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THE DUAL VARIABLE METHOD FOR THE SOLUTION OF
COMPRESSIBLE FLUID FLOW PROBLEMS*

J. BURKARDT, C. HALL" AND T. PORSCHING?

Abstract. Discretizations of the Navier-Stokes equations describing a compressible flow problem can

be viewed as systems defining flows on an associated network. This observation provides a means of
economizing on their numerical solution.
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1. Introduction. The dual variable method [1] is a means of economizing on the
cost of solving the linear or nonlinear systems that arise in certain discretizations of
the Navier-Stokes equations. A matrix transformation is introduced which significantly
reduces the size of the system which must be solved. For the finite difference discretiz-
ation of the two-dimensional, incompressible Navier-Stokes equations studied in [ 1 ],
[2] this reduction amounts to a factor of 3. A key element of the implementation of
this transformation is the construction of a cycle vector basis for an associated network.

In this paper we extend the dual variable method to compressible flow problems.
This again involves the use of network theory.

The system of partial differential equations in two spatial dimensions (x, y) and
time describing the compressible (barotropic) flow problem of concern is:

o_+ v. (q) o,(1)
Ot

(2) pOq+P(q’V)q+VPot -/x[V2q+V(V" q)] =F
where q (u, v) is the velocity vector, p is pressure,/x is viscosity, F is a vector that
includes elevation and wall friction effects, and the density p is determined by a state
equation

(3) p=p(p).

Equation (1) is referred to as the continuity equation and equation (2) as the momentum
equation.

We assume that appropriate boundary conditions and an initial condition are
specified so that (1)-(3) have a unique solution in a flow region f. Typical boundary
conditions are the specification of the pressure or velocity on each segment of the
boundary f.

In 2, we present details of a discretization of (1)-(3). The matrix transformations
involved in the dual variable method are given in 3, and a network or physical
interpretation of the dual variable transformation is given in 4. Section 5 contains
numerical results.
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2. The finite difference equations. There are several consistent finite difference
discretizations that are available to approximate (1)-(2). We choose the following
scheme based on the MAC placement of variables [3] in which a pressure is associated
with the center of a control volume or mesh box and the component of velocity normal
to a control volume side is associated with the center of that side (Fig. 1). Let U, V,
P be the finite difference approximations to the mass velocities pu, pv, and pressure
p respectively. A superscript m designates the mth time level.

u(w)

V(N)
X

e(c)
U(E) l y

X
V(S)

FIG. 1. A control volume with MAC placement of variables and compass designations.

In the continuity equation, we expand the time derivative via the chain rule, and
use backward differencing and centered differencing on the temporal and divergence
terms respectively. The discrete equation is then of the form:

U+1 um+lw V+1 Vsm+l(4)
ZXx

+ y + (aP) (P’+ P’
At

O.

The momentum equations are discretized as in [1], [2] using upwind differences
for the convective terms (q. V)q, centered differences for the pressure gradient Vp and
the viscous terms [V:q/ 1/2V (V q)], and backward differences for the temporal derivative
aq/t. The finite difference system resulting from (4) and the discrete momentum
equations can be written as (N+ L) equations

(5) Avm+I+wm+l
p --0,

(6) Qmvm+l AtATp’+l b’.
Here the N x 1 vector pro/l, and L x 1 vector Wm/l contain the unknown pressures
and velocities respectively, V"+1= DWre+l, D a diagonal matrix with [D]ii Ax if
corresponds to N or S and [D1]. Ay if corresponds to E or W (note that Ax

(Ay) may vary from one column (row) of mesh boxes to the next),

(7) wm/l Qp,-+le ----At -S

where Q21 is the diagonal matrix

(8)
At- \PP/c

(9) [S] At cPc +boundary mass velocities.

The N x L matrix A contains O’s, l’s and -l’s and can be interpreted as an
incidence matrix of an associated network as described in [1], [4], [5]. The LxL
matrix Qm contains the finite difference coefficients of the discrete convective and
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viscous terms in the momentum equations as well as the temporal term. The L x 1
vector b contains boundary data as well as contributions of the body force and friction
terms.

If we let Zm+l-- IVm+l,W+1] and

(10) B=(AIIN),
where IN denotes the identity of order N, then the discrete continuity equation is of
the generic form

(11) BZm+l --0.

We may think of the vector W7/ as "pseudo mass flows." Equations (6) and (7) then
combine to give

m+l At pm+ +
0 Q22 Wp J IN -Q22Sm

or

(12) [QmOlzm+l--AtBTpm+l+km.0 Q::

Thus, it is required to solve the 2N+ L equations (11)-(12) for Zm/l and P"/. In the
next section we show how to obtain an equivalent system from which the pressure
vector P"+ has been eliminated.

3. The dual variable transformation. The dual variable method has been used
successfully in the treatment of certain finite difference and finite element discretizations
of the equations of incompressible flow [1], [2]. With regard to the current system
(11), (12) of compressible flow equations, the method consists of the following steps.

Step 1. Find a basis [C1, C2,’’’,Cd] for the null space of B and form the
(L+ N)x d matrix C with Ci as its ith column. Then

(13)

and

(14)

for some d x 1 vector Xm+l

Step 2. Substitute Z"+

(5)

BC =0

Zm+l CXm+l

as defined by (14) into (12) to obtain

[Qm 0 ]cxm+’=AtBTpm+l+km.0 Q22

Step 3. Multiply (15) by Car and use the orthogonality of Bar and C ar to obtain
the d x d system

(16) cT[Qm O]cxm+l--CTkm.0 Q

The matrix transformation in (16) is called the dual variable transformation and (16)
is called the dual variable system.

Step 4. Solve (16) for Xm+l and recover the velocities Vm+ and pseudo velocities
wm+l from (14)p
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Step 5. Recover the pressures from the pseudo velocities using (7), noting that
Q22 is diagonal.

The inherent advantage of the dual variable method is the reduction in the size
(L+ N to d) of the system to be solved at each time step. Efficient algorithms for
computing well conditioned sparse bases for null spaces have been studied by Berry,
Heath, Kaneko, Lawo, Plemmons and Ward [6]. This latter approach involves a matrix
factorization. As we now show, C can be constructed without the need to solve any
system of equations.

It is clear that the N x (N+ L) matrix in (10) is of rank N. We have then that the
dimension, d, of the null space of B is L, the number of columns minus the rank.
Moreover, a basis for this null space is immediately provided by the columns of the
matrix C defined as follows,

Substituting (17) into (16), we obtain the L x L system

(18) Q, + ATQ22A)Xm+ b’ + ArQ22Sm

as the dual variable system. But by (14) and (17), Vm+= X"+, and

(19) Wm+lP -AXm+l

Hence, the unknown velocities actually satisfy (18) and the pseudo flows that are
needed to recover the pressures via (7) are given by (19).

4. A network interpretation. As in the case of the discrete divergence matrix A,
the augmented matrix B can also be interpreted as the incidence matrix of a directed
network T. The geometric realization G(T) is constructed as follows:

The nodes of G(T) are the mesh box (control volume) centers and the interior
links connect nodes of contiguous mesh boxes. The boundary links of G(T) are links
normal to segments of the boundary of the flow region where a pressure is specified.
All links are oriented in the positive sense of the x or y axis, respectively. So far this
planar network is precisely the network used in the dual variable formulation of
incompressible flow problems [1], [4], [5], and A is its incidence matrix. However,
we now add links which emanate from each mesh box center (node) and terminate at
a fictitious node. These links are all directed toward this fictitious node. The N
unknowns [W/]i, 1, 2,. N in (7) are then thought of as pseudo-flows on these
latter links just as the L unknowns [vm/l]j,j 1, , L are flows on the links connecting
mesh box centers. The N x (N+ L) matrix B is the node-link incidence matrix for the
network so constructed. That is,

+l

[n]kl -1
0

if link is directed away from node k,
if link is directed toward node k,
otherwise.

Equation (11) then states that at each node the total "flow" is in balance. In Fig. 2
there are N= 14 unknown pressures (also 14 unknown pseudo flows) and L=22
unknown velocities. At each of the N 14 nodes the sum of the flows and pseudo
flows is forced to be zero.
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FIG. 2. Flow region decomposed into 14 flow cells showing associated network of N 14 nodes and
N+ L 36 links.

The 14 x 22 matrix A is given by
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and the matrix B (AII14) is the 14 x 36 incidence matrix for the network shown in
Fig. 2.

As defined by (17) the matrix C may be interpreted as a fundamental cycle basis
(cf. [7]). Each column of C is a cycle vector for the network T. For example, for the
network of Fig. 2, the sixth column is

1, =6

-1, 28
(20) [Co16(C)],

1, i= 29
0

(link 6),
(L+ start node for link 6),
(L+ end node for link 6),

otherwise.

In general, if link j is not a boundary link and is incident from node to node k, then

1, i=j,k+L,

[Colj(C)], -1, i=l+L,
0 otherwise.

If link j is a boundary link, then this definition yields only two nonzero entries in the
jth column of C since one of the nodes or k does not exist.
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Finally, we can conveniently use the network concept to determine the sparsity
of the dual variable system (16). We observe that

(21 ATQ22A)jr (Q22) llAir (Q22)kkAkr
where j, k and are related as in Fig. 3. It follows that the right side of (21) is nonzero
only when r corresponds to cycles containing those interior and boundary links that
are incident to or from nodes k and I. Consequently, the jth equation of (18) is coupled
only to itself and the eight other equations corresponding to the cycles containing the
links shown in Fig. 4. That is, dual variable j associated with cycle j is coupled to at
most 8 other dual variables associated with the cycles (or equivalently links) illustrated.
Hence the coefficient matrix in (19) has at most 9 nonzero entries in each row, and,
with suitable ordering of the links, may be solved as a banded matrix.

+L k+L

FIG. 3. The jth cycle associated with link j. The fictitious node is labeled o.

0 ( ) 0

FIG. 4. Stencil for the dual variable system (19). Each link corresponds to a cycle and a dual variable.

The potential computational advantage of the dual variable method lies in the
reduction of the size of the discrete Navier-Stokes system from N+ L to L equations
and unknowns. Although the sparsity of the dual variable system (18) is less than that
of the primitive system (5)-(6), the decrease is slight. The maximum number of nonzero
couplings per equation increases from 7 in system (5)-(6) to 9 in system (18). Since
any implementation of the method depends strongly on such imponderables as solution
algorithm, data structure, computer architecture, etc., it is not possible to state unequivo-
cally that the dual variable method will always produce dramatic reductions in running
times. However, it is quite natural to expect that, "all other things being equal," the
slight increase in the complexity of the dual variable system is more than offset by its
decrease in size. Moreover, apart from any computational advantage the method may
have, it provides additional insight into the physics of compressible flow through a
novel interpretation of that phenomenon in terms of network concepts.

5. Example: aircraft cavity. Aircraft that are used for observation sometimes have
cavities or compartments that open directly to the atmosphere. Figure 5 illustrates a
two-dimensional model of such a cavity with dimensions as indicated. The blockage
in the cavity simulates instrumentation used during the observations. The spoiler ahead
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13.75’

FIG. 5. Flow region for aircraft cavity.

of the cavity opening is used to divert the air flow so as to stabilize the flow in front
of the instrumentation. We indicate a solid spoiler, although a porous spoiler may also
be used. We assume the aircraft is flying at mach 0.75 and an altitude of 37,000 feet.
The ambient pressure of 2.7 psi is specified at the downstream flow region boundary,
and upstream the inlet velocity profile is given by:

u=750{(Y/0.417)1/7, 0--< y--< 0.417,
1, y_-> 0.417,

where y is the distance from the aircraft skin. All walls are assumed to be no-slip walls.
The flow region was subdivided into N 1167 flow cells and there are N 1167

unknown pressures. The number of unknown velocities is L= 2206. The primitive
system (5)-(6) is of dimension L+ N 3373 while the dual variable system (19) is of
dimension L 2206. Note that the former has at most 7 nonzero elements per row,
while the latter has at most 9 nonzero elements per row.

Figure 6 illustrates the streamlines in and around the cavity door. Figure 6a shows
two attached vortices downstream of the spoiler or fence. These vortices separate in
Fig. 6b and the downstream vortex is shed from the aircraft skin in Figs. 6c and 6d.

(a) (b)

(c) (d)

FIG. 6. (a) Streamlines at times .005 sec; (b) at time .010 sec; (c) at time .015 sec; (d) at time .020 sec.
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