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A MULTISCALE IMPLEMENTATION BASED ON ADAPTIVE
MESH REFINEMENT FOR THE NONLOCAL

PERIDYNAMICS MODEL IN ONE DIMENSION∗

FEIFEI XU† , MAX GUNZBURGER† , JOHN BURKARDT† , AND QIANG DU‡

Abstract. Peridynamics models for solid mechanics feature a horizon parameter δ that specifies
the maximum extent of nonlocal interactions. In this paper, a multiscale implementation of peridy-
namics models is proposed. In regions in which the displacement field is smooth, grid sizes are large
relative to δ, leading to a local behavior of the models, whereas in regions containing defects, e.g.,
cracks, δ is larger than the grid size. Discontinuous (continuous) Galerkin finite element discretiza-
tions are used in regions where defects do (do not) occur. Moreover, in regions where no defects
occur, the multiscale implementation seamlessly transitions to the use of a standard finite element
discretization of a corresponding PDE model. Here, we demonstrate the multiscale implementation in
a simple one-dimensional setting. An adaptive strategy is incorporated to detect discontinuities and
effect grid refinement, resulting in a highly accurate and efficient implementation of peridynamics.
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1. Introduction. The nucleation and propagation of defects (e.g., cracks) in
solids that have suffered damage in the form of discontinuities in the displacement field
cannot be modeled by classical approaches such as the equations of linear elasticity.
As a result, there have been many efforts, too numerous to list here, directed at
the development of models that can handle defects in solids. Many of these efforts
involve the development of different (often nonlinear) systems of partial differential
equations (PDEs). On the other hand, peridynamics (PD) models [27, 30], which
were also developed to treat defects in solids, do not involve spatial derivatives of
the displacement field; hence, they are especially adept at resolving defects. PD
models are continuum models in which the internal forces at a point are determined
through an integral, as opposed to a differential, term. In this sense, PD models are
nonlocal; i.e., the mechanical response at a point x in the material depends on the
displacement field at points that are a finite distance away from x. In contrast, for
PDE models, that response depends only on points which are within an infinitesimal
distance from x. Successful PD modeling of fracture and other defects in solids has
been demonstrated in several settings [5, 6, 15, 27, 29, 30].

Classical PDE models for solid mechanics do not possess a length scale other than
that determined by material inhomogeneities. On the other hand, PD models involve
a (possibly phenomenological) parameter δ, referred to as the horizon, which limits the
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extent of nonlocal interactions; i.e., two points in the material separated by a distance
greater than δ do not interact. As such, PD models have a “mechanical” length scale,
even if the material is homogeneous. It has been shown that, as δ → 0, solutions of
PD models converge to those of classical PDE models; see, e.g., [13, 31] for smooth
solutions and [19, 20] for solutions with minimal regularity. On the other hand, when
δ is fixed, straightforward discretizations of the PD model using atomistically spaced
grids have been shown to reduce to molecular dynamics models; see, e.g., [25, 26].
This is the multiscale nature of PD that we exploit in the development of a multiscale
implementation of PD.

Variational formulations of PD not only allow for the analysis of the well-posedness
and other properties of PD models [9, 19, 20], but also naturally suggest a discretiza-
tion using finite element methods (FEMs) [7, 11, 12, 18, 32, 33, 35]. It is important to
note that for PD models, discontinuous Galerkin (DG) methods are conforming for a
large class of nonlocal interaction kernels, which is the case considered in this work.1

By including discontinuous functions in the finite element space, one naturally hopes
that jump discontinuities in the displacement field can be more easily resolved. How-
ever, discontinuities in finite element basis functions occur at element boundaries,
whereas discontinuities in the displacement field, whose locations are not known a
priori, in general occur within an element. Such a mismatch of the locations of dis-
continuities can be a major cause of the loss of accuracy in naive, e.g., quasi-uniform
grid, implementations of DG methods for PD.

In [7], piecewise-linear polynomial FEMs for one-dimensional PD were consid-
ered, and a strategy was proposed to mitigate the loss of accuracy caused by the
mismatch in the locations of discontinuities of the solution of the PD model and of
its DG approximation. The mitigation strategy involved the insertion, within a grid
of nominal size h, of elements of length h4, each of which contains one of the points
at which the solution is discontinuous. Also proposed in [7] was a hybrid strategy in
which the DG method was applied in elements that contain solution discontinuities,
and a continuous Galerkin (CG) method was used elsewhere. Such a hybrid strategy
mitigates the greater cost, i.e., the larger number of degrees of freedom, attendant
to DG methods compared to CG methods. We note that in [7], the locations of the
discontinuities in the solution of the one-dimensional PD model were assumed to be
known; of course, in practice, this is generally not the case.

The multiscale nature of PD models, resulting from the horizon δ and the FEM
discretizations studied in [7], motivates the multiscale implementation of PD models
that is the focus of this paper. Suppose h is a typical grid size in a discretization of a
PDE model for solid mechanics in cases where the solution (i.e., the displacement) is
known to be smooth; for example, if one is interested in achieving an L2 error of O(ε)
and one uses continuous piecewise-linear finite element approximations, then h would
be chosen to be of O(ε1/2). Even in cases where the solution has discontinuities, one
can safely use the PDE model in regions where the displacement is smooth. However,
near the location of discontinuities in the displacement, the PDE model breaks down,
and one instead uses a PD model. However, as discussed above, to preserve accuracy,
one also has to refine the grid near the location of discontinuities. Of course, because
the locations of those discontinuities are, in general, not known a priori, one has to
be able to detect where they occur. One also has to devise a strategy for coupling the
PD and PDE models.

1For more singular kernels that do not allow conforming DG approximations, nonconforming DG
methods for nonlocal problems were developed in [34].



400 F. XU, M. GUNZBURGER, J. BURKARDT, AND Q. DU

Based on the above discussions, a multiscale implementation of the PD model
would start with a choice for the bulk grid size h and a horizon parameter δ and then
include the following components:

1. detection of elements that contain a discontinuity in the displacement,
2. refinement of the grid as necessary near the discontinuities,
3. use of DG for PD in regions containing the discontinuity,
4. use of CG for PD in regions neighboring the discontinuity,
5. use of CG for PDE if sufficiently far away from the discontinuity,
6. use of quadrature rules that can be applied for any combination of h and δ.

Generically, one would choose δ � h because then the discretized PD model
essentially reduces to a local model—e.g., only nearest neighbor interactions occur—
whenever the local grid size is of O(h). This effect greatly facilitates the coupling of
a PD model to a PDE model. On the other hand, we would also choose δ > h, where
h denotes the grid size one would use for elements in which solution discontinuities
occur. With δ > h, the PD model is nonlocal. Recall that, to preserve accuracy,
h depends on h and, in fact, h � h, so that we have h < δ � h; for example, for
piecewise-linear finite element approximations ideally one would choose h = O(h4).

For simplicity, in this paper we apply the different models based on nodal lo-
cations; this is akin to using a “force”-based approach for choosing which model to
apply where. The alternative is to use an “energy”-based approach for which one ap-
plies the different models based on element locations. Although the former approach
leads to some anomalies in the discretized system, the results obtained using the two
approaches are very much the same. Figure 1 suggests how, in a one-dimensional
setting, such a multiscale, force-based implementation would subdivide a region into
models of different types and into FEM discretizations of different types.

PD−DGPD−CG PD−CGPDE−CG PDE−CG

O(h4)O(h) O(h)

Fig. 1. A multiscale implementation of PD in one dimension. The discontinuity in the dis-
placement occurs in the element of size O(h4).

Obviously, our multiscale implementation is also a multimodel one because it not
only involves a nonlocal PD model, but also a local PDE model. Moreover, the
implementation is also a multiapproximation model because it involves both CG and
DG FEMs. All these components are judiciously used to detect and resolve jump
discontinuities in the solution while achieving the same accuracy with only a slight
increase in cost compared to a standard finite element discretization of a PDE having
smooth solutions.

In this paper, we demonstrate how to carry out the components of the multiscale
implementation of PD as listed above. Regarding the first component, an adaptive
strategy based on posterior error estimators has to be adopted to detect the unknown
locations of the discontinuities in the solution. Regarding the second component,
during the adaptive process we not only refine near points at which the solution is
discontinuous, but also coarsen previously refined regions where now the solution is
verified as being smooth. Doing so results in abrupt transitions from refined to coarse
grids and in small increases in the number of degrees of freedom compared to those
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for a discretization of a problem for which the solution is smooth everywhere.
Our goal for this paper is to present the general principles and demonstrate the

potential usefulness of our multiscale implementation of PD. To do so, we consider
only the one-dimensional case. Doing so enables us to avoid several serious issues that
arise in any FEM discretization of PD in higher dimensions and to thus concentrate
on only those issues that are specific to the multiscale implementation and to discuss
those issues in a simple, easy to explain and understand, setting. For the same reasons,
we consider only time-independent problems.

Other papers, e.g., [1, 16, 17, 21, 23, 24, 28], can be viewed as being concerned with
multiscale implementations of PD models. However, all these papers lack at least one,
and most often several, of the components of our complete multiscale implementation,
components such as the use of FEM, automatic detection of discontinuities, adaptive
mesh refinement based on posterior error estimation resulting in meshes with abrupt
size transitions, the use of both continuous and discontinuous Galerkin methods to
seamlessly couple local and nonlocal models and to economize on the cost of PD
implementation, and being able to differentiate between true discontinuities and steep
gradients.

The paper is organized as follows. In section 2, a nonlocal problem and its spe-
cialization to one-dimensional PD are introduced. A review of some of the results
given in [7] that are germane to our purposes is given in section 3. Two important
ingredients in our multiscale implementation are discussed in sections 4 and 5, namely
the posterior error estimators and local-nonlocal coupling strategies that we use. The
multiscale implementation strategy is then given in section 6. Extensive numerical
results that explore several features of the implementation are provided in section 7.
In section 8, we briefly consider solutions having steep gradients and discuss a variant
of our algorithm that differentiates between and can handle true discontinuities and
steep gradients occurring in the same solution. Finally, in section 9, we make some
concluding remarks, including a brief discussion of the extension of our strategy to
higher dimensions.

2. Nonlocal model problem. The action of the operator L on a function u(x)
is defined as

Lu(x) = −2

∫
Rn

(
u(x′)− u(x)

)
γ(x,x′) dx′ ∀x ∈ Rn,

where γ denotes a symmetric kernel, i.e., γ(x,x′) = γ(x′,x) for all x,x′. The inter-
action domain corresponding to a given open subset Ω ⊂ Rn is defined as

(1) ΩI = {x′ ∈ Rn\Ω : γ(x,x′) 6= 0 for some x ∈ Ω};

i.e., ΩI consists of all points in Rn that interact with points in Ω but are located
outside of Ω. In general, ΩI has nonzero volume in Rn. With this notation, the
nonlocal volume-constrained problem we consider is given by

(2)

Lu(x) = −2

∫
Ω∪ΩI

(
u(x′)− u(x)

)
γ(x,x′) dx′ = f(x) ∀x ∈ Ω,

u(x) = g(x) ∀x ∈ ΩI ,

where f(x) : Ω→ R and g(x) : ΩI → R are given functions. Note that the constraint
u = g is applied on the set ΩI having finite volume and not on the boundary of Ω;
hence, the terminology volume-constrained problem.
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The problem (2), which involves a scalar-valued unknown function u, is used as
a model for anomalous diffusion in Rn (see, e.g., [9]) and, in case n = 1, is also of
the form of a linear PD model for mechanics in one spatial dimension. Although the
latter case is the focus of this paper, in this section we present the more general case
to highlight the fact that many of the discussions in this paper apply to the diffusion
case as well.

We define the bilinear form

(3) A(u, v) =

∫
Ω∪ΩI

∫
Ω∪ΩI

(
u(x′)− u(x)

)(
v(x′)− v(x)

)
γ(x,x′) dx′dx,

the “energy” norm |||u||| = (A(u, u))1/2, the energy space

V (Ω ∪ ΩI) = {u ∈ L2(Ω ∪ ΩI) : |||u||| <∞},

and the constrained energy space

Vc(Ω ∪ ΩI) = {v ∈ V : v(x) = 0 ∀x ∈ ΩI}.

It is shown in, e.g., [9, 10], that (2) has the variational formulation

(4)


given f ∈ L2(Ω) and g ∈ L2(ΩI), seek u ∈ V (Ω ∪ ΩI) such that

u(x) = g(x) ∀x ∈ ΩI and

A(u, v) =

∫
Ω

fv dx ∀ v ∈ Vc(Ω ∪ ΩI),

and that the problem (4) is well posed with respect to the energy space V (Ω ∪ ΩI).
Many kernels, both integrable and nonintegrable, have been proposed in the lit-

erature; see, e.g., [9, 10]. For the sake of concreteness, we consider kernels of the
form

(5) γ(x,x′) =
1− 1s

δ2−2s

1

|x− x′|n+2s
1Hx,δ

,

where n denotes the spatial dimension, s a constant, 1 the indicator function, Hx,δ =
{x′ ∈ Rn : |x − x′| ≤ δ}, and δ > 0 the horizon. Note that γ(x,x′) given by (5)
is positive and depends only on the relative position of x and x′ in the reference
configuration, i.e., γ(x,x′) = γ(x− x′). Also, because the indicator function appears
in (5), we have that ΩI = {x′ ∈ Rn\Ω : |x′ − x| ≤ δ for some x ∈ Ω}; i.e., ΩI is a
layer of thickness δ surrounding Ω.

If s < 0, the kernel (5) is integrable; i.e., we have that, for some constant c∗(δ) > 0
whose value depends on δ,

(6)

∫
Rn
γ(x,x′)dx′ ≤ c∗(δ) <∞ ∀x ∈ Ω.

If s ≥ 0, the kernel (5) is not integrable. It is known that for integrable kernels, i.e.,
for kernels that satisfy (6), the energy space V (Ω∪ΩI) = L2(Ω∪ΩI). For s ∈ (0, 1),
it is known that V (Ω∪ΩI) = Hs(Ω∪ΩI), where Hs(·) denotes the fractional Sobolev
space of order s. For s = 0, there is no known characterization of the energy space in
terms of well-known spaces; what is known is that in this case V (Ω∪ΩI) is a Hilbert
space and is a strict subspace of L2(Ω ∪ΩI). Note also that if n+ 2s > 0, the kernel
(5) is singular. Detailed discussions are given in, e.g., [9, 10].
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If n = 1 and s = 0 in (5), the nonlocal problem (2) is a typical example of a
linear PD model in one dimension. In higher dimensions, integrable kernels are also
of interest in the PD setting. Thus, in the one-dimensional setting, we also consider
cases for which n = 1 and s < 0 in (5). We leave to a later study the case s ∈ (0, 1),
which is of greater interest in the anomalous diffusion setting.

3. FEMs for PD in one dimension. In this section, we review some results
from [7] for FEMs for the problem (2) for the kernel (5) with n = 1 and s = 0, i.e.,
for one-dimensional PD. In this case, we have Ω = (a, b) and ΩI = (a− δ, a] ∪ [b, b+
δ). Three finite element spaces were considered: continuous piecewise-linear (CL),
discontinuous piecewise-constant (DC), and discontinuous piecewise-linear (DL). In
all cases, two of the nodes of the grid for Ω∪ΩI were located at x = a and x = b, i.e.,
at the end points of Ω. With N denoting the number of elements, i.e., subintervals,
in Ω, the number of unknowns associated with each choice of finite element space is
N − 1, N , and 2N , respectively.

Two different means for choosing the horizon δ were used: δ proportional to the
grid size h and δ fixed independent of h. Because the latter choice is relevant to our
multiscale implementation of PD, we now quote some of the results of [7] for that case
where two different manufactured solutions were considered, one being smooth and
one containing a jump discontinuity within Ω. Two different sequences of uniform
grids were considered, resulting in three cases in total:

1. smooth case: the solution is smooth;
2. fortuitous case: for all grids used the solution has a jump discontinuity at a

point that coincides with a grid point;
3. general case: for all grids used the solution has a jump discontinuity at a point

that lies strictly within a grid interval.
The L2(Ω ∪ ΩI) and L∞(Ω ∪ ΩI) norms of the error as reported in [7] are given

in Table 1 for the three solution types and for the three FEMs.

Table 1
Convergence behavior, as provided in [7], of L2(Ω ∪ ΩI) and L∞(Ω ∪ ΩI) errors for the con-

tinuous linear (CL), discontinuous constant (DC), and discontinuous linear (DL) FEMs with fixed
δ and uniform grids of size h for different types of solutions.

Error type L2(Ω ∪ ΩI) L∞(Ω ∪ ΩI)

FEM type CL DC (h < δ) DL CL DC (h < δ) DL

Smooth O(h2) O(h) O(h2) O(h2) O(h) O(h2)

Fortuitous O(h
1
2 ) O(h) O(h2) O(h0) O(h) O(h2)

General – – O(h
1
2 ) – – O(h0)

From the table, we see that for smooth solutions, error behaviors for both norms
and for all three FEMs are in accordance with expectations, i.e., second-order con-
vergence for linear approximations and first-order convergence for the constant ap-
proximation. Note, however, that results for the DC approximations were reported
only for h < δ because the study in [7] found that, even for smooth solutions, DC
approximations are not robust with respect to the relative sizes of δ and h due to the
loss of asymptotical compatibility; see [32, 33] for detailed explanations.

For the “fortuitous” case, the CL method results in severely degraded error con-
vergence rates. In contrast, for the DL method (and the DC method with h < δ),
optimal convergence rates are again obtained. This can be attributed to the fact that
methods with discontinuous elements allow for discontinuities at grid points, so that
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they can resolve the discontinuity in the solution occurring at a grid point. Of course,
this cannot be achieved using only continuous elements; hence the deterioration in the
convergence rates for that case. Because the CL method leads to poor performance
when dealing with discontinuities, even for the fortuitous case, in what follows we
consider the use of such methods only in regions in which the solution is smooth. We
also do not further consider the use of the DC method because it is not robust for
h > δ.

For the “general” case, the DL method exhibits the same deterioration in accuracy
that occurred for the CL method for the fortuitous case. Within an element, DL basis
functions are continuous, so they cannot resolve a discontinuity in the solution that
occurs in the interior of an element.

A strategy was proposed in [7] to mitigate, for the DL method in the general
case, the loss of accuracy with respect to the L2(Ω ∪ ΩI) norm, indeed to in some
sense recover the optimal convergence rate. Within a uniform grid having grid size
h, a single element of length O(h4) was inserted that contained the point at which
the solution is discontinuous. This strategy results in an overall error of O(h2) with
respect to the L2(Ω ∪ ΩI) norm. This result was illustrated in [7] using numerical
examples. Note that the transition from the element of size O(h4) to those of size h
can be abrupt; i.e., smooth transition layers of elements are not necessary. Of course,
to implement this strategy one must know where the discontinuity in the solution is
located. In general, to do so, one would have to adopt some sort of adaptive refinement
strategy.

Unfortunately, the mitigation strategy could not do anything about the loss of
accuracy with respect to the L∞(Ω ∪ ΩI) norm, because regardless of how small the
element containing the discontinuity in the solution may be, the L∞(Ω ∪ ΩI)-norm
error remains of O(1). However, in [7], it was shown through numerical experiments
that if the element containing the discontinuity is omitted when computing the L∞(Ω∪
ΩI) norm of the error, the O(h2) rate is recovered; i.e., there is no pollution to
other elements from the large error caused by the element containing the solution
discontinuity.

Because the DL method generates twice as many unknowns as the CL method,
it makes sense to try a hybrid approach in which the DL method is applied in regions
where discontinuities are encountered, whereas the less expensive CL method is used
elsewhere, i.e., where the solution is smooth. This is the hybrid approach proposed
in [7], which continues to exhibit optimal convergence rates while reducing the cost
relative to applying the DL method everywhere. In fact, if one uses the CL method
in all elements of size h, the cost of the hybrid approach is essentially the same as
that for using the CL method everywhere.

Guided by the results of [7, 11] as well as those in [32, 33], the subsequent dis-
cussion focuses on continuous linear and discontinuous linear finite element approx-
imations as candidates for use in the multiscale implementation. Those results also
lead us to consider adaptive refinement strategies to detect where discontinuities in
the solution occur and to use grids with abrupt size transitions to efficiently recover
optimal convergence rates.

4. Posterior error estimator. Adaptive grid refinement and discontinuity de-
tection are important steps within our multiscale implementation strategy. In this
section, we discuss the means we use to effect these steps.

Posterior error analyses for nonlocal models were investigated in [11, 12]. A
residual-based error estimator was introduced, and its equivalence with the energy
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norm |||eh||| of the solution error was proved. We base the error estimator in our
multiscale implementation on that developed in [11, 12].

For any element K in a mesh, the residual error is defined as

Rh(x) = f(x)− L
(
uh(x)

)
∀x ∈ K.

If γ satisfies (5) with s ∈ [0, 1), the posterior error is defined by

(7) η̃(uh,K) = h2s‖Rh‖L2(K),

where s is defined in (5). Recall that for the one-dimensional PD setting we take
n = 1 and s = 0, though this is a case, technically speaking, that is not covered by
the theory given in [11] (with integrable kernels) and [12] (with s > 0). Nevertheless,
we did not find any inconsistency with the theory in the practical implementation.

The total error estimator over Ω = (a, b) is then given by

η̃(uh,Ω) =

(∑
K

η̃2(uh,K)

)1/2

.

For simplicity, we will henceforth simply write η̃(K) and η̃(Ω) for η̃(uh,K) and
η̃(uh,Ω), respectively.

The following convergent adaptive refinement algorithm is proposed in [12].

Algorithm 1: Standard mesh refinement.

Input: Dörfler marking parameter (see [8]) θ ∈ (0, 1], and an initial mesh T0.
1 Initialization: k = 0;
2 Solve the discretized nonlocal problem to obtain the finite element

approximation uhk(x) with respect to the mesh Tk;
3 Evaluate the posterior error estimator η̃(K) for every element K ∈ Tk;
4 Determine the subset Mk ⊂ Tk with a minimal cardinality such that

η̃2(uhk ,Mk) ≥ θη̃2(Ω);

refine the elements in Mk to obtain the mesh Tk+1;
5 Set k := k + 1 and return to line 2.

Note that in step 4 one would simply order the elements by their errors, where
the first element is the one with maximum error and the last one is the one with
minimum error, and then Mk is composed of the first few elements in such a list.

Algorithm 1 is efficient with respect to error reduction and is provably conver-
gent [12] in the context considered there. However, it is not aimed at detecting
discontinuities in the solution. To see this, consider the one-dimensional case, and let
K̂ ∈ Tk denote an element that contains a point at which the solution has a jump dis-

continuity. Given the discussion in section 3, we have that η̃(K̂) = O(h
1/2

K̂
), whereas

η̃(K) = O(h2
K) for elements K within which the solution is smooth. Again, given

the discussion in section 3, as k →∞ we presumably want to drive the length of the
element K̂ to O(h4), whereas the elements K within which the solution is smooth
remain of size O(h). We then have that

η̃2(K̂) = O(hK̂) = O(h4) and η̃2(K) = O(h4
K) = O(h4) as k →∞;
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i.e., the estimator cannot tell the difference between an element K̂ that contains a
jump discontinuity in the solution and the elements K within which the solution is
smooth.

To be able to detect the elements containing points at which the solution is
discontinuous, we instead use the grid size–weighted posterior estimators

(8) η2(K) =
η̃2(K)

|K|
∀K ∈ Tk and η2(Ω) =

∑
K∈Tk

η2(K),

where |K| denotes the length of the element K; in two and three dimensions, |K|
would denote the area and volume, respectively, of the element K. We now have

η2(K̂) =
η̃2(K̂)

|K̂|
=
O(hK̂)

hK̂
=
O(h4)

h4
= O(1) as k →∞

and

η2(K) =
η̃2(K)

|K|
=
O(h4)

h
= O(h3) as k →∞;

i.e., the estimator can now tell the difference between an element K̂ that contains a
jump discontinuity in the solution and the elements K within which the solution is
smooth. In our multiscale implementation, the weighted posterior error estimators
(8) are used to detect the location of discontinuities in the solution.

It will be useful to sort and normalize the elementwise errors because, as is seen
below, a few elements near the discontinuity may account for a substantial portion of
the overall error. Therefore, suppose that the elementwise posterior error estimators
have been sorted so that η̃(Ki1) ≥ η̃(Ki2) ≥ · · · ≥ η̃(KiM ), η(Kj1) ≥ η(Kj2) ≥ · · · ≥
η(KjM ), and define the sequence of cumulative relative errors Ẽn and En by

(9) Ẽn =

n∑
s=1

η̃2(Kis)

η̃2(Ω)
and En =

n∑
s=1

η2(Kjs)

η2(Ω)
.

Thus, e.g., Ẽ1 denotes the maximum relative error over any of the elements, and Ẽ2

denotes the sum of the two largest relative errors.
Integrable kernels, i.e., kernels satisfying (6), are of interest for PD in two and

three dimensions, so we also consider integrable kernels in our one-dimensional nu-
merical experiments. In this case, the posterior error estimator (7) now takes the
form

η̃(uh,K) =
‖Rh‖L2(K)√

c∗(δ)
,

where c∗(δ) is defined in (6).

5. Local-nonlocal coupling. The final ingredient to be specified before we
present our multiscale implementation strategy is how we effect local-nonlocal cou-
pling within that strategy. Local-nonlocal coupling should occur only in regions where
the local model is a valid model, i.e., in regions where the solution does not have dis-
continuities. A local-nonlocal coupling approach similar to ours was presented in [22]
where patch test and wave propagation results are also included.



MULTISCALE MODEL FOR 1D PERIDYNAMICS 407

Table 2
Nonzero entries in typical rows of the stiffness matrices for the local and nonlocal models for

several values of the grid size h. For the nonlocal model, the horizon δ = 0.02 for all cases.

h 1/4 1/8

Local (−4, 8,−4) (−8, 16,−8)

Nonlocal (−0.04,−3.84, 7.76,−3.84,−0.04) (−0.16,−7.36, 15.04,−7.36,−0.16)

h 1/16 1/32

Local (−16, 32,−16) (−32, 64,−32)

Nonlocal (−0.64,−13.44, 28.16,−13.44,−0.64) (−2.56,−21.76, 48.64,−21.76,−2.56)

h 1/64

Local (−64, 128,−64)

Nonlocal (−0.09,−5.27,−18.93,−3.32, 55.24,−3.32,−18.93,−5.27,−0.09)

Let Ωn ⊂ Ω and Ωl = Ω\Ωn denote the regions in which the nonlocal and local
models, respectively, are applied. The local-nonlocal model we consider is given by

(10)


2

∫ x+δ

x−δ

(
u(x)− u(x′)

)
γ(x, x′) dx′ = f(x) for x ∈ Ωn,

−d
2u(x)

dx2
= f(x) for x ∈ Ωl,

where the first equation is the nonlocal model in (2) restricted to one dimension. The
system (10) should be supplemented with constraints. For simplicity, we consider only
constraints applied to the solution u(x), i.e., Dirichlet-type constraints. Wherever
defects occur near the boundary ∂Ω of Ω, i.e., within a δ-neighborhood interior to
the boundary, the nonlocal model has to be used, so we apply a volume constraint
u(x) = g(x) in a δ-neighborhood exterior to the boundary. If there are no defects
near the boundary, one can use a local model there, and the condition u(x) = g(x)
needs be applied only at boundary points.

To motivate our strategy for the coupling of local and nonlocal models, we first
provide some information about the stiffness matrix for the nonlocal model. A similar
study is given in [22], including discussion about bandwidth changes with respect to
different combinations of h and δ. For simplicity, we consider the integrable and
nonsingular kernel (5) with n = 1 and s = −1/2; however, the results given in
this subsection are qualitatively valid for the other kernels considered elsewhere in
this paper. The entries of the stiffness matrix are determined using Legendre–Gauss
quadrature rules. Table 2 shows, for several values of the grid size h, typical rows
of the stiffness matrices for the local and nonlocal models, where for the latter the
horizon is set to δ = 0.02. Of course, in the one-dimensional setting, the local model
stiffness matrix is the tridiagonal matrix 1

h (−1, 2,−1). We see that for h > δ the
nonlocal force-based stiffness matrix (see section 1) is penta-diagonal, whereas for the
one value of h smaller than δ, there are nine nonzero diagonals.

In Table 3, we again list the nonzero entries of the nonlocal stiffness matrix, but
now do so for several values of δ with h fixed. We see that for δ > h the matrix is
septa-diagonal, whereas for δ < h, the matrix is penta-diagonal. Of more interest is
to observe what occurs for δ � h. We see that the entries in the outermost diagonals
decrease as δ decreases and, in fact, those entries seem to decrease linearly with δ.
The conclusion is that, as δ → 0, the entries of the nonlocal stiffness matrix converge
to the entries of the local stiffness matrix. Of course, this is not surprising because
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Table 3
Nonzero entries in typical rows of the stiffness matrix for the nonlocal model for h = 1/8 and

several values of the horizon δ. The typical row for the local model has entries (−8, 16,−8).

δ Nonzero entries in a typical row

1 (−0.0469,−0.0469, 0.0781, 0.4531, 0.0781,−0.0469,−0.0469)

0.5 (−0.3594,−0.3750, 0.1250, 1.6250, 0.1250,−0.3750,−0.3594)

0.2 (−0.0316,−1.4734,−1.8215, 6.6531,−1.8215,−1.4734,−0.0316)

0.1 (−0.8000,−4.8000, 11.2000,−4.8000,−0.8000)

0.01 (−0.0800,−7.6800, 15.5200,−7.6800,−0.0800)

0.001 (−0.0080,−7.9680, 15.9520,−7.9680,−0.0080)

0.0001 (−0.0008,−7.9968, 15.9952,−7.9968,−0.0008)

we have already mentioned that, as δ → 0, the nonlocal model (the first equation in
(10)) converges to the local model (the second equation in (10)) and, moreover, the
CL element is asymptotically compatible, as shown in [32, 33], so one expects that
the nonlocal stiffness matrix, i.e., the discretized nonlocal operator, converges to the
local one in that limit.

Our local-nonlocal coupling strategy is based on the following requirements: tran-
sitions from the nonlocal model to the local model occur only in regions where

1. the solution is smooth;
2. h� δ, i.e., the local grid size is much greater than δ;
3. continuous finite element spaces are used for both the local and nonlocal

models.
The first requirement is needed to ensure that the local model is valid in the transition
region. The other two requirements ensure that the stiffness matrices for the local
and nonlocal models are essentially the same; i.e., the differences in the entries of the
two matrices are negligible with respect to the overall error incurred in discretization.
Specifically, with respect to the second requirement, we see from, e.g., Table 3, that
the difference between the nonlocal and local stiffness matrices seems to be of O(δ)

as δ → 0. Thus, in a practical setting, if h̃ denotes a desired grid size in regions
where the solution is smooth, one should choose δ = O(h̃2) to ensure that the overall

approximation error is of O(h̃2).
The coupling strategy we use is very simple. Let GN = {xj}Nj=1 denote the set

of interior nodes of the grid in Ω. Then, let Gloc ⊂ GN denote the subset of “local”
nodes; these should be chosen in regions of Ω in which the solution is smooth. Then,
Gnonlocal = G\Gloc denotes the subset of “nonlocal” nodes. The row in the global
stiffness matrix corresponding to a local (respectively, nonlocal) node is determined
from the weak form of the local (respectively, nonlocal) model. For example, suppose
Ω = (0, 1), h = 1/8, and δ = 0.001; note that δ � h and that there are seven interior
nodes in Ω. Let Gloc consist of the leftmost and rightmost pairs of interior nodes so
that Gnonlocal consists of the three central interior nodes. Using our coupling strategy,
the resulting global stiffness matrix is then given by

16 −8 0 0 0 0 0
−8 16 −8 0 0 0 0

−0.080 −7.968 15.952 −7.968 −0.080 0 0
0 −0.080 −7.968 15.952 −7.968 −0.0800 0
0 0 −0.080 −7.968 15.952 −7.968 −0.080
0 0 0 0 −8 16 −8
0 0 0 0 0 −8 16


.
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A crime is committed by our strategy, namely the loss of symmetry of the stiffness
matrix. However, within our strategy, in particular because δ � h, this crime does
not appreciably affect the overall error of the approximations. For example, if we
apply the patch test to our coupling scheme, i.e., we try to reproduce the solution
u = x, the errors incurred as measured in any of the L2, L∞, or H1 norms and for a
range of grid sizes from 1/16 to 1/512 are on the level of machine precision. The loss
of symmetry does engender increases in the cost of solving the discretized problem.
One can devise several strategies for symmetrizing the discrete problem, but we do not
concern ourselves with this issue because our central goal is to show the effectiveness
of the multiscale implementation.

6. Multiscale implementation with discontinuity detection. We now have
in hand all the ingredients needed to define the multiscale implementation of the one-
dimensional PD model. We assume that the solution, i.e., the displacement, has a
finite number of isolated jump discontinuities in the interior of the solution domain
Ω. We also assume that an initial grid, possibly uniform, of size O(h) is selected, as
is a horizon δ satisfying h4 < δ � h.

The posterior error estimator enables one to identify elements in which disconti-
nuities in the solution may occur and then provides a means for reducing the influence
of discontinuities by drastically shrinking the size of the elements that contain them.
The process is straightforward. If, for a particular element, the estimator is large (so
that that element is suspected of containing a discontinuity) and the element is not
of sufficiently small size, then it is refined, and the error indicator can be recalculated
based on the newly created subelements. Those with small errors can be absorbed into
a neighboring region of low-error elements in a coarsening procedure. Subelements
with large error can be further refined as many times as necessary, until they become
of size of O(h4). In this way, a mesh can be constructed which consists of relatively
large O(h) elements away from discontinuities and very small O(h4) elements covering
the discontinuities. With the proper formulation of the solution procedure, the L2

norm errors arising from the discontinuities will now be of the same order as that
arising from smooth regions. Note that, at each step of the iterative grid refinement
process, the current set of elements K is divided into two groups:

Group(K) = 1 ⇐ elements K for which the posterior error estimator is large;
Group(K) = 2 ⇐ elements K for which the posterior error estimator is small.

The elements of the initial grid can all be assigned to the first group. The refinement-
coarsening process results in the elements in the second group having size O(h),
whereas the elements in the first group end up having size O(h4).

The decomposition of the computational grids into PD and PDE nodes, and into
CG and DG nodes, is also straightforward. Nodes associated with the end points of
an element which is suspected of containing a discontinuity in the solution, i.e., an
element having a large posterior error estimator, are PD-DG nodes; i.e., the PD model
with a DG discretization is used. Nodes which are a distance less than δ from a PD-
DG node are PD-CG nodes; i.e., the PD model with a CG discretization is used. The
remaining nodes are PDE-CG nodes; i.e., the PDE model with a CG discretization is
used. Coupled with the grid refinement strategy described in the previous paragraph,
at the end the elements consisting of PD-DG nodes will be of size O(h4) and contain
all the discontinuities, whereas the remaining elements will be of size O(h); i.e., we
obtain a grid and a discretization distribution as sketched in Figure 1. In this way,
the multiscale implementation can not only recover the asymptotic O(h2) L2 norm
error decay rate that would occur if the solution were smooth everywhere, but also
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do so at a cost which is minimally greater than the cost that would be incurred if a
piecewise-linear FEM for the PDE were applied throughout the region.

The meshing and discretization processes just outlined are incorporated into Al-
gorithm 2, which is a modification of Algorithm 1. The grid size–weighted error
estimator is used to detect discontinuities, which is the main feature with which we
are concerned. In line 20 of Algorithm 2, refinement is effected by dividing each Group
1 element into two elements of equal length. In line 16 of the algorithm, coarsening is
effected as follows: The Group 2 elements form subintervals in Ω separated by subin-
tervals containing Group 1 elements; each subinterval containing Group 2 elements
is divided into a uniform mesh of dL/he elements, where L denotes the length of the
subinterval.

Algorithm 2: Multiscale mesh refinement.

Input: Dörfler marking parameter θ ∈ (0, 1], a grid size h, a uniform
triangulation T0 of Ω into elements of size h, and a set P0 of nodes
consisting of T0.

1 Initialization: k = 0;
2 foreach element K in T0 do set Group(K) = 1;
3 while true do
4 foreach node p in Pk, the set of nodes consisting of Tk do
5 if p is an end point of a Group 1 element K, then set p as a PD-DG

node;
6 else if p is an end point of an element within the δ-neighborhood of

any Group 1 element, then set p as a PD-CG node;
7 else set p as a PDE-CG node;

8 end

9 using the triangulation Tk, solve the multiscale problem for uhk(x);

10 foreach element K in Tk do compute the error indicator η(uhk ,K);
11 define the set Mk of elements contributing the proportion θ of the total

error, i.e., η2(uhk ,Mk) ≥ θη2(uhk ,Ω), with a minimal cardinality;
12 foreach element K in Tk, do
13 if K ∈Mk, then Group(K) = 1;
14 else Group(K) = 2;

15 end
16 create triangulation Tk+1 of the Group 2 elements with coarsened O(h)

mesh;
17 if all Group 1 elements have size O(h4), then
18 do line 3–9 again with the coarsened final grid and then break;
19 end
20 modify triangulation Tk+1 by refining Group 1 elements;
21 set k := k + 1;

22 end

7. Numerical experiments. In this section, we use a series of computational
experiments to study several aspects of the multiscale implementation described in
section 6. Continuous (CG) and discontinuous (DG) Galerkin methods are compared,
first using uniform grid refinement and then the adaptive refinement method. Se-
quences of decreasing grid sizes are used, allowing convergence rates to be estimated.
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We consider kernels of the form (5) with n = 1 and for three choices of s, as given in
Table 4. The scaling constants that appear in the kernels and which depend on the
horizon δ are such that, in each case, as δ → 0, the nonlocal model (the first equation
in (10)) reduces to the local one (the second equation in (10)).

Table 4
The values of s and the corresponding kernels γ(x, x′) used in the numerical examples.

Case s γ(x, x′) Kernel properties

I −1/2
3

2δ3
1Hx,δ

Integrable, nonsingular

II −1/4
5

4δ5/2
1

|x− x′|1/2
1Hx,δ

Integrable, singular

III 0
1

δ2
1

|x− x′|
1Hx,δ

Nonintegrable

7.1. Uniform grid refinement for a solution having a discontinuity. In
this subsection, we use uniform grids and apply the nonlocal model and either the CG
or DG discretization throughout. It is natural to expect that the performance of the
posterior error estimator may differ, depending on whether the CG or DG method
is being used. We consider the nonlocal problem given by (2) with γ(x, x′) given by
Case I in Table 4. The manufactured solution used is given by

(11) u(x) =

{
x if x < x̃,
x2 otherwise,

where the parameter x̃ ∈ (0, 1) allows the location of the discontinuity to be varied for
different experiments. From this exact solution, the volume constraint data is given
by g(x) = u(x), and the right-hand side f(x) is given by

f(x) =



0 if x ≤ x̃− δ,
3

δ3

(
2δx+

x̃3

3
− x̃2

2
+

(x− δ)2

2
− (x+ δ)3

3

)
if x ∈ (x̃− δ, x̃),

3

δ3

(
2δx2 +

x̃3

3
− x̃2

2
+

(x− δ)2

2
− (x+ δ)3

3

)
if x ∈ (x̃, x̃+ δ),

−2 if x ≥ x̃+ δ.

The error behavior is quite different depending on whether the point x̃ at which
the discontinuity in the solution occurs coincides or does not coincide with a grid
point, i.e., at the interface between two elements. Therefore, two sequences of element
refinements are considered for a problem in which the discontinuity occurs at x̃ = 0.5.
For the sequence of an even number of elements, the discontinuity point occurs at
an element interface, whereas for the odd sequence, the discontinuity point occurs at
the center of an element. A third study again uses a sequence of an even number of
elements, but with the discontinuity now located at x̃ = 0.503, so that it now occurs
within a single element but not at the center of that element; the last case is what one
would expect in practice where one does not know beforehand where the discontinuity
in the solution occurs.

Table 5 and Figure 2 correspond to the CG method and to δ = 0.02. Table 5
considers the errors and convergence rates with respect to the L2 and energy norms,
the posterior error estimate and its convergence rate, as well as several of the relative
posterior error measures as defined in (9). For both cases for which the discontinuity
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Table 5
For the exact solution (11) with δ = 0.02, the nonsingular kernel of Case I in Table 4, and CG

approximations with different uniform grid sizes h, errors and convergence rates with respect to the
L2 and energy norms, the posterior error estimate and its convergence rate (CR), and relative error
measures as defined in (9).

Even number of elements, discontinuity located at a grid point

h ‖eh‖L2 CR |||eh||| CR η̃(Ω) CR Ẽ1 Ẽ2 Ẽ4

1/4 5.44e-2 – 2.15e+0 – 1.77e+0 – 0.506 0.999 1.000

1/8 3.63e-2 0.583 2.11e+0 0.026 1.77e+0 -0.001 0.502 0.999 1.000

1/16 2.51e-2 0.532 2.04e+0 0.047 1.78e+0 -0.005 0.499 0.995 1.000

1/32 1.73e-2 0.534 1.90e+0 0.108 1.80e+0 -0.022 0.489 0.978 1.000

1/64 1.19e-2 0.544 1.50e+0 0.337 1.56e+0 0.213 0.448 0.896 0.992

1/128 8.40e-3 0.502 1.03e+0 0.550 1.02e+0 0.603 0.464 0.929 0.995

1/256 5.94e-3 0.500 7.27e-1 0.496 7.27e-1 0.495 0.464 0.928 0.994

1/512 4.20e-3 0.500 5.14e-1 0.500 5.14e-1 0.500 0.464 0.928 0.995

Odd number of elements, discontinuity located at the midpoint of an element

h ‖eh‖L2 CR |||eh||| CR η̃(Ω) CR Ẽ1 Ẽ3

1/5 3.25e-2 – 2.10e+0 – 1.77e+0 – 0.998 1.000

1/9 2.36e-2 0.541 2.03e+0 0.059 1.78e+0 -0.005 0.994 1.000

1/17 1.69e-2 0.529 1.88e+0 0.121 1.80e+0 -0.020 0.978 1.000

1/33 1.20e-2 0.514 1.50e+0 0.340 1.54e+0 0.236 0.916 0.999

1/65 8.53e-3 0.504 1.04e+0 0.535 1.04e+0 0.576 0.934 0.990

1/129 6.06e-3 0.500 7.42e-1 0.496 7.43e-1 0.495 0.935 0.993

1/257 4.29e-3 0.500 5.26e-1 0.501 5.26e-1 0.502 0.936 0.995

1/513 3.04e-3 0.500 3.72e-1 0.500 3.72e-1 0.500 0.936 0.995

Even number of elements, discontinuity located within an element

h ‖eh‖L2 CR |||eh||| CR η̃(Ω) CR Ẽ1 Ẽ2 Ẽ4

1/4 5.83e-2 – 2.15e+0 – 1.77e+0 – 0.696 0.999 1.000

1/8 3.83e-2 0.607 2.11e+0 0.028 1.76e+0 0.006 0.705 0.998 1.000

1/16 2.59e-2 0.567 2.02e+0 0.059 1.75e+0 0.007 0.721 0.994 1.000

1/32 1.71e-2 0.595 1.84e+0 0.133 1.76e+0 -0.003 0.749 0.972 1.000

1/64 1.07e-2 0.673 1.35e+0 0.454 1.39e+0 0.340 0.773 0.884 0.989

1/128 6.38e-3 0.752 7.81e-1 0.785 7.81e-1 0.828 0.921 0.993 0.999

1/256 5.18e-3 0.299 6.35e-1 0.299 6.35e-1 0.200 0.847 0.928 0.994

1/512 3.05e-3 0.764 3.74e-1 0.764 3.74e-1 0.764 0.935 0.979 0.998

point is located at x̃ = 0.5, we see that the expected convergence rate tends to
1/2 for the L2 norm and for the energy norm; for the energy norm, the asymptotic
convergence rate is not achieved until h < δ. When the discontinuity is located at
x̃ = 0.503, the convergence behavior is much more erratic because of the use of a
uniform grid for the discontinuous solution, thus making the error highly dependent
on the position of the discontinuity point relative to the ends of the element in which
it is located. However, even in this case, the convergence rate tends, in some average
sense, to 1/2. Also note that for all three cases the error estimator convergence rates
mimic the exact error convergence rates.

In Figure 2, we show how the error is distributed across the elements in Ω = (0, 1)
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Fig. 2. For the exact solution (11) with δ = 0.02, the nonsingular kernel of Case I in Table
4, and CG approximations with different uniform grid sizes h, the relative posterior error measures
η̃2(K)/η̃2(Ω) for each element K. Left: x̃ = 0.5, and the number of elements is even with the grid
size ranging from 1/4 to 1/64 (top to bottom), in which case the discontinuity in the solution is
located at a grid point. Center: x̃ = 0.5, and the number of elements is odd with the grid size
ranging from 1/5 to 1/65 (top to bottom), in which case the discontinuity is located at the midpoint
of an element. Right: x̃ = 0.503, and the number of elements is even with the grid size ranging from
1/4 to 1/64 (top to bottom), in which case the discontinuity is located within an element but not at
the midpoint.

by plotting relative posterior error measures η̃2(K)/η̃2(Ω) for each element. The left
column corresponds to the case for which the discontinuity in the solution is located
at a grid point; we see that the two elements meeting at this node account for the
majority (> 90%) of the error, and the four nearest elements account for more than
99% of the total squared error. The middle column corresponds to the case for
which the discontinuity occurs at the midpoint of an element, and that element alone
accounts for more than 93% of error, whereas 99% of the error occurs in that element
and its two immediate neighbors. The right column corresponds to the case for which
the discontinuity occurs within an element but not at its center; the error shows
a similar concentration near where the discontinuity occurs, but with a noticeable
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Table 6
Same information as for Table 5, but now for DG approximations.

Even number of elements, discontinuity located at a grid point

h ‖eh‖L2 CR |||eh||| CR η̃(Ω) CR Ẽ1

1/4 7.84e-3 – 9.57e-2 – 3.64e-2 – 0.515

1/8 1.92e-3 2.030 4.48e-2 1.094 2.46e-2 0.564 0.255

1/16 4.62e-4 2.056 1.94e-2 1.207 1.55e-2 0.669 0.126

1/32 1.10e-4 2.065 6.81e-3 1.512 7.36e-3 1.071 0.063

1/64 2.69e-5 2.040 1.49e-3 2.194 1.41e-3 2.389 0.035

1/128 6.70e-6 2.004 3.98e-4 1.903 4.02e-4 1.807 0.016

1/256 1.67e-6 2.002 9.75e-5 2.029 9.65e-5 2.058 0.008

1/512 4.18e-7 1.999 2.45e-5 1.995 2.43e-5 1.990 0.004

Odd number of elements, discontinuity located at the midpoint of an element

h ‖eh‖L2 CR |||eh||| CR η̃(Ω) CR Ẽ1

1/5 3.20e-2 – 2.10e+0 – 1.78e+0 – 0.999

1/9 2.29e-2 0.570 2.02e+0 0.065 1.79e+0 -0.011 0.999

1/17 1.58e-2 0.581 1.83e+0 0.150 1.82e+0 -0.032 0.998

1/33 1.09e-2 0.561 1.33e+0 0.484 1.33e+0 0.473 0.995

1/65 7.76e-3 0.504 9.49e-1 0.499 9.50e-1 0.501 0.998

1/129 5.50e-3 0.501 6.74e-1 0.500 6.74e-1 0.500 0.999

1/257 3.90e-3 0.500 4.78e-1 0.500 4.78e-1 0.500 1.000

1/513 2.76e-3 0.500 3.38e-1 0.500 3.38e-1 0.500 1.000

Even number of elements, discontinuity located within an element

h ‖eh‖L2 CR |||eh||| CR η̃(Ω) CR Ẽ1

1/4 3.05e-2 – 1.52e+0 – 1.48e+0 – 0.990

1/8 1.99e-2 0.620 1.48e+0 0.040 1.44e+0 0.042 0.991

1/16 1.49e-2 0.419 1.46e+0 0.021 1.43e+0 0.010 0.992

1/32 1.17e-2 0.348 1.37e+0 0.088 1.38e+0 0.048 0.994

1/64 9.03e-3 0.373 1.10e+0 0.318 1.10e+0 0.324 0.997

1/128 5.80e-3 0.637 7.11e-1 0.633 7.10e-1 0.634 1.000

1/256 4.50e-3 0.366 5.51e-1 0.366 5.51e-1 0.366 1.000

1/512 2.77e-3 0.699 3.40e-1 0.698 3.40e-1 0.698 1.000

asymmetry. In all cases, however, we see that whereas the CG method is believed to
“spread” errors, the contamination is mainly confined to the immediate neighbors of
the element containing the discontinuity.

Table 6 and Figure 3 correspond to the same information as in Table 5 and
Figure 2, respectively, but now for DG approximations. We now see, from Table
6, that if the discontinuity of the solution is located at a grid point, i.e., at an end
point of an element, that the optimal convergence rates O(h2) are achieved. However,
for the two cases for which the discontinuity occurs in the interior of an element,
the convergence rate drops to O(h1/2) (in an average sense for the latter). These
behaviors are expected; see, e.g., [7]. However, Figure 3 and the last column of
Table 6 illustrate an important feature of DG methods for the nonlocal problem
we consider, namely that when the discontinuity in the solution is located within an
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Fig. 3. Same information as for Figure 2, but now for DG approximations.

element, almost all the error will occur within that single element, with almost no
pollution effects to neighboring elements. The multiscale implementation uses the
DG method in elements that contain a discontinuity in the solution precisely because
of its ability to localize discontinuity errors in this manner.

It is worth mentioning that, from Table 6, the convergence rates of 1/2 or 2, as
the case may be, of the L2 error are observed for all values of h, whereas for the energy
error they are observed only for h < δ. Even for h > δ, the L2 convergence behavior
can be explained by the theoretical results in [33] that established the convergence of
the numerical solution of the nonlocal problem to that of the local problem in the L2

norm regardless of the relative sizes of h and δ, so long as both are getting smaller.

7.2. Adaptive refinement for a nonsingular kernel. We now consider the
adaptive Algorithm 2, applied to the problem in (11), with the discontinuity in the
solution located at x̃ = 0.503 and with δ = 0.02. The kernel γ(x, x′) is again given by
Case I in Table 4. Note that initial uniform grids with sizes h0 greater and smaller
than δ are considered.

In Table 7, information is provided about the grid obtained at the end of the
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Table 7
For the exact solution (11) with δ = 0.02, x̃ = 0.503, and the nonsingular kernel of Case I in

Table 4 and for several initial grids, the distribution of node types and the maximal and minimal
grid sizes of the final grid resulting from the application of the adaptive Algorithm 2.

Nn
0 Nn

f Npd
dg Npd

cg Npde
cg h0 h h h/h0 h/h40 h/h

4

5 6 2 2 2 2.50e-1 2.50e-1 3.91e-03 1.000 1.000 1.000

9 11 2 2 7 1.25e-1 1.24e-1 2.44e-04 0.994 1.000 1.026

17 19 2 2 15 6.25e-2 6.21e-2 1.53e-05 0.994 1.000 1.024

33 35 2 2 31 3.13e-2 3.11e-2 9.54e-07 0.994 1.000 1.024

65 67 2 4 61 1.56e-2 1.55e-2 5.96e-08 0.994 1.000 1.024

129 131 2 6 123 7.81e-3 7.77e-3 3.73e-09 0.994 1.000 1.024

257 259 2 12 245 3.91e-3 3.90e-3 2.33e-10 0.998 1.000 1.007

adaptive Algorithm 2. In the table, Nn
0 and Nn

f refer to the number of nodes in the
initial uniform mesh and final nonuniform mesh, respectively; h0 refers to the initial
uniform grid size, h the size of the longest element in the final grid, and h the size
of the shortest element in the final grid; Npd

dg , N
pd
cg , and Npde

cg refer to the number of
nodes at the end of the algorithm at which the nonlocal model and the DG method,
the nonlocal model and the CG method, and the local model and the CG method,
respectively, are applied. From the table, we see that, for all initial grids, the final
grid contains at most two more nodes than does the initial grid. We also see that the
nonlocal model with the DG approximation is applied at only two nodes (which turn
out to be the two nodes of the element containing the discontinuity in the solution);
the nonlocal model with the CG approximation is applied at only a few nodes (which
turn out to be nodes of the elements within a δ-neighborhood of the element containing
the discontinuity); at all but a few nodes, the local model with the CG approximation
is applied. Thus, we see the efficiency resulting from the application of Algorithm 2:
Very little cost is incurred over that of using a local model with a CG discretization
everywhere. From Table 7, we also see that, to the number of significant figures used

in the table, h/h0 ∈ [0.994, 1.000], h/h4
0 ≈ 1.000, and h/h

4 ∈ [1.000, 1.026]. Thus, we
also see the effectiveness of Algorithm 2 in isolating the discontinuity in the solution
into a single element of size ≈ h4

0 while effecting an abrupt transition to the remaining
elements, all of which are of size ≈ h0.

In Table 8, for different initial number of nodes Nn
0 , results for errors and con-

vergence rates with respect to the L2, L∞, and energy norms are provided, as is the
posterior error estimate and the values of Ẽ1 and E1, the maximum value of the
elementwise relative error and its weighted version, respectively. The second-order
convergence behavior with respect to the L2 and energy norms as well as of the poste-
rior error is evident from the table. However, no convergence is achieved with respect
to the L∞ norm of the error. This is all expected from the discussion of section
3. Because the DG method is expected to isolate a substantial portion of the error
into the element containing the discontinuity, a separate set of results are reported in
Table 8 which omit the errors associated with that element. The L∞ and H1 norms
of the error now exhibit the optimal O(h2) and O(h) convergence behaviors, respec-
tively. Note that because the CG method is used outside of the element containing
the discontinuity, the H1 norm is well defined when errors are calculated omitting
that element.

In Figure 4, the approximate solution, as determined using Algorithm 2, is com-
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Table 8
For the exact solution (11) with δ = 0.02, x̃ = 0.503, and the nonsingular kernel, errors, pos-

terior error indicators, maximal elementwise relative errors, and convergence rates (CR), resulting
from the application of the adaptive Algorithm 2.

Errors and convergence rates including all elements

Nn
0 ‖eh‖L2 CR ‖eh‖L∞ CR |||eh||| CR η̃(Ω) CR Ẽ1 E1

5 8.74e-3 – 1.29e-1 – 5.59e-1 – 5.53e-1 – 0.99 1.00

9 2.19e-3 1.98 1.37e-1 -0.08 1.41e-1 1.97 1.37e-1 2.00 0.97 1.00

17 5.24e-4 2.06 1.35e-1 0.02 3.66e-2 1.95 3.47e-2 1.98 0.81 1.00

33 1.29e-4 2.01 1.35e-1 0.00 1.08e-2 1.76 1.12e-2 1.64 0.58 1.00

65 3.12e-5 2.05 1.38e-1 -0.03 2.49e-3 2.12 2.44e-3 2.19 0.68 1.00

129 7.87e-6 1.99 1.37e-1 0.01 6.32e-4 1.98 6.35e-4 1.94 0.61 1.00

257 1.92e-6 2.05 1.64e-1 -0.26 1.56e-4 2.03 1.55e-4 2.04 0.63 1.00

Errors excluding the element containing the discontinuity

Nn
0 ‖eh‖L2 CR ‖eh‖L∞ CR |eh|H1 CR

5 7.49e-3 – 1.50e-2 – 1.01e-1 –

9 1.89e-3 1.97 3.82e-3 1.96 5.06e-2 0.99

17 4.58e-4 2.05 9.57e-4 2.00 2.53e-2 1.00

33 1.09e-4 2.07 2.39e-4 2.00 1.26e-2 1.00

65 2.66e-5 2.04 6.00e-5 2.00 6.32e-3 1.00

129 6.75e-6 1.98 1.50e-5 2.00 3.16e-3 1.00

257 1.64e-6 2.06 3.76e-6 2.01 1.58e-3 1.01
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Fig. 4. For the exact solution (11) with δ = 0.02, x̃ = 0.503, the initial grid size h0 = 1/8
(top) and h0 = 1/128 (bottom), and the nonsingular kernel, the approximate solution at the initial
(left) and final (right) step for the adaptive multiscale implementation of Algorithm 2. The plots
for h0 = 1/128 are zoomed into the vicinity of the discontinuity.

pared to the exact solution (11) at the initial and final steps of that algorithm; the
initial grid sizes h0 = 1/8 and h0 = 1/128 are considered. We observe the substantial
improved accuracy of the approximation at the final step and also the confinement of
the error to the element containing the discontinuity.
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Fig. 5. For the exact solution (11) with δ = 0.02, x̃ = 0.503, and the nonsingular kernel,
the L2 error (left) and posterior error indicator η̃ (right) at each step in the adaptive multiscale
implementation of Algorithm 2.

Figure 5 illustrates the steady decrease of the L2 error and the posterior error
indicator as the multiscale implementation of Algorithm 2 proceeds, as well as the
decrease in error with decreasing initial grid size h0.

7.3. Adaptive refinement for a singular but integrable kernel. We now
consider the singular but integrable kernel γ(x, x′) given by Case II in Table 4, for
which the results are given in Table 9. For this case, the entries in Table 7 carry
over almost verbatim, so that we do not bother providing that information here.
Just as for the case of the nonsingular kernel (Case I), optimal convergence rates
are achieved, although for the L∞ and H1 norm errors it is again necessary to omit
the element containing the discontinuity in the solution. Also, as in the case of the
nonsingular kernel, it is clear that by examining the results for E1, the single element
containing the discontinuity again accounts for almost the entire error during most
of the refinement process, so that only that single element is refined. For this case,
the figure providing the information analogous to Figure 5 would be entirely similar
so that again, for the sake of brevity, it is omitted here.

7.4. Adaptive refinement for a nonintegrable kernel. We next consider
the nonintegrable kernel γ(x, x′) given by Case III in Table 4, for which the results
are given in Table 10. Recall that this kernel corresponds to one-dimensional PD.
The convergence rates with respect L2 and L∞ norms are somewhat more erratic
than those for Cases I and II. This is probably due to the stronger singularity of
the kernel for Case III, which requires, in order to preserve full accuracy, alternative
quadrature rules to those we use to assemble the stiffness matrix for the other cases.
However, our results seem to follow the optimal rates in an average sense, at least for
the L2 norm.

7.5. Adaptive refinement for a solution having two discontinuities. We
next consider the manufactured solution,

(12) u(x) =


x for x < x̃1,

x2 for x ∈ (x̃1, x̃2),

x for x > x̃2,

that is discontinuous at two distinct points in Ω = (0, 1). Specifically, we set x̃1 =
0.253 and x̃2 = 0.753 so that, in general, neither point will coincide with a grid point.
Case I kernel in Table 4 is used, and the Dörfler marking parameter is set to be
θ = 0.9. Solutions are computed for a sequence of initial grid sizes h0, with results
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Table 9
For the exact solution (11) with δ = 0.02, x̃ = 0.503 and the singular but integrable kernel of

Case II in Table 4 and for several initial grids, errors, convergence rates (CR), and grid information.

Errors and convergence rates including all elements

Nn
0 Nn

f h h η̃(Ω) CR Ẽ1 E1

5 6 3.91e-03 2.50e-1 6.51e-1 – 1.00 1.00

9 11 2.44e-04 1.24e-1 1.71e-1 1.91 0.99 1.00

17 19 1.53e-05 6.21e-2 4.18e-2 2.03 0.91 1.00

33 35 9.54e-07 3.11e-2 1.26e-2 1.73 0.77 1.00

65 67 5.96e-08 1.55e-2 2.98e-3 2.07 0.77 1.00

129 131 3.73e-09 7.77e-3 7.70e-4 1.95 0.69 1.00

257 259 2.33e-10 3.90e-3 1.95e-4 1.99 0.68 1.00

Nn
0 ‖eh‖L2 CR ‖eh‖L∞ CR |||eh||| CR

5 8.79e-3 – 1.28e-1 – 6.86e-1 –

9 2.20e-3 1.98 1.35e-1 -0.08 1.77e-1 1.94

17 5.25e-4 2.06 1.33e-1 0.02 4.45e-2 1.99

33 1.29e-4 2.03 1.35e-1 -0.02 1.30e-2 1.77

65 3.13e-5 2.04 1.38e-1 -0.03 3.11e-3 2.07

129 7.87e-6 1.99 1.35e-1 0.03 7.89e-4 1.98

257 1.94e-6 2.02 1.64e-1 -0.28 1.99e-4 2.00

Errors excluding the element containing the discontinuity

Nn
0 ‖eh‖L2 CR ‖eh‖L∞ CR |eh|H1 CR

5 7.55e-3 – 1.50e-2 – 1.01e-1 –

9 1.90e-3 1.97 3.83e-3 1.96 5.06e-2 0.99

17 4.59e-4 2.05 9.57e-4 2.00 2.53e-2 1.00

33 1.08e-4 2.09 2.39e-4 2.00 1.26e-2 1.00

65 2.67e-5 2.02 6.00e-5 2.00 6.32e-3 1.00

129 6.76e-6 1.98 1.50e-5 2.00 3.16e-3 1.00

257 1.66e-6 2.03 3.76e-6 2.00 1.58e-3 1.00

reported in Tables 11 and 12. Similar to the previous cases, optimal convergence rates
are obtained. Because of the presence of two discontinuities, the values of cumulative
elementwise relative errors are of interest. In particular, the values for E1 and E2

listed in the table indicate that almost all the error is confined to the two elements
that contain a discontinuity in the solution. Of course, because we now have two
discontinuities, we have two or three grid points added by the refinement process, in
contrast to the case of a single discontinuity, for which only one or two points are
added.

In Figure 6, the exact solution is displayed and compared to the first and last
approximate solutions obtained with initial grid sizes of h0 = 1/8 and h0 = 1/128.
As was the case for Figure 4, we observe the substantial improved accuracy of the
approximation at the final step and also the confinement of the error to the two
elements containing the two discontinuities.

Figure 7 illustrates the refinement process for the initial grid size h0 = 1/4. Points
are added to shrink the size of the elements that contain the discontinuities until the
algorithm accepts them as being tiny enough; also, some grid points are removed in
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Table 10
For the exact solution (11) with δ = 0.02, x̃ = 0.503, and the singular kernel of Case III in

Table 4 and for several initial grids, errors, convergence rates (CR), and grid information.

Errors and convergence rates including all elements

Nn
0 Nn

f h h η̃(Ω) CR Ẽ1 E1

5 6 3.91e-03 2.50e-1 2.19e+2 – 1.00 1.00

9 11 2.44e-04 1.24e-1 8.27e+1 1.39 1.00 1.00

17 19 1.53e-05 6.21e-2 2.66e+1 1.64 0.99 1.00

33 35 9.54e-07 3.11e-2 9.03e+0 1.56 0.98 1.00

65 67 5.96e-08 1.55e-2 2.62e+0 1.79 0.98 1.00

129 131 3.73e-09 7.77e-3 7.90e-1 1.73 0.91 1.00

257 259 2.33e-10 3.90e-3 2.65e-1 1.59 0.67 1.00

Nn
0 ‖eh‖L2 CR ‖eh‖L∞ CR |||eh||| CR

5 9.00e-3 – 1.32e-1 – 9.84e-1 –

9 2.20e-3 2.01 1.37e-1 -0.05 3.03e-1 1.68

17 5.27e-4 2.06 1.33e-1 0.04 8.43e-2 1.85

33 1.51e-4 1.81 1.33e-1 0.00 2.60e-2 1.70

65 3.78e-5 2.00 1.37e-1 -0.05 6.83e-3 1.93

129 1.14e-5 1.73 1.80e-1 -0.39 1.83e-3 1.88

257 2.18e-6 2.41 2.03e-1 -0.17 4.97e-4 1.89

Errors excluding the element containing the discontinuity

Nn
0 ‖eh‖L2 CR ‖eh‖L∞ CR |eh|H1 CR

5 7.79e-3 – 1.53e-2 – 1.01e-1 –

9 1.91e-3 2.01 3.83e-3 1.98 5.06e-2 1.00

17 4.62e-4 2.05 9.57e-4 2.00 2.53e-2 1.00

33 1.34e-4 1.79 2.47e-4 1.96 1.26e-2 1.00

65 3.38e-5 1.99 6.03e-5 2.04 6.32e-3 1.00

129 1.03e-5 1.71 1.78e-5 1.65 3.16e-3 1.00

257 1.56e-6 2.73 5.72e-6 1.65 1.59e-3 1.00

Table 11
For the exact solution (12) with δ = 0.02, x̃1 = 0.253, x̃2 = 0.753, and the nonsingular kernel

of Case I in Table 4 and for several initial grids, the distribution of node types and the maximal and
minimal grid sizes of the final grid resulting from the application of the adaptive Algorithm 2.

Nn
0 Nn

f Npd
dg Npd

cg Npde
cg h0 h h h/h0 h/h40 h/h

4

5 7 4 3 0 2.50e-1 2.50e-1 3.91e-03 1.000 1.000 1.000

9 12 4 4 4 1.25e-1 1.25e-1 2.44e-04 1.000 1.000 1.000

17 20 4 4 12 6.25e-2 6.25e-2 1.53e-05 1.000 1.000 1.000

33 36 4 4 28 3.13e-2 3.13e-2 9.54e-07 1.000 1.000 1.000

65 68 4 8 56 1.56e-2 1.56e-2 5.96e-08 1.000 1.000 1.000

129 132 4 12 116 7.81e-3 7.81e-3 3.73e-09 1.000 1.000 1.000

257 260 4 24 232 3.91e-3 3.90e-3 2.33e-10 1.000 1.000 1.000

later steps to coarsen the elements not containing the discontinuities so that, away
from solution discontinuities, the grid size remains very close to that of the initial
grid.
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Table 12
For the exact solution (12) with δ = 0.02, x̃1 = 0.253, x̃2 = 0.753, and the nonsingular kernel

of Case I in Table 4, errors, posterior error indicators, maximal elementwise relative errors, and
convergence rates (CR) resulting from the application of the adaptive Algorithm 2.

Errors and convergence rates including all elements

Nn
0 η̃(Ω) CR Ẽ1 Ẽ2 E1 E2

5 5.85e-1 – 0.51 1.00 0.51 1.00

9 1.44e-1 2.02 0.49 0.97 0.51 1.00

17 3.64e-2 1.99 0.42 0.82 0.51 1.00

33 1.16e-2 1.65 0.31 0.60 0.51 1.00

65 2.56e-3 2.18 0.35 0.70 0.51 1.00

129 6.60e-4 1.95 0.32 0.63 0.51 1.00

257 1.62e-4 2.03 0.33 0.64 0.51 1.00

Nn
0 ‖eh‖L2 CR ‖eh‖L∞ CR |||eh||| CR

5 8.53e-3 – 9.56e-2 – 5.92e-1 –

9 2.03e-3 2.07 1.02e-1 -0.09 1.49e-1 1.99

17 4.25e-4 2.26 1.01e-1 0.02 3.82e-2 1.96

33 9.87e-5 2.11 1.02e-1 -0.02 1.13e-2 1.76

65 2.17e-5 2.19 1.04e-1 -0.03 2.60e-3 2.12

129 5.44e-6 2.00 1.02e-1 0.03 6.58e-4 1.98

257 1.33e-6 2.03 1.23e-1 -0.28 1.62e-4 2.02

Errors excluding the two elements containing the discontinuities

Nn
0 ‖eh‖L2 CR ‖eh‖L∞ CR |eh|H1 CR

5 7.07e-3 – 1.41e-2 – 1.01e-1 –

9 1.67e-3 2.08 3.38e-3 2.06 5.10e-2 0.98

17 3.29e-4 2.34 6.92e-4 2.29 2.55e-2 1.00

33 6.58e-5 2.32 1.41e-4 2.30 1.28e-2 1.00

65 1.29e-5 2.35 4.09e-5 1.78 6.38e-3 1.00

129 3.35e-6 1.95 1.17e-5 1.81 3.19e-3 1.00

257 8.10e-7 2.05 2.69e-6 2.12 1.59e-3 1.00

8. Distinguishing between steep gradients and jump discontinuities.
Besides the occurrence of discontinuities, it is possible that the solution also has locally
steep gradients, which also result in large errors when coarse grid approximations are
used. Thus, the multiscale implementation of PD should also be able to detect regions
in which the solution has a steep gradient. On a coarse grid, i.e., a grid size larger
than the regions in which the gradient is steep, one cannot tell the difference between
a jump discontinuity and a steep gradient. However, as the grid is refined, there is a
fundamental difference in how the errors due to a DG discretization are distributed in
the two cases. For jump discontinuities, the error is mostly confined to the elements
which contain the discontinuity, whereas for steep gradients, once the grid becomes
sufficiently small, the error will spread out over several elements.

8.1. Algorithmic modifications for solutions containing discontinuities
and steep gradients. A multiscale implementation of PD should expect and detect
discontinuities and steep gradients, to differentiate between the two cases, and to
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Fig. 6. For the setting of Table 12 and the initial grid size h0 = 1/8 (top) and h0 = 1/128
(middle and bottom), the approximate solution at the initial (left) and final (right) step for the
adaptive multiscale implementation of Algorithm 2. For the finer initial grid, the middle and bottom
rows are zoom-ins near the left and right discontinuities, respectively.

handle each case in an appropriate fashion. For discontinuities, during the refinement
process, the weighted error estimator will have large values in isolated elements; e.g.,
the elements abutting an element containing a discontinuity will have relatively minute
errors. On the other hand, once the region in which the solution has a steep gradient
is covered by two or more elements, the errors in those elements will all be relatively
the same. In this way, discontinuities and steep gradients can both be detected and
differentiated from each other.

To put this idea in a concrete algorithm, we need to modify Algorithm 2 by setting
a parameter β ∈ (0, 1) as an indicator to distinguish the steep gradient from the dis-
continuity. Suppose we are currently in the kth iteration; then we look at the marked
setMk−1 in the previous iteration. Each element K ∈Mk−1 has been split into two
small elementsK1 andK2, and the weighted relative errors r = η(uk−1

h ,K)/η(uk−1
h ,Ω)

and r1 = η(ukh,K1)/η(ukh,Ω), r2 = η(ukh,K2)/η(ukh,Ω) are calculated in iterations k−1
and k, respectively. If r1 ≥ βr and r2 < βr, then we claim that K1 contains the dis-
continuity. If max{r1, r2} < βr, which means the error of element K is reduced
and spread into elements K1,K2, then we claim that there is a steep gradient within
element K, and if K1 and/or K2 are not in Mk, they should not be coarsened.
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Fig. 7. For the setting of Table 12, the grids at each refinement step (top to bottom) of Algorithm
2. The topmost grid is the initial uniform grid of size h0 = 1/4; the bottommost grid is the final
refined grid. All grids except the two at the top and the one at the bottom have nine grid points,
with three points clustered near each of the two discontinuities in the solution. The bottommost one
has two points clustered near each of the two discontinuities in the solution.

Another modification is the criterion for selecting the marked set Mk. Instead
of using the weighted posterior error, we go back to the standard error estimator η̃.
Otherwise, once the weighted errors corresponding to the elements containing the true
discontinuities account for a sufficiently large portion of the total error relative to the
threshold specified by the marking parameter θ, the elements where steep gradients
are located will not be further refined, even though the latter may contain a large
error with respect to the unweighted measure. Moreover, as an indicator of the L2

norm of the solution error, the standard error estimator is more suitable for choosing
where refinement is to take place.

There is another difference between how steep gradients and discontinuities should
be discretized. Across a steep gradient, the solution is still smooth, and in particular
is smooth within the elements which cover the region of the steep gradient. Thus, one
should be able to apply the PDE (or PD if in the vicinity of the DG nodes) and use
CG discretizations at nodes of those elements.

There is also seemingly a big difference in how the iteration should be terminated
in the two cases. When considering discontinuities, the iteration is stopped when the
element size is of O(h4) in Mk, which includes the elements containing the disconti-
nuities; the O(h4) criterion arises because the L2 norm error in an element containing

the discontinuity is of O(h
1/2
disc), where hdisc denotes the mesh size of that element.

On the other hand, with hsteep denoting the size of the elements that cover the step
gradients, the error for those elements is O(h2

steep), so that it seems that one should be
able to stop the refinement process much sooner in this case. Whether this is true or
not depends on how large the gradient of the solution is, because the constant in the
order relation depends on the size of gradient. For example, suppose that, in a region
in which the gradient is not large, we have that the error is given by Cnonsteeph

2,
whereas in a region in which the gradient is large, it is given by Csteeph

2
steep, where

Csteep � Cnonsteep. Then, the iteration should stop when hsteep ≈ (
Cnonsteep
Csteep

)1/2h.
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8.2. Adaptive refinement for a solution having a discontinuity and a
steep gradient. The final numerical example involves the modified adaptive algo-
rithm described in section 8.1. We use the Case I kernel in Table 4 and, for simplicity
and because our focus here is to show that steep gradients can be detected and differ-
entiated from discontinuities, we use only the nonlocal equation everywhere. For the
same reasons, we stop the refinement process for both steep gradients and disconti-
nuities when the element size is of O(h4).

The manufactured solution is now chosen as

(13) u(x) =


1

1 + eα(x−x̃2)
for x < x̃1,

x2 otherwise.

The parameter values are set to α = 400, x̃1 = 0.753, and x̃2 = 0.3. The solution (13)
is a piecewise-smooth function with a jump discontinuity at x̃1 = 0.753 and a steep
gradient in the vicinity of the point x̃2 = 0.3. For the algorithm parameters, we set
θ = β = 0.8.

Table 13 lists the various error measures associated with a sequence of decreasing
grid sizes which are consistent with our expectation. However, the elementwise relative
errors given in Table 13, as well as Table 14 and Figures 8, 9, and 10, point out
the differences between adaptive refinement for resolving discontinuities and steep
gradients in the solution. In Table 14, information is provided about the grid obtained
by the algorithm described in section 8.1. One can observe the decreasing trend of the
maximal relative error Ẽ1 in Table 13, whereas θ = 0.8 is bigger than Ẽ1 except for
the case h0 = 1/4. This indicates that many of the elements around the steep gradient
are also refined until O(h4

0) has been achieved (see Figure 8). That is why there is
a large increase in Nn

f (see Table 14). However, it is seen in Table 14 that only two
PD-DG nodes are involved because there is only one discontinuity, which also hints
that we have succeeded in distinguishing the steep gradient from discontinuity; e.g.,
the steep gradient is handled using CG, whereas the discontinuity is handled using
DG.

Figure 8 displays the exact solution and compares the initial and final approximate
solutions for the initial grid sizes h0 = 1/8 and h0 = 1/128. The figure shows that
the refinement algorithm was able to detect the problematic regions and adjust the
grid to isolate them and control the error. For the discontinuity, only one element
of small size contains the discontinuity, whereas the surrounding elements are still of
large size. For the steep gradient, several elements are of small size.

Figure 9 provides a more detailed picture of how the mesh is gradually adjusted
to bracket the point at which the solution discontinuity occurs and the thin region
across which the solution gradient is large. In the vicinity of the point x̃2 = 0.3 across
which the gradient of the solution is steep, several grid points are added, and the
nearby elements are shrunk. The discontinuity occurring at x̃1 = 0.753 is handled
more economically, in that only a single small element is used to isolate it and the
neighboring elements are of the nominal mesh size O(h0).

Figure 10 displays the posterior errors. At the initial step of the algorithm, both
the steep gradient and the discontinuity cause large relative errors in the elements
that contain them, with the steep gradient error predominating because of the huge
derivatives involved, i.e., because of the large constant in the error relation Ch2; see
section 8.1. However, the refinement algorithm is able to drive down the error associ-
ated with the steep gradient, and this remains true even if the weighted elementwise
relative error measure is used. Meanwhile, the single element containing the discon-
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Table 13
For the exact solution (13) with δ = 0.02, x̃1 = 0.753, x̃2 = 0.3, and the nonsingular kernel of

Case I in Table 4, errors and convergence rates (CR) resulting from the application of the modified
adaptive algorithm described in section 8.1.

Errors and convergence rates including all elements

Ne
0 η̃(Ω) CR Ẽ1 Ẽ2 E1 E2

4 1.31e+0 – 0.910 0.948 0.954 0.974

8 3.61e-1 1.861 0.712 0.871 0.983 0.990

16 8.38e-2 2.110 0.708 0.771 0.998 0.998

32 2.34e-2 1.841 0.678 0.726 1.000 1.000

64 5.79e-3 2.013 0.620 0.657 1.000 1.000

128 1.46e-3 1.989 0.589 0.614 1.000 1.000

256 3.52e-4 2.049 0.643 0.652 1.000 1.000

Ne
0 ‖eh‖L2 CR ‖eh‖L∞ CR |||eh||| CR

4 1.20e-2 – 2.90e-1 – 1.31e+0 –

8 3.25e-3 1.880 3.04e-1 -0.068 3.62e-1 1.857

16 7.94e-4 2.035 3.03e-1 0.005 8.45e-2 2.098

32 2.07e-4 1.942 3.06e-1 -0.016 2.33e-2 1.858

64 5.24e-5 1.979 3.13e-1 -0.030 5.80e-3 2.006

128 1.32e-5 1.985 3.05e-1 0.034 1.46e-3 1.992

256 3.24e-6 2.027 3.71e-1 -0.281 3.52e-4 2.048

Errors excluding the element containing the discontinuities

Ne
0 ‖eh‖L2 CR ‖eh‖L∞ CR |eh|H1 CR

4 6.27e-3 – 4.73e-2 – 2.62e+0 –

8 2.10e-3 1.576 3.45e-2 0.458 1.96e+0 0.417

16 5.47e-4 1.941 5.16e-3 2.739 8.93e-1 1.137

32 1.34e-4 2.027 1.76e-3 1.551 4.74e-1 0.915

64 3.69e-5 1.862 5.43e-4 1.698 2.43e-1 0.967

128 9.58e-6 1.946 1.82e-4 1.580 1.27e-1 0.933

256 2.28e-6 2.066 3.93e-5 2.203 6.00e-2 1.079

Table 14
For the exact solution (13) with δ = 0.02, x̃1 = 0.753, x̃2 = 0.3, and the nonsingular kernel of

Case I in Table 4 and for several initial grid sizes, the distribution of node types and the maximal and
minimal grid sizes of the final grid resulting from the application of the modified adaptive algorithm
described in section 8.1. Note that in this section, only the nonlocal model is applied.

.

Nn
0 Nn

f Npd
dg Npd

cg h0 h h h/h0 h/h40 h/h
4

5 11 2 9 2.50e-1 2.50e-1 3.91e-3 1.00e+0 1.00e+0 1.00e+0

9 17 2 15 1.25e-1 1.25e-1 2.44e-4 1.00e+0 1.00e+0 1.00e+0

17 30 2 28 6.25e-2 6.25e-2 1.53e-5 1.00e+0 1.00e+0 1.00e+0

33 57 2 55 3.13e-2 3.12e-2 9.54e-7 1.00e+0 1.00e+0 1.00e+0

65 108 2 106 1.56e-2 1.56e-2 5.96e-8 1.00e+0 1.00e+0 1.00e+0

129 210 2 208 7.81e-3 7.81e-3 3.73e-9 1.00e+0 1.00e+0 1.00e+0

257 423 2 421 3.91e-3 3.90e-3 2.33e-10 9.99e-1 1.00e+0 1.00e+0
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Fig. 8. For the exact solution (13) with δ = 0.02, x̃1 = 0.753, x̃2 = 0.3, and the nonsingular
kernel of Case I in Table 4 and the initial grid sizes h0 = 1/8 (top) and h0 = 1/128 (middle and
bottom), the approximate solution at the initial (left) and final (right) step for the adaptive multiscale
implementation of the modified adaptive algorithm described in section 8.1. For the finer initial grid,
the middle and bottom rows are zoom-ins near the steep gradient and discontinuity, respectively.

tinuity shrinks in size and, as the adaptive iterations proceed, gathers almost all of
the weighted relative error; for further evidence, see the value given for E1 and E2 in
Table 13. Thus, the discontinuity and steep gradient can be effectively isolated, each
in its own way, which is consistent with the discussions in sections 4 and 8.1.

9. Conclusion. In this work, we provide a multiscale finite element implemen-
tation of a linear one-dimensional peridynamics (PD) model for solid mechanics which
also features coupling of the nonlocal PD model to local PDE models and the use of
both discontinuous and continuous Galerkin FEMs. An adaptive algorithm is defined
that controls not only the local mesh size, but also which of the two FEM discretiza-
tions is used at each point in the mesh. Adaptivity is guided by a posterior error
estimator, which is developed from a standard residual error estimator that can de-
tect discontinuities during adaptive refinement. Several numerical examples show how
our adaptive algorithm can detect the location of a discontinuity in the solution and
bracket that discontinuity within a single element. Moreover, by using DG methods
in that element, CG methods elsewhere, and switching to a local PDE model away
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Fig. 9. For the exact solution (13) with δ = 0.02, x̃1 = 0.753, x̃2 = 0.3, and the nonsingular
kernel of Case I in Table 4, the grids at each refinement step (top to bottom, i.e., starting with the
initial grid at the top) of the modified adaptive algorithm described in section 8.1. The topmost grid
is the initial uniform grid of size h0 = 1/4; the bottommost grid is the final refined grid.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η̃
2
(K

)/
η̃
2
(Ω

)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

 

 

Ẽ
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Fig. 10. For the setting of Table 13 with an initial uniform grid of size h0 = 1/8, top-left: the
error fraction distribution η̃2(K)/η̃2(Ω) across the elements K of the initial uniform grid; top-right:

Ẽi for i = 1, 2, 3 and E1 for each step in the adaptive multiscale implementation of the modi-
fied adaptive algorithm described in section 8.1; and the elementwise relative errors η̃2(K)/η̃2(Ω)
(bottom-left) and η2(K)/η2(Ω) (bottom-right) for the final grid obtained using the modified adaptive
algorithm described in section 8.1.

from the elements containing solution discontinuities, we can recover the quadratic
convergence of the approximation without incurring a large increase in costs due to
the use of DG elements and grid refinement. We also briefly discuss how modifications
of our algorithm can be used to detect and differentiate between regions with steep
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gradients and true discontinuities in the solution.
For the most part, the extension of our algorithm to two and three dimensions

shares the same difficulties that one encounters with any finite element discretization
of the nonlocal PD model, the most troublesome being defining good quadrature
rules for regions defined as the intersections of balls of radius δ and triangular or
quadrilateral elements used in two dimensions and tetrahedral or hexahedral elements
used in three dimensions.

The one difficulty somewhat specific to our algorithm is the refinement to elements
of size O(h4) across discontinuities, but of size h along discontinuities; such highly
anisotropic refinement is needed in order to avoid incurring large additional costs.
On the other hand, for discontinuities occurring along curves and curved surfaces, it
is not possible to contain the discontinuity within elements of width O(h4) without
the use of isoparametric elements [2, 3, 4]. Clearly, although there are clear paths to
extending our methodology to higher dimensions, actually effecting such extensions
is not a trivial matter.
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