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1 Reduced-order modeling

Solutions of (nonlinear) complex systems are expensive with respect to both storage
and CPU costs. As a result, it is difficult if not impossible to deal with a number of
situations such as: continuation or homotopy methods for computing state solutions;
parametric studies of state solutions; optimization and control problems (multiple state
solutions); and feedback control settings (real-time state solutions). Not surprisingly, a
lot of attention has been paid to reducing the costs of the nonlinear state solutions by using
reduced-order models for the state; these are low-dimensional approximations to the state.
Reduced-order modeling has been and remains a very active research direction in many
seemingly disparate fields. We will focus on three approaches to reduced-order modeling:
reduced basis methods; proper orthogonal decomposition (POD); andcentroidal Voronoi
tessellations (CVT). Before describing the three approaches, we first discuss what we ex-
actly mean by reduced-ordering modeling and make some general comments that apply to
all reduced-order models. For a state simulation, a reduced-order method would proceed
as follows. One first chooses a reduced basis ui, i = 1, . . . , n, where n is hopefully very
small compared to the usual number of functions used in a finite element approximation
or the number of grid points used in a finite difference approximation. Next, one seeks
an approximation ũ to the state of the form ũ =

∑n

i=1
ciui ∈ V ≡ span{u1, . . . ,un}.

Then, one determines the coefficients ci, i = 1, . . . , n, by solving the state equations in
the set V , e.g., one could find a Galerkin solution of the state equations in a standard
way, using V for the space of approximations. The cost of such a computation would be
very small if n is small (ignoring the cost of the off-line determination of the reduced basis
{u1, . . . ,un}). In control or optimization settings, one is faced with multiple state solves
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or real-time state solves. If one approximates the state in the reduced, low-dimensional
set V , then state solutions will be relatively very cheap. In an adjoint or sensitivity
equation-based optimization method, one could also employ the adjoint equations for the
low-dimensional discrete state equations; thus, if n is small, the cost of each iteration of
the optimizer would be very small relative to that using full, high-fidelity state solutions.
In a feedback control setting, the approximate state equations in the low-dimensional
space could possibly be solved in real time. Does reduced-order modeling work? It is
clear that reduced-order methods should work in an interpolatory setting. In a simulation
setting, if the state can be approximated well in the reduced basis V , then one should
expect that things will work well. If the optimal solution and the path to the optimal
solution can be well approximated in the reduced basis V , then one should expect that
things will work well in an optimal control or design setting. If all the states determined
by the feedback process can be well approximated in the reduced basis V , then again one
should expect that things will work well in a feedback control setting.Thus, the reduced
basis V should be chosen so that it contains all the features, e.g., the dynamics, of the
states encountered during the simulation or the control process. This, of course, requires
some intuition about the states to be simulated or about where in parameter space the
optimal set of parameters are located.

What happens in an extrapolatory setting is not so clear. Most reduced-order control
computations have been done in an interpolatory regime. It is obvious that if the reduced
set V does not contain a good approximation to the solution one is trying to obtain, then
one cannot hope to successfully determine that solution.

1.1 Common features shared by reduced-order methods

All reduced bases require the solution of high-fidelity and therefore very expensive dis-
crete state and/or sensitivity equations and/or adjoint equations. The idea is that these
expensive calculations can be done offline before a state simulation or the optimization
of the design parameters or feedback control is attempted. Moreover, one hopes that
a single reduced basis can be used for several state simulations or in several design or
control settings.

All reduced-basis sets are global in nature, i.e., the support of the basis functions is
global. Therefore, solving the state or sensitivity or adjoint equations with respect to
any of the reduced bases requires the solution of dense linear and nonlinear systems.
Thus, unless the dimension of a reduced basis is “small,” it cannot be used without some
further processing. Unfortunately, in order to obtain meaningful approximations, it is
often the case that the use of reduced bases requires the use of a relatively large number
of basis functions. However, it is often the case that reduced bases contain “redundant”
information in the sense that the dynamics of the state should be well approximated
by a set of functions of much lower dimension. The question then arises: how can one
extract a reduced basis of smaller dimension that contains all the essential information
of a reduced basis of larger dimension? This is where POD and CVT come in and, in
this sense, they are reduced-reduced basis methods.

Unfortunately, there is no adequate theoretical foundation for reduced-order methods,
even in state simulation settings. However, it is certain that without an inexpensive
method for reducing the cost of state computations, it is unlikely that the solution of
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three-dimensional optimization and control problems involving complex systems, e.g., the
Navier-Stokes system, will become routine anytime soon. Thus, it is also certainly true
that these methods deserve more study from the computational and theoretical points of
view.

2 Reduced-basis methods

All reduced-order methods are reduced basis methods. However, there is a class of
methods that use Lagrange bases, Hermite bases, Taylor bases, and snapshot bases (or
more precisely, snapshot sets) that have come to be know as reduced-basis methods.

Lagrange bases consist of state solutions corresponding to several different values of the
parameters (Reynolds number, design parameters, etc.) These solutions are obtained by
standard (and expensive) techniques such as finite element or finite volume methods. For
example, if one has the design parameters {αj}Jj=1, one obtains n approximate state so-
lutions for n sets of parameter values to form the n-dimensional Lagrange reduced basis.
Hermite bases consist of the state variables and the first derivatives of the state variables
with respect to parameters (the sensitivities) determined for different values of the pa-
rameters. The state and sensitivity approximations are obtained through standard (and
expensive) techniques such as finite element or finite volume methods. Thus, again, if
one has the design parameters {αj}Jj=1, one chooses M sets of parameter values and then
one obtains the corresponding M approximate state solutions and the corresponding MJ

sensitivity derivative approximations. The n = M(J + 1) state and sensitivity approxi-
mations form the Hermite reduced basis of dimension n. Taylor bases consist of the state
and derivatives of the state with respect to parameters (sensitivities and higher-order
sensitivities) determined for a fixed set of design parameters. The state and derivative
approximations are obtained through standard (and expensive) techniques such as finite
element or finite volume methods. The Taylor basis may be somewhat complicated to
program due to the complexity of the partial differential equations that determine the
higher-order sensitivities. In addition, the number of higher-order derivatives grows very
rapidly with the number of design parameters, e.g., if one has 10 design parameters, there
are 55 different second derivative sensitivities. Thus, the dimension of the Taylor reduced
basis grows quickly with the number of parameters and the number of derivatives used.

See [13, 20, 21] for more details and for examples of the use of reduced-basis methods for
simulation and optimization problems.

2.1 Snapshot sets

The state of a complex system is determined by parameters that appear in the specifica-
tion of a mathematical model for the system. Of course, the state of a complex system
also depends on the independent variables appearing in the model. Snapshot sets consist
of state solutions corresponding to several parameter values and/or evaluated at several
values of one or more of the dependent variables, e.g., steady-state solutions correspond-
ing to several sets of design parameters or a time-dependent state solution for a fixed set
of design parameter values evaluated at several time instants during the evolution process
or several state solutions corresponding to different sets of parameter values evaluated at
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several time instants during the evolution process. Snapshot sets are often determined
by solving the full, very large-dimensional discretized system obtained by, e.g., a finite
volume or finite element discretization. Experimental data have also been used to de-
termine a snapshot set. Snapshot sets often contain “redundant” information; therefore,
snapshot sets must usually be post-processed to remove as much of the redundancy as
possible before they can be used for reduced-order modeling. POD and CVT may be
viewed as simply different ways to post-process snapshot sets.

Since snapshot sets are the underpinning for POD and CVT, we briefly discuss how they
are generated in practice. At this time, the generation of snapshot sets is an art and
not a science; in fact, it is a rather primitive art. The generation of snapshot sets is an
exercise in the design of experiments, e.g., for stationary systems, how does one choose
the sets of parameters at which the state (and sensitivities) are to be calculated (using
expensive, high-fidelity computations) in order to generate the snapshot set? Clearly,
some a priori knowledge about the types of states to be simulated or optimized using the
reduced-order model is very useful in this regard. The large body of statistics literature
on the design of experiments has not been used in a systematic manner

For time-dependent systems, many (ad hoc) measures have been invoked in the hope
that they will lead to good snapshot sets. Time-dependent parameters (e.g., in boundary
conditions) are used to generate states that are “rich” in transients, even if the state of
interest depends only on time-independent parameters. In order to generate even “richer”
dynamics, impulsive forcing is commonly used, e.g., starting the evolution impulsively
with different strength impulses and introducing impulses in the middle of a simulation.
In the future, a great deal of effort needs to be directed towards developing and justifying
methodologies for generating good snapshot sets. After all, a POD or CVT basis is only
as good as the snapshot set used to generate it.

3 Proper orthogonal decompositions (POD)

Given n snapshots x̃j ∈ R
N ,j = 1, . . . , n, set

xj = x̃j − µ̃ , j = 1 . . . , n, where µ̃ =
1

n

n∑

j=1

x̃j.

The set {xj}nj=1 are the modified snapshots. Let d ≤ n. Then, the POD basis {φi}
d
i=1 of

cardinality d is found by successively solving, for i = 1, . . . , d, the problem

λi = max
|φ

i
|=1

1

n

n∑

j=1

|φTi xj|
2 and φTi φ` = 0 for ` ≤ i− 1.

If n ≥ N , this decomposition is known as the direct method. If n < N , it is known as
the snapshot method; we will only consider the latter case.

Let A denote the N × n snapshot matrix whose columns are the modified snapshots xj,
i.e.,

A =
(
x1 , x2 , . . . , xn

)
=

(
x̃1 − µ̃ , x̃2 − µ̃ , . . . , x̃n − µ̃

)
.
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Let K denote the the n × n (normalized) correlation matrix for the modified snapshots,
i.e.,

Kj` =
1

n
xTj x` or K =

1

n
ATA.

Let χi with |χi| = 1 denote the eigenvector corresponding to the i-th largest eigenvalue
λi of K. Then, the POD basis is given by φi = 1√

nλi

Aχi. The POD basis is orthonormal,

i.e., φTi φj = 0 for i 6= j and φTi φi = 1. POD is closely related to the statistical methods
known as Karhunen-Loève analysis or the method of empirical orthogonal eigenfunctions
or principal component analysis. POD is also closely related to the singular value decom-
position (SVD) of the modified snapshot matrix A. Let A = UΣV T denote the SVD of
A; then, σ2

i = nλi for i = 1, . . . , n, where σi = the i-th singular value of A and λi = the
i-th largest eigenvalue ofK = 1

n
ATA. The POD basis vectors are the first n left singular

vectors of the snapshot matrix A, i.e., φi = ui for i = 1, . . . , n.

The POD basis is optimal in the following sense. Let {ψi}
n
i=1 denote an arbitrary or-

thonormal basis for the span of the modified snapshot set {xj}nj=1. Let Pψ,dxj denote
the projection of the modified snapshot xj onto the d-dimensional subspace spanned by
{ψi}

d
i=1. Clearly we have, for each j = 1, . . . , n,

Pψ,dxj =

d∑

i=1

cjiψi where cji = ψT
i xj for i = 1, . . . , d.

Let the error be defined by

E =
n∑

j=1

|xj − Pψ,dxj|
2.

Then, the minimum error is obtained when ψi = φi for i = 1, . . . , d, i.e., when the ψi’s
are the POD basis vectors. The connection between POD and SVD makes it easy to
show that the error of the d-dimensional POD subspace is given by

Epod =
n∑

j=d+1

σ2
j = n

n∑

j=d+1

λj
n = number of snapshots
d = dimension of the POD subspace.

If one wishes for the relative error to be less than a prescribed tolerance δ, i.e., if one
wants Epod ≤ δ

∑n

j=1
|xj|2, one should

choose d to be the
smallest integer such that

d∑

j=1

σ2
j

/ n∑

j=1

σ2
j =

d∑

j=1

λj

/ n∑

j=1

λj ≥ γ = 1 − δ.

There have also been several variations introduced in attempts to “improve” POD. For
details on POD and its variants and its use in flow simulation and control problems, see,
e.g., [1, 2, 3, 5, 6, 10, 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28].

4 Centroidal Voronoi tessellations (CVT)

Given a discrete set of modified snapshots W = {xj}nj=1 belonging to R
N , a set {Vi}ki=1

is a tessellation of W if {Vi}ki=1 is a subdivision of W into disjoint, covering subsets, i.e.,
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Vi ⊂ W for i = 1, . . . , k, Vi ∩ Vj = ∅ for i 6= j, and ∪ki=1Vi = W . Given a set of points
{zi}ki=1belonging to R

N (but not necessarily to W ) the Voronoi region corresponding to
the point zi is defined by

V̂i = {x ∈ W : |x− zi| ≤ |x − zj| for j = 1, . . . , k, j 6= i,},

where equality holds only for i < j. The set {V̂i}ki=1 is called a Voronoi tessellation or
Voronoi diagram of W corresponding to the set of points {zi}ki=1. The points in the set

{zi}ki=1 are called the generators of the Voronoi diagram {V̂i}ki=1 ofW . Given a density
function ρ(y) ≥ 0, defined for y ∈ W , the mass centroid z∗ of any subset V ⊂ W is
defined by ∑

y∈V
ρ(y)|y − z∗|2 = inf

z∈V ∗

∑

y∈V
ρ(y)|y − z|2,

where the sums extend over the points belonging to V . The set V ∗ can be taken to be
V or it can be an even larger set such as all of R

N . In case V ∗ = R
N , z∗ is the ordinary

mean

z∗ =
∑

y∈V
ρ(y)y

/ ∑

y∈V
ρ(y).

In this case, z∗ 6∈ W in general.

If zi = z∗i for i = 1, . . . , k, where

{zi}ki=1 is the set of generating points of the Voronoi tessellation {V̂i}ki=1

{z∗i }
k
i=1 is the set of mass centroids of the Voronoi regions {V̂i}ki=1,

we refer to the Voronoi tessellation as being a Centroidal Voronoi tessellation (CVT). The
concept of CVT’s can be extended to more general sets, including regions in Euclidean
space, and to more general metrics. CVT’s are useful in a variety of applications, includ-
ing optimal quadrature rules, covolume and finite difference methods for PDE’s, optimal
representation, quantization, and clustering, cell division, data compression, optimal dis-
tribution of resources, territorial behavior of animals, optimal placement of sensors and
actuators, grid generation in 2D, 3D, and on surfaces, mesh free methods, clustering of
gene expression data, image segmentation. See, e.g., [7] for details.

CVT’s are optimal in the following sense. Given the discrete set of points W = {xj}nj=1

belonging to R
N , we define the error of a tessellation {Vi}ki=1 of W and a set of points{zi}ki=1

belonging to R
N by

F
(
(zi, Vi), i = 1, . . . , k

)
=

k∑

i=1

∑

y∈Vi

ρ(y)|y − zi|
2.

Then, it can be shown that a necessary condition for the error Fto be minimized is that
the pair {zi, Vi}ki=1 form a CVT of W .

CVT’s of discrete sets are closely related to optimal k-means clusters so that Voronoi
regions and centroids can be referred to as clusters and cluster centers, respectively. The
error F is also often referred to as the variance, cost, distortion error, or mean square
error.
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There are several algorithms known for constructing Centroidal Voronoi tessellations of
a given set. Lloyd’s method is a deterministic algorithm which is the obvious iteration
between computing Voronoi diagrams and mass centroids, i.e., a given set of generators is
replaced in an iterative process by the mass centroids of the Voronoi regions corresponding
to those generators. MacQueen’s method is a very elegant probabilistic algorithm which
divides sampling points into k sets or clusters by taking means of clusters. We have
developed a new probabilistic method which may be viewed as a generalization of both
the MacQueen and Lloyd methods and is amenable to efficient parallelization. See [14]
for details.

4.1 CVT’s and model reduction

CVT’s have been successfully used in data compression; one particular application was
to image reconstruction. Therefore, it is natural to examine CVT’s in another data
compression setting, namely reduced-order modeling. The idea, just as it is in the Pod
setting, is to extract, from a given set of (modified) snapshots {xj}nj=1 of vectors in R

N , a
smaller set of vectors also belonging to R

N . In the POD setting, the reduced set of vectors
was the d-dimensional set of POD vectors {φj}

d
i=1. In the CVT setting, the reduced set of

vectors is the k-dimensional set of vectors {zk}ki=1 that are the generators of a centroidal
Voronoi tessellation of the set of modified snapshots. See [4, 8, 9] for details. Just as
POD produced an optimal reduced basis in the sense that the error E is minimized, CVT
produces an optimal reduced basis in the sense that the error F is minimized. One can, in
principle, determine the dimension d of an effective POD basis, e.g., using the eigenvalues
of the correlation matrix. Similarly, one can, in principle, determine the dimension k of
an effective CVT basis by examining the (computable) error F(·).

A natural question is: why should one use CVT instead of POD? Although justifications
have to be substantiated through analyses and extensive numerical experiments, heuristi-
cally, one can make some arguments. CVT naturally introduces the concept of clustering
into the construction of the reduced basis. CVT is “cheaper” than POD; POD involves
the solution of an n×n eigenproblem, where n is the number of snapshots; CVT requires
no eigenproblem solution. CVT can handle many more snapshots. Adaptively changing
the reduced basis is much less expensive with CVT.

Actually, one does not have to choose between POD and CVT. They may in fact be
combined to define hybrid methods which take advantage of the best features of both
methods. See [9].

4.2 Computational experiments using CVTs for model reduc-

tion

Several computational examples of the use of CVTs for model reduction in flow simulation
problems are given in [4]. Here, we provide some of the results given in that paper. The
setting is the Navier-Stokes system in a box with inflow at the lower left-hand corner
and outflow at upper right-hand corner. Snapshots (500 of them) were generated by
sampling a finite element approximation at 500 evenly-spaced times in the interval [0, 5].
The inflow velocity was impulsively changed at t = 0 and t = 2.5. CVT reduced bases
were determined from the 500 (modified) snapshots. See [4] for details.
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We tested the accuracy resulting from the use of CVT reduced basis for flow simulations
with the two inflow conditions depicted in Figure 1. Figure 2 provides plots of the L2

error vs. time for the CVT reduced-basis solutions for three different cardinalities for the
bases. The results of Figure 2 indicate that, at least for this example, CVT-based model
reduction is effective. Of course, much more computational experimentation, including
comparison with POD-based results, is necessary in order to document the efficacy of
CVT-based reduced-order modeling. These experiments are the focus of our current
efforts in CVT-based model reduction.
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Figure 1: Two velocity boundary conditions used in testing CVT bases.
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Figure 2: L2 errors vs. time in CVT reduced-basis solution vs. time; left: case 1; right:
case 2.
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20, 1996.

[11] P. Holmes, J. Lumley, and G. Berkooz,Turbulence, Coherent Structures, Dy-
namical Systems and Symmetry, Cambridge University Press, Cambridge, 1996.

[12] P. Holmes, J. Lumley, G. Berkooz, J. Mattingly, and R. Wittenberg,
Low-dimensional models of coherent structures in turbulence, Phys. Rep. 287, 1997.

[13] K. Ito and S. Ravindran, A reduced order method for simulation and control of
fluid flows, J. Comput. Phys. 143 1998.

[14] L. Ju, Q. Du and M. Gunzburger, Probabilistic methods for centroidal Voronoi
tessellations and their parallel implementations, J. Parallel Comput. 28, 2002.

[15] K. Kunisch and S. Volkwein, Control of Burger’s equation by a reduced order
approach using proper orthogonal decomposition, JOTA 102, 1999.

[16] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition meth-
ods for parabolic problems, Spezialforschungsbereich F003 Optimierung und Kon-
trolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht Nr. 153,
Graz, 1999.

[17] D. Lucia, P. King, and P. Beran, Domain decomposition for reduced order
modeling of a flow with moving shocks, AIAA J., to appear.

[18] J. Lumley, Stochastic Tools in Turbulence, Academic, New York, 1971.

37



NA03 Dundee 2003

[19] H. Park and M. Lee, Reduction in modes in viscous laminar flows, Comput. &
Fluids, to appear.

[20] A. Noor, Recent advances in reduction methods for nonlinear problems, Comput.
& Struc. 13, 1981, 31-44.

[21] J. Peterson, The reduced basis method for incompressible flow calculations, SIAM
J. Sci. Stat. Comput. 10, 1989.

[22] S. Ravindran, A reduced order approach for optimal control of fluids using proper
orthogonal decomposition, Int. J. Numer. Meth. Fluids 34 2000.

[23] S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD,J. Sci.
Comput. 15 2000.
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