116 8.0667635 5.1086E-004
80.0 6.4855585 6.5075356 3.3772E-003
70.0 3.9624886 3.9702575 1.9568E-003
50.0 1.0586068 1.0635452 4.6433E-003

Table 15: European put option results of the Crank-Nicolson piecewise-quadratic scheme for several maturity
times.

Maturity C-N Quadratic Rouah-Vainbergh Relative
Time T Results Results Error

1/12 1.817491 1.8136404 1.6405E-003
1/4 4.7019877 4.6993203 5.1086E-004
1/2 7.2137863 7.2118815 2.6412E-004

1 9.8272034 9.8286519 1.4738E-004
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5.3 Feller condition

An important constraint associated with the Heston model is the so-called Feller con-
dition 2κθ > ξ2, which determines the validity of the numerical simulation. Generally
speaking, if this condition is not fulfilled, then the stochastic process for the volatility is
not strictly positive. In that case, simulation by Monte Carlo methods may result in a
negative path with a corresponding loss of accuracy. Thus, when judging the suitability
of a simulation, it is necessary to evaluate the Feller condition. The parameters chosen
for our simulations are specified in Table 2; for those parameters, the Feller condition is
satisfied.

We now examine what happens to our finite element methodology if the Feller con-
dition is violated. The results given in Table 16 for the value ξ = 0.7 which violates the
condition should be compared to Table 14 for which all other parameters are the same,
except that the Feller condition is satisfied. We see that our numerical scheme no longer
works well, which is to be expected given that violation of the Feller condition renders
the underlying stochastic process invalid as well.

Table 16: European put option results of the Crank-Nicolson piecewise-quadratic scheme for several strike prices
with the Feller condition violated.

Strike C-N Quadratic Rouah-Vainbergh
Price Kp Results Results

95.0 11.106257 13.2623670

90.0 9.3524657 11.6239384

85.0 7.8051573 9.9293965

80.0 6.4332938 8.2200478

70.0 4.1803506 4.9078148

50.0 1.3671004 0.6634102

6 Concluding remarks

The numerical results provided in Section 5 demonstrate that finite element methods are
a very effective means for solving option pricing problems, efficiently producing high-
accuracy approximations whose convergence behavior can be theoretically predicted. In
particular, we make the following observations from the experiments. Among the dif-
ferent schemes tested, the combination of continuous piecewise-quadratic finite element
spatial approximations and the Crank-Nicolson temporal discretization scheme is found
to be especially effective. For example, for European vanilla option pricing, this combi-
nation results, for wide-ranging values of the strike price and maturity time, in a relative
error of order 10−4 using only a coarse 40×40 spatial resolution.
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The results presented in this paper demonstrate that finite element methods deserve
consideration by financial analysts as a powerful alternative to standard techniques, e.g.,
finite difference methods. In future work, we will further exploit other advantageous fea-
tures of finite element methods by considering more complicated geometries and bound-
ary conditions and by using local mesh refinements at locations where greater accuracy
is needed, resulting in a desired accuracy level with greatly reduced computational com-
plexity.
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