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Abstract

A discussion of reduced-order modeling for complex systems such as fluid flows is given to provide a context for the construction and
application of reduced-order bases. Reviews of the POD (proper orthogonal decomposition) and CVT (centroidal Voronoi tessellation)
approaches to reduced-order modeling are provided, including descriptions of POD and CVT reduced-order bases, their construction
from snapshot sets, and their application to the low-cost simulation of the Navier–Stokes system. Some concrete incompressible flow
examples are used to illustrate the construction and use of POD and CVT reduced-order bases and to compare and contrast the two
approaches to reduced-order modeling.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Even with the use of good mesh generators, discretiza-
tion schemes, and solution algorithms, the computational
simulation of solutions of the Navier–Stokes system still
remains a formidable endeavor. For the accurate simula-
tions, typical finite element codes may require many thou-
sands of degrees of freedom. The situation is even worse
for optimization problems for which multiple solutions
are usually required or for feedback control problems
for which real-time solutions are needed. The types of
reduced-order models that we study are those that attempt
to determine accurate approximate solutions using very
few degrees of freedom. To do so, such models have to
use basis functions that are in some way intimately con-
nected to the problem being approximated.

There have been many reduced-order modeling tech-
niques proposed; see, e.g., [28–31,39] for some early exam-
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ples. The most popular one, at least for the applications we
have in mind, is based on proper orthogonal decomposi-
tion (POD) analysis. POD begins with a set of snapshots
that are generated by evaluating the computational solu-
tion of transient problems at several instants of time or
by evaluating the computational solution for several values
of the parameters appearing in the problem description or
by a combination of the two. The computational solutions
that are used to determine the snapshot set are determined
using costly, large-scale, high-fidelity, e.g., finite element,
codes. The POD basis is then given by the left singular vec-
tors corresponding to the most dominant singular values of
the matrix having the snapshot vectors as its columns. The
POD basis is then used, usually by applying a projection
procedure, to determine an approximate solution for differ-
ent values of the system parameters. POD-based model
reduction has been applied with some success to several
problems, notable including fluid mechanics settings. For
detailed discussions, one may consult [1–5,16,21,22,24–
26,33–38,40–46,50,51].

Centroidal Voronoi tessellations (CVTs) have been suc-
cessfully used in several applications [6–8,10–14,8,32], in-
cluding data compression settings, e.g., in image processing
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and the clustering of data. Reduced-order modeling of the
Navier–Stokes systems is another data compression setting,
i.e., one replaces high-dimensional approximations with
low-dimensional ones. CVTs can be used for this purpose
as well. In CVT reduced-order modeling, we start with a
snapshot set just as is done in a POD-based setting. We
then construct a special Voronoi clustering of the snapshot
set for which the means of the clusters are also the genera-
tors of the corresponding Voronoi clusters. The generators
of the Voronoi clustering constitute the CVT reduced-
order basis. We then use the CVT-based basis in just the
same way as one uses a POD-based basis to determine a
very low-dimensional approximation to the solution of
the Navier–Stokes system.

The efficiency of POD and CVT reduced bases depend
on their dimension, i.e., if a reduced basis is low-dimen-
sional and can still approximate the state well, then accu-
rate approximations of the solution of the Navier–Stokes
system can be inexpensively determined. However, the abil-
ity of a reduced basis to approximate the state of a system
is dependent on the information contained in the snapshot
set used to generate the basis. Certainly, a reduced basis
cannot contain more information than that contained in
the snapshot set. Thus, crucial to the success of reduced-
order modeling approaches to model reduction is the gen-
eration of ‘‘good’’ snapshot sets.

The plan for the rest of the paper is as follows. In the
remainder of this section, we briefly review finite element
approximations of solutions of the Navier–Stokes equa-
tions. Then, in Section 2, we show how POD and CVT
bases are defined and constructed and how they are used
to determine very low-dimensional approximations. In Sec-
tion 3, we use some concrete examples to show how snap-
shots sets can be generated and to compare and contrast
the performance of POD and CVT-based reduced-order
modeling. We also discuss several practical issues related
to the implementation of reduced-order models. Finally,
in Section 4, we provide some concluding remarks.

1.1. The Navier–Stokes system and its finite element

approximation

Let X denote a bounded region in R2 whose boundary is
denoted by oX = CD [ CN and let T denote a positive con-
stant. Let m denote the given (constant) kinematic viscosity
of the fluid, f(t,x) a given body force per unit mass, u0 a
given (solenoidal) initial velocity, and b a specified bound-
ary velocity. Furthermore, let u(t,x) and p(t,x) denote the
velocity and pressure fields, respectively, that are required
to satisfy the Navier–Stokes system:

ut � 2mDðuÞ þ ðu � rÞuþrp ¼ f in X� ð0; T �;
r � u ¼ 0 in X� ð0; T �;
u ¼ b on CD � ð0; T �;
�pnþ mDðuÞ � n ¼ 0 on CN � ð0; T �;
uð0; xÞ ¼ u0ðxÞ in X;

8>>>>>><>>>>>>:
ð1Þ
where DðuÞ ¼ 1
2
ðruþ ðruÞÞT.

We use a variational formulation to help define a finite
element method to approximate (1), but other methods
can be also used in the context of reduced-order modeling.
A variational formulation of the problem (1) is the follow-
ing: find u 2 L2(0,T;Vb) and p 2 L2ð0; T ; L2

0ðXÞÞ such thatZ
X

ut � v dXþ 2m
Z

X
DðuÞ : DðvÞdXþ

Z
X
ðu � rÞu � v dX;

�
Z

X
pr � vdX ¼

Z
X

f � vdX for all v 2 H1
0ðXÞ;Z

X
qr � udX ¼ 0 for all q 2 L2

0ðXÞ;
uð0; xÞ ¼ u0ðxÞ in X;

8>>>>>>><>>>>>>>:
ð2Þ

where Vb = {u 2 H1(X) :u = b on CD,b 2 H1/2(CD)}, H1
0 ¼

fu 2 H1ðXÞ : u ¼ 0 on CDg, and L2
0ðXÞ ¼ q 2 L2ðXÞ :

�R
X q dX ¼ 0g.

A typical finite element approximation of (2) is defined
as follows: we first choose conforming finite element sub-
spaces Vh � H1(X) and Sh � L2(X) and then define Vh

0 ¼
Vh\ H1

0ðXÞ, Vh
b ¼ fvh 2 Vh : vh ¼ bh on CDg, and Sh

0 ¼ Sh\
L2

0ðXÞ, where bh(t, Æ) is an approximation to b(t, Æ), e.g.,
bhðt; �Þ 2 VhjCD

can be a nodal interpolant of b(t, Æ). One
then seeks uhðt; �Þ 2 Vh

b and ph 2 Sh
0 such thatZ

X
uh

t � vh dXþ 2m
Z

X
DðuhÞ : DðvhÞdXþ

Z
X
ðuh � rÞuh � vh dX;

�
Z

X
phr � vh dX¼

Z
X

f � vh dX for all vh 2 Vh
0;Z

X
qhr � uh dX¼ 0 for all qh 2 Sh

0;

uhð0;xÞ ¼ uh
0ðxÞ in X;

8>>>>>>>><>>>>>>>>:
ð3Þ

where uh
0ðxÞ 2 Vh

b is an approximation, e.g., a projection, of
u0(x). Discretization is completed by choosing a time-
marching method such as the backward-Euler scheme.
See, e.g., [15,18] for details about finite element discretiza-
tions of the Navier–Stokes system.

2. Reduced-order modeling for the Navier–Stokes equations

In this section, we briefly describe two reduced-order
models for the Navier–Stokes system. In Section 3, we will
use concrete examples to compare the relative accuracy and
efficiency of the two approaches. Both approaches rely on
first generating a set of snapshots; see Section 3.1 for a dis-
cussion of snapshots, including how they are generated and
how they are modified to satisfy zero boundary conditions.

2.1. POD reduced-order bases

Given a discrete set of snapshot vectors W ¼ f~wngN
n¼1

belonging to RJ , where N < J, we form the J · N snapshot
matrix A whose columns are the snapshot vectors ~wn:

A ¼ ð~w1 ~w2 � � � ~wN Þ:
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Let

UTAV ¼
R 0

0 0

� �
;

where U and V are J · J and N · N orthogonal matrices,
respectively, and R ¼ diagðr1; . . . ; reN Þ with r1 P r2 P
� � �P reN be the singular value decomposition of A. Here,eN is the rank of A, i.e., the dimension of the snapshot set
W, which would be less than N whenever the snapshot set is
linearly dependent. It is well known [17] that if

U ¼ ð~/1
~/2 � � � ~/J Þ and V ¼ ð~w1

~w2 � � � ~wN Þ;

then

A~wi ¼ ri
~/i and AT~/i ¼ ri

~wi for i ¼ 1; . . . ; eN
so that also

ATA~wi ¼ r2
i
~wi and AAT~/i ¼ r2

i
~/i for i ¼ 1; . . . ; eN

so that r2
i , i ¼ 1; . . . ; eN , are the nonzero eigenvalues of

ATA (and also of AAT) arranged in nondecreasing order.
Note that the matrix C ¼ ATA is simply the correlation
matrix for the set of snapshot vectors W ¼ f~wngN

n¼1, i.e.,
we have that Cmn ¼ ~wT

m~wn.
In the reduced-order modeling context, given a set of

snapshots W ¼ f~wngN
n¼1 belonging to RJ , the POD

reduced-basis of dimension K 6 N < J is the set f~/kgK
k¼1

of vectors also belonging to RJ consisting of the first K left
singular vectors of the snapshot matrix A. Thus, one can
determine the POD basis by computing the (partial) singu-
lar value decomposition of the J · N matrix A. Alternately,
one can compute the (partial) eigensystem fr2

k ;
~wigK

i¼1 of
the N · N correlation matrix C ¼ ATA and then set
~/k ¼ 1

rk
A~wk, k = 1, . . . ,K.

The K-dimensional POD basis has the obvious property
of orthonormality. It also has several other important
properties which we now mention. Let f~skgK

k¼1 be an arbi-
trary set of K orthonormal vectors in RJ and let P~w denote
the projection of a vector ~w 2 RJ onto the subspace
spanned by that set. Further, let

Eð~s1; . . . ;~sKÞ ¼
XN

n¼1

j~wn �P~wnj2;

i.e., E is the sum of the squares of the error between each
snapshot vector ~wn and its projection P~wn onto the span
of f~skgK

k¼1. Then, it can be shown that

the POD basis f~/kgK
k¼1 minimizes E over all possible

K-dimensional orthonormal sets in RJ :

(
ð4Þ

In fact, often the POD basis corresponding to a set of snap-
shots W ¼ f~wngN

n¼1 is defined by (4) and then its relation to
the singular value decomposition of the matrix A or to the
eigenvalue decomposition of ATA are derived properties.
We note that Eð~/1; . . . ; ~/KÞ is referred to as the ‘‘POD
energy’’ or ‘‘error in the POD basis’’. Also, it can be shown
that

Eð~/1; . . . ;~/KÞ ¼
X~N

k¼Kþ1

r2
k ; ð5Þ
i.e., the error in the POD basis is simply the sum of the
squares of the singular values corresponding to the neg-
lected POD modes.

Another property of the POD basis is given as follows:

the POD basis f~/kgK
k¼1 solves the sequence of problems:

for k ¼ 1; . . . ;K; max
~sk2RJ

PN
n¼1

~wT
n~sk

� �2

subject to j~skj ¼ 1 and ~sT
j~sk ¼ 0 for j¼ 1; . . . ;k� 1:

8>>>><>>>>:
ð6Þ

Again, (6) is often used to define the POD basis and then
its relation to the singular value decomposition and (4)
are noted as derived properties.

The singular values of the snapshot matrix may be used
to determine a practical value for the dimension K of the
POD basis. Indeed, it is a simple matter to show that is
one wants the error in the POD basis to be less than some
prescribed tolerance d, i.e., that

Eð~/1; . . . ; ~/KÞ 6 d;

then one need only

choose K to be the smallest integer such thatXK

k¼1
r2

kX~N

k¼1
r2

k

P 1� d:

The perceived usefulness of POD-based reduced-order
modeling is derived from the observation that in many set-
tings one finds that, even if d is chosen to be very small,
e.g., 0.01, one can still choose K to be relatively small,
e.g., K is much smaller than eN and often can be of order
10 or so.

For reduced-order modeling applications, the snapshot
vectors are coefficient vectors in the expansion of the
finite element approximation of the velocity field evalu-
ated at different instants in time. Thus, to each snapshot
vector ~wn, n = 1, . . . ,N, there corresponds a finite element
function

wnðxÞ ¼
XJ

j¼1

wj;nnjðxÞ 2 Vh; ð7Þ

where wj,n denotes the jth component of the vector ~wn and
nj(x) 2 Vh denotes the jth finite element basis function. One
can define a POD basis with respect to functions instead of
vectors, i.e., we could start with a snapshot set W ¼
fwnðxÞgN

n¼1 consisting of finite element functions belonging
to Vh. Then, instead of (6), one could define the POD basis
f/kðxÞ 2 VhgK

k¼1 to be the solution of the sequence of prob-
lems: for k = 1, . . . ,K,

max
skðxÞ2Vh

XN

n¼1

ðwn; skÞ20

subject to ksk(x)k0 = 1 and (sj, sk)0 = 0 for j = 1, . . . ,k � 1.
Equivalently, one could define the POD basis to be the
solution of the problem: minimize
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Eðs1; . . . ; sKÞ ¼
XN

n¼1

kwn �Pwnk2
0

over all possible K-dimensional L2(X)-orthonormal sets

fskðxÞgK
k¼1 in Vh, where Pwn is the L2(X)-projection of wn

onto the span of the functions fskðxÞgK
k¼1. Equivalently

again, one can determine the POD basis by first solving
the N · N eigenvalue problem: for k ¼ 1; . . . ; eN ,

C~ak ¼ r2
k~ak; j~akj ¼ 1; ~aT

‘~ak ¼ 0 if k 6¼ ‘;
and rk P rk�1 > 0; ð8Þ

then setting

/kðxÞ ¼
XN

n¼1

1

rk
ak;nwnðxÞ for k ¼ 1; . . . ;K:

Here, we now have that the rank eN 6 N correlation matrix
C is defined by Cmn ¼ ðwm;wnÞ0, and ak,n is the nth compo-
nent of the eigenvector ~ak. Note that in terms of the snap-
shot matrix A and the mass matrix M for the finite element
basis, i.e., for Mij ¼ ðni; njÞ0, we now have that C ¼
ATMA. This fact allows us to again use the singular value
decomposition to determine the POD basis function. To
this end, let M ¼ STS, where the J · J matrix S could be
chosen to be a symmetric, positive definite square root of
M, i.e., S ¼M1=2, or S could be a Cholesky factor, i.e.,
ST ¼ L. Then, we let eA ¼ SA so that C ¼
ATMA ¼ eAT eA and therefore~ak, k = 1, . . . ,K, are the first
K left singular vectors of eA.

2.2. CVT reduced-order bases

Given a discrete set of snapshot vectors W ¼ f~wngN
n¼1

belonging to RJ , a set fV kgK
k¼1 is a tessellation of W if

fV kgK
k¼1 is a subdivision of W into disjoint, covering sub-

sets, i.e., Vk �W for k = 1, . . . ,K,Vk \ Vi = ; for k 5 i,
and

SK
k¼1V k ¼ W . Given a set of points f~zkgK

k¼1 belonging
to RJ (but not necessarily to W), the Voronoi region corre-
sponding to the point~zk is defined by

V k ¼ f~w 2 W : j~w�~zkj 6 j~w�~zij for i ¼ 1; . . . ;K; k 6¼ ig;

where equality holds only for k < i. Such a set fV kgK
k¼1 is

called a Voronoi tessellation or Voronoi diagram of W cor-
responding to the set of points f~zkgK

k¼1. The points ~zk,
k = 1, . . . ,K, are called the generators of the Voronoi dia-
gram fV kgK

k¼1 of W.
Given a density function qð~yÞP 0, defined for ~y 2 W ,

the mass centroid~z� of any subset V �W is defined byX
~y2V

qð~yÞj~y �~z�j2 ¼ inf
~z2V �

X
~y2V

qð~yÞj~y �~zj2;

where the sums extend over the points belonging to V. The
set V* can be taken to be V or it can be an even larger set
such as all of RJ . In case V � ¼ RJ ,~z� is the ordinary mean

~z� ¼

X
~y2V

qð~yÞ~yX
~y2V

qð~yÞ
:

In this case,~z� 62 W in general.
If f~zkgK
k¼1 = the set of generating points of a Voronoi

tessellation fbV K
k g and f~z�kg

K
k¼1 = the set of mass centroids

of the Voronoi regions fbV K
k g, then, in general,~zk 6¼~z�k for

k = 1, . . . ,K. If it so happens that~zk ¼~z�k for k = 1, . . . ,K,
we then refer to the Voronoi tessellation as being a centroi-

dal Voronoi tessellation (CVT). CVTs of discrete sets are
closely related to optimal k-means clusters [19,20,27,47–
49] so that Voronoi regions and centroids can be referred
to as clusters and cluster centers, respectively.

There are several algorithms known for constructing
centroidal Voronoi tessellations of a given set. Lloyd’s
method is a deterministic algorithm which is the obvious
iteration between computing Voronoi diagrams and mass
centroids, i.e., a given set of generators is replaced in an iter-
ative process by the mass centroids of the Voronoi regions
corresponding to those generators. MacQueen’s method is
a very elegant probabilistic algorithm. Other probabilistic
methods have been devised that may be viewed as general-
ization of both the MacQueen and Lloyd methods and that
are amenable to efficient parallelization. See [6,23] for
detailed descriptions of algorithms for constructing CVTs.

In the reduced-order modeling context, given a set of
snapshots W ¼ f~wngN

n¼1 belonging to RJ , the CVT
reduced-basis of dimension K 6 N < J is the set of genera-
tors f~zkgK

k¼1, also belonging to RJ , of a CVT of the snap-
shot set.

Similar to POD, CVTs also have an optimization char-
acterization. Let f~zkgK

k¼1 denote an arbitrary set of K vec-
tors in RJ and let fV kgK

k¼1 denote a tessellation of the
snapshot set f~wngN

n¼1 into K disjoint, covering subsets. Note
that, at the start, we do not require fV kgK

k¼1 to be a Voronoi
tessellation and also, we do not require any connection
between the vectors in f~zkgK

k¼1 and the sets in fV kgK
k¼1. Let

Fð~z1; . . . ;~zK ; V 1; . . . ; V KÞ ¼
XK

k¼1

X
~wn2V k

qð~wnÞj~wn �~zkj2 ð9Þ

and pose the problem: minimize Fð�; �Þ over all possible tes-

sellations of the snapshot set f~wngN
n¼1 into K clusters and all

possible sets of K points in RJ , where all the points and clus-
ters can be varied independently. The solution of this prob-
lem is a CVT, i.e., Fð�; �Þ is minimized whenever fV kgK

k¼1 is
a Voronoi tessellation and the vectors in f~zkgK

k¼1 are simul-
taneously the generators of that Voronoi tessellation and
the centers of mass of the corresponding Voronoi clusters.
Thus, (9) is referred to as the ‘‘CVT energy’’. Note that it is
simply a variance measure of the clustering fV kgK

k¼1 of the
snapshot set f~wngN

n¼1.
Again, similar to POD, one can get an indication of

what is a reasonable choice for K, the number of CVT clus-
ters, that one should use. Clearly, as K increases, the CVT
energy decreases. Also, it is clear that if K = N, i.e., the
number of CVT generators is equal to the number of snap-
shots that are being clustered, that the CVT energy is zero.
In general, if the snapshot vectors are randomly distrib-
uted, then the energy will decrease slowly as the number
of generators increases. However, if he snapshot vectors
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cluster well, then the decrease in the energy can be quite
rapid, at least until enough generators are used so that
the data is well clustered. Increasing K further will not
effect a further large decrease in the POD energy. Thus,
one can monitor the CVT energy (which is a computable
quantity) for increasing values of K and when it ceases to
decrease appreciably, one knows that one has found a
reasonable value K for the number of clusters. This effect
is known as the elbowing effect for the CVT energy that
occurs when the data is amenable to clustering.

The perceived usefulness of CVT-based reduced-order
modeling is derived from the observation that in many set-
tings one finds that even for K relatively small, e.g., K much
smaller than N, the snapshot set is well clustered into K
clusters and any further increase in the value of K does
not result in an appreciable reduction in the CVT energy.

We have defined CVTs based on a snapshot set consist-
ing of vectors in RJ that, in our context, are vectors of co-
efficients of a finite element function. One can also define
CVTs based on a snapshot set W ¼ fwnðxÞgN

n¼1 consisting
of the functions themselves, where the functions wn(x) are
related to the vectors ~wn through (7). Then, given a set
fzkgK

k¼1 of K functions belonging to Vh, we can define the
Voronoi tessellation fVkgK

k¼1 of W into K subsets by

Vk ¼ fw 2W : kw� zkk0 6 kw� zik0 for i¼ 1; . . . ;K; k 6¼ ig:

Given any subset V �W, we can also define the centroid of
V with respect to a given density function q(y) defined for
y 2W, e.g.,

z� ¼

X
y2V

qðyÞyX
y2V

qðyÞ
:

Note that, in general, z* 62 V but z* 2 span(V). Then, a
CVT of the snapshot set W ¼ fwnðxÞgN

n¼1 is again defined
to be a set of K functions fzkgK

k¼1 belonging to Vh and a
Voronoi tessellation fVkgK

k¼1 of W such that the functions
zk are simultaneously the generators of the Voronoi dia-
gram and centers of mass of the corresponding Voronoi
cell. It can be shown that such a CVT is a minimizer of
the CVT energy

Fðz1; . . . ; zK ; V1; . . . ;VKÞ ¼
XK

k¼1

X
wn2Vk

qðwnÞkwn � zkk2
0:

Although in this paper we will choose the density function
q(Æ) = 1, the variable density capability of CVT-based
reduced-order modeling could prove to be a useful tool,
e.g., for assigning a different importance to each snapshot.

2.3. The POD and CVT reduced-order models

We now show how a POD or CVT basis is used to define
a reduced-order model for the Navier–Stokes system. For
the sake of brevity, we only discuss the case for which the
snapshot set is viewed as a set of finite element coefficient
vectors; the case for which the snapshot set is a set of finite
element functions proceeds in an almost identical manner.
Let

~wk ¼
~/k for a POD reduced basis

~zk for a CVT reduced basis

(
for k ¼ 1; . . . ;K;

where f~/kgK
k¼1 is a K-dimensional POD basis correspond-

ing to the snapshot set f~wngN
n¼1 and f~zkgK

k¼1 is the set of gen-
erators of a CVT of that snapshot set. Corresponding to
each ~wk, k = 1, . . . ,K, is a finite element function

wk ¼
XJ

j¼1

wj;knjðxÞ 2 Vh;

where wj,k denotes the j-component of ~wk. Let

UK ¼ spanfwkg
K
i¼1 � Vh:

As will be illustrated in Section 3.1, the reduced-basis func-
tions satisfy homogeneous boundary conditions. We then
seek a reduced-basis approximation of the velocity field
of the form

uKðt; �Þ ¼ uK
p ðt; �Þ þ uK

h ðt; �Þ;
where uK

h ðt; �Þ 2 UK satisfies homogeneous boundary condi-
tions and uK

p ðt; �Þ 2 Vh is a particular finite element function
chosen to satisfy the boundary conditions (again, see
Section 3.1). We then determine uK

h ðt; �Þ from the discrete
problemZ

X
uK

t � v dXþ 2m
Z

X
DðuKÞ : DðvÞdX

þ
Z

X
ðuK � rÞuK � vdX ¼

Z
X

f � vdX 8v 2 UK

ðuð0; xÞ; vÞ ¼ ðu0ðxÞ; vÞ 8v 2 UK :

8>>>><>>>>: ð10Þ

Note that the pressure does not appear in these equations
and that the continuity equation in (2) is absent. This is be-
cause, as a result of the manner in which the reduced-basis
functions are constructed, they are automatically discretely
divergence free.

Because of the special form chosen for the inhomoge-
neous data b in our computational example, we will be able
to choose the particular solution uK

p ðt;xÞ to have the form
uK

p ¼ a0ðtÞw0ðxÞ, where w0 is a steady state finite element
solution of the discretized Navier–Stokes equations and
a0(t) is chosen so that uK

p ðt; xÞ satisfies the time-dependent
boundary condition. Then, the reduced-basis approxima-
tion of the velocity takes the form

uKðtÞ ¼
XK

k¼0

akðtÞwk

and (10) may be expressed as

XK

k¼0

d
dt akðtÞðwk;w‘Þ þ 2m

XK

k¼0

akðtÞðDðwkÞ;Dðw‘Þ

þ
XK

m¼0

amðtÞwm � r
XK

k¼0

akðtÞwkw‘

 !
¼ ðf;w‘Þ

XK

k¼0

akð0Þðwk;w‘Þ ¼ ðu0;w‘Þ

8>>>>>>>>>>><>>>>>>>>>>>:
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for ‘ = 1, . . . ,K. Equivalently, we have the system of non-
linear ordinary differential equations that determine the
coefficient functions fakðtÞgK

k¼1:

G d
dt
~aðtÞ þK~aðtÞ þ a0ðtÞH~aðtÞ þ ð~aðtÞÞTN~aðtÞ ¼ ~f ðtÞ;

M~að0Þ ¼~a0;

(
ð11Þ

where the Gram matrix G, stiffness matrix K, convection
matrix H, convection tensor N, and solution vector ~aðtÞ
are respectively given by

G‘k ¼
Z

X
wk � w‘ dX; K‘k ¼ 2m

Z
X

DðwkÞ : Dðw‘ÞdX;

H‘k ¼
Z

X
ðw0 � rwk � w‘ þ wk � rw0 � w‘ÞdX

N‘mk ¼
Z

X
ðwm � rÞwk � w‘ dX and ð~aÞk ¼ akðtÞ

for k, ‘,m = 1, . . . ,K, and the forcing vector ~f ðtÞ and initial
data vector ~a0 are respectively given by

ð~f Þ‘ ¼
Z

X
f � w‘dX� d

dt
a0ðtÞ

Z
X

w0 � w‘dX

� 2ma0ðtÞ
Z

X
rw0 : rw‘dX� a2

0ðtÞ
Z

X
w0 � rw0 � w‘dX

and

ð~a0Þ‘ ¼
Z

X
u0 � w‘ dX�

Z
X

a0ð0Þw0 � w‘ dX

for ‘ = 1, . . . ,K. Note that all of these matrices and tensors
are full; however, since K will be chosen small (see Section
3.3), this does not cause any computational inefficiencies.
Another important observation is that matrices G, K,
and H and the tensor N depend only on the reduced-basis
functions fwkg

K
k¼1 so that they may be all pre-computed;

thus, no finite element-type assembly is required to define
the system (11).

2.4. The error in a reduced-order solution

At any given time t, we define the ‘‘error’’ E(t) in a
reduced-order solution, be it of the POD or CVT type, to
be the L2(X)-norm of the difference between the full finite
element solution and the reduced-order solution, i.e.,

EðtÞ ¼
Z

X
ðufe � uKÞ2 dX

� �1=2

; ð12Þ

where ufe denotes the approximate velocity field determined
using the full finite element simulation code and uK denotes
the approximate velocity field determined by either a POD
or CVT reduced-order model. Also of interest is the space-
time error

ET ¼
Z T

0

E2ðtÞdt
� �1=2

¼
Z T

0

Z
X
ðufe � uKÞ2 dXdt

� �1=2

: ð13Þ
It is important to note that there are two contributions to
these ‘‘errors.’’ One is due to the fact that the reduced-
order model does not exactly reproduce the information
contained in the snapshot set. The other contribution to
the errors is due to the fact that the snapshot set itself can-
not exactly represent the full finite element solution.

Recall that both the POD and CVT reduced bases are
determined from a set of snapshots and that those bases
are designed so that the information contained in the snap-
shot set can be captured by a reduced basis of dimension K

much smaller than the cardinality N of the snapshot set,
i.e., anything in the span of the snapshot set can be approx-
imated well by a very low-dimensional reduced basis. Thus,
a reduced-order model, be it of POD or CVT type, cannot
possibly do better than what information it is given, i.e.,
the information contained in the snapshot set.

Even if a POD or CVT reduced-order model could
exactly capture the information contained in the snapshot
set, the errors (12) and (13) would not vanish because the
snapshot set itself cannot exactly capture all the informa-
tion contained in a full finite element solution. In the first
place, a snapshot cannot exactly represent even the finite
element solutions used in its construction because that
set consists of a time-sampling of those solutions. More
important, a snapshot set is determined using finite element
solutions for system data, e.g., boundary conditions, that
are different from those used in the simulations carried
out using a reduced-order model. Thus, one relies on the
snapshot set being able to represent solutions different
from those that were used in its construction.

It has been demonstrated many times in the literature
that POD-based reduced-order models are excellent at
approximating the information contained in the snapshot
set used in their construction; the computational experi-
ments reported in Section 3 provide another such example.
Thus, the real key to designing reduced-order models of
either the POD or CVT type is to construct a snapshot
set that contains sufficient information so that the full finite
element solutions of the problems to be solved using the
reduced-order model can be approximated well by some
member of the span of the snapshot set. The POD or
CVT reduced-order model merely does a good job of
approximating that member in a reduced-space of much
smaller dimension.

3. Computational experiments

To compare the use, efficiency, and accuracy of the POD
and CVT-based reduced-order modeling techniques, one
example is considered, which we denote the T-cell problem.

This is an incompressible, viscous flow problem having
boundary conditions that include an inflow shape function
containing a multiplicative, time-varying parameter c that
controls the strength of the inflow.

The T-shaped region X is sketched in Fig. 1; its bound-
ary oX is made up of CN = Co and CD = Ci \ Cd (see
Fig. 1), where Ci = {x = 0;0.5 < y < 1.0} and Co = {x =



Fig. 1. The flow region for the T-cell example.
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1;0.5 < y < 1.0} are the inflow and outflow parts of the
boundary, respectively, and Cd ¼ oX n ðCi [ CoÞ. The gov-
erning equations for two dimensional incompressible,
viscous flow in the T-shaped region are the Navier–Stokes
system (1) with the data f = 0 in X and

b ¼
0 on ð0; T Þ � Cd ;

100cðtÞð1� yÞð0:5� yÞ
0

� �
on ð0; T Þ � Ci:

8<: ð14Þ

In (14), c(t) is a parameter function that determines the
strength of the parabolic inflow velocity profile.

The P2–P1 Taylor-Hood finite element pair on a grid
of 4961 nodes is used in the discrete weak formulation
(2) to obtain accurate Galerkin-mixed method finite ele-
ment approximations of the solutions of (1) with data given
in (14); the time derivative is discretized by a backward-
Euler method. Finite element solutions are used for the
generation of snapshots and later for comparison with
POD and CVT-based reduced-order solutions.

For the generation of snapshots, we will also solve, by
the finite element method, stationary versions of our gov-
erning system for which the time derivative term and the
initial condition in (1) are omitted and c in (14) is chosen
independent of t.

3.1. Generating snapshots

For all simulations involved in the snapshot generation
process, we choose m = 1. We use the following procedure
to determine a set of snapshot vectors. First, the finite ele-
ment approximation to the stationary version of (1) and
(14) with c = 1 is obtained. Using that steady state solution
as the initial data u0 in (1) and using c = 5 for 0 < t < T/
2 = 0.025 and c = 1 for 0.025 < t < T = 0.05 in the bound-
ary condition data (14), we then determine a finite element
approximation

PJ
j¼1wjðtÞnjðxÞ of the solution of (1) and

(14), where J denotes the dimension of the finite element
space used for the velocity and fnjg

J
j¼1 denotes the basis

functions for that space. This is the flow we use to generate
the snapshots; it can be viewed as one for which the steady
state solution for c = 1 is suddenly jolted, at t = 0, by
increasing the value of c to five, and jolted again at t =
T/2 = 0.025 by decreasing the value of c back to one.
The 500 snapshot vectors

~wn ¼

w1ðtnÞ

w2ðtnÞ

..

.

wJ ðtnÞ

0BBBBBB@

1CCCCCCA; n ¼ 1; . . . ;N ¼ 500 ð15Þ

are then determined by evaluating the solution of this
impulsively started problem at 500 equally spaced time val-
ues tn, n = 1, . . . , 500, ranging from t = 0 to t = T = 0.05.
Note that the time interval used for sampling snapshots
is a multiple of the time interval used for the time discret-
ization of Navier–Stokes system (3). The snapshot vectors
f~wngN

n¼1 correspond to the snapshot functions

wnðxÞ ¼
XJ

j¼1

wjðtnÞnjðxÞ for n ¼ 1; . . . ;N ¼ 500:

For subsequent use, it is convenient to modify the 500
snapshots so that they satisfy homogeneous boundary con-
ditions. To this end, we first obtain the reference finite
element approximation vðxÞ ¼

PJ
j¼1vjnjðxÞ of the station-

ary version of (1) with c = 3 in (14). We then modify the
first 250 snapshots by

wn  wn �
5

3
v

� �
or ~wn  ~wn �

5

3
~v

� �
for n ¼ 1; . . . ; 250

and, in the same way, the second 250 snapshots are
modified

wn  wn �
1

3
v

� �
or ~wn  ~wn �

1

3
~v

� �
for n ¼ 251; . . . ; 500;

where ð~vÞj ¼ vj for j = 1, . . . ,J. In this way, all the snap-
shots satisfy homogeneous boundary conditions.
3.2. POD reduced bases

POD reduced bases corresponding to the snapshot set
f~wngN

n¼1 are determined as described in Section 2.1. Note
that since the inhomogeneous boundary conditions have
been ‘‘subtracted away’’ from the snapshot vectors, each
POD basis function satisfies zero Dirichlet boundary con-
dition at the inlet; in the interior of the flow domain, each
basis function satisfies the discretized continuity equation,
i.e., it is discretely solenoidal. Also, note that the elements
of a K-dimensional POD basis constitute the first K ele-
ments of all POD bases of dimension greater that K. For
the snapshot set determined as described in Section 3.1,
the eight-dimensional POD basis functions are displayed
in Fig. 2.



Fig. 2. The POD reduced basis of cardinality 8 for the T-cell problem.
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For the snapshot set determined as described in Section
3.1, the first 16 singular values of the corresponding
snapshot matrix are listed in Table 1. We see that the
singular values decrease rapidly indicating that, for the
T-cell problem we consider here, a ‘‘small-dimensional’’
POD basis can capture most of the information contained
in the snapshot set. This behavior cannot, of course, be
universal, but it has been observed in many other
examples.
Table 1
The first 16 singular values of the snapshot matrix for the T-cell problem

1 2.7234 5 0.0866 9 0.0077 13 0.0014
2 0.6704 6 0.0349 10 0.0060 14 0.0010
3 0.2612 7 0.0168 11 0.0029 15 0.0008
4 0.1197 8 0.0151 12 0.0023 16 0.0004
3.3. CVT reduced bases

CVT reduced bases corresponding to the snapshot set
f~wngN

n¼1 are determined as described in Section 2.2. For
the snapshot set determined as described in Section 3.1,
the eight-dimensional CVT basis functions are displayed
in Fig. 3. As was the case for the POD basis functions,
the CVT basis functions are discretely solenoidal and sat-
isfy zero Dirichlet boundary condition at the inlet. How-
ever, unlike the POD basis functions, the CVT basis is
not built by augmenting a CVT basis of smaller cardinality;
in general, one observes that elements of two CVT bases
generated from the same snapshot set but having different
cardinalities seem to differ significantly.

We examine what happens to the CVT energy as the
number of generators is increased. For the snapshot set
determined as described in Section 3.1, the result is given
in Table 2 and Fig. 4. The elbowing effect is evident. For
Fig. 3. The CVT basis of cardinality 8 for the T-cell problem.



Table 2
The CVT energy vs. the number of CVT generators for the T-cell problem

4 9837 8 2879 12 1442 16 833
5 6250 9 2254 13 1241 17 751
6 4857 10 1906 14 1041 18 669
7 3524 11 1697 15 936 19 626
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Fig. 4. The CVT energy vs. the number of CVT generators for the T-cell
problem.
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very few generators, increasing the number of generators
effects a large decrease in the CVT energy, but as the num-
ber of generators increase, the reduction in the energy
becomes much smaller. This is an indication that the snap-
shot set for the T-cell problem clusters well. Again, this
phenomenon has been observed in many other settings,
but is not universal.

It is interesting to examine some details, given in Table 3,
about the CVT clustering of the snapshot set. That table is
for an eight-dimensional CVT clustering of the snapshot
set determined as described in Section 3.1. For each of
the eight clusters, the number of elements in each cluster,
the indices n of the snapshots ~wn that are members of the
cluster, and the contribution to the CVT energy of the clus-
ter are given, as is the total CVT energy. In the interest of
clarity, we have renumbered the cluster indices so that the
Table 3
Cluster statistics for a CVT clustering of cardinality 8 for the T-cell
problem

Cluster
number

Cardinality
of cluster

Snapshot
indices

Cluster energy
contribution

1 5 [1,5] 281.1
2 10 [6,15] 247.5
3 18 [16,33] 236.4
4 41 [ 34,74] 215.3
5 369 [75,250] + [308,500] 532.1
6 7 [251,257] 523.3
7 15 [258,272] 428.3
8 35 [273,307] 420.1

Total 500 [1,500] 3212.5
cluster numbers in Table 3 do not correspond to the order-
ing implicit in Fig. 3. Note that, except for the fifth cluster,
the clusters are formed exactly from a sequence of data
points at neighboring times. This is not surprising since
clusters should contain snapshots that are, in some sense,
alike so that all elements in the cluster can be represented
well by the cluster generator, i.e., by the mean of the cluster
members. The two smallest clusters, the first and the sixth,
correspond to the initial transient, and the ‘‘shock’’ to the
system that occurs after step 250 when the system para-
meter a is changed abruptly. Since the solution is chang-
ing rapidly at those times, it makes sense that the clusters
are small, and yet still contribute a sizable amount to the
CVT energy. Also, the exceptional fifth cluster includes
snapshots from two different time intervals that correspond
to the relatively quiescent ‘‘tails’’ of the two evolution
processes; again, it is not surprising that those two sets of
snapshots are assigned to the same cluster by the CVT
process.

3.4. Determining POD and CVT reduced-order

approximations

Given a boundary forcing function c(t), we use the K-
dimensional system of nonlinear ordinary differential
equations (11) to determine reduced-order solutions of
the Navier–Stokes system in the T-cell configuration.
Approximations of solutions of the system of ordinary dif-
ferential equation (11) are determined using a fourth order
Adams–Moulton method.

The matrices and tensor appearing in the system (11)
depend only on the choice of reduced basis, so that once
a POD or CVT basis is determined as described in Sections
3.2 and 3.3, respectively, they can be computed and used
over and over again for different choices of c(t).

In Section 2.3, the reference solution w0(x) was used to
determine the particular solution uK

p that satisfies the inho-
mogeneous boundary condition along CD. In the context of
the T-cell problem, this reference solution is chosen to be
the steady state solution of the Navier–Stokes system with
c = 3, i.e., the function v of Section 3.1. Then, we choose

a0ðtÞ ¼ cðtÞ=3 ð16Þ
so that a0(t)w0(x) = a0(t)v(x) satisfies the inhomogeneous
boundary condition along the inlet Ci of the T-cell prob-
lem. The function a0(t) given by (16) is used in the system
(11). In addition, we choose f(x, t) = 0.

The specification of the system (11) is completed by
choosing the boundary velocity forcing function c(t) and
an initial condition u0(x). To illustrate the use and effective-
ness of the low-dimensional POD and CVT-based reduced-
order models, we employ several shapes for the inlet velo-
city forcing factor c(t) and several different choices for
the dimension of the reduced bases. The initial condition
u0(x) is chosen to be a steady state solution of the
Navier–Stokes system that is compatible with the bound-
ary data c(t).
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3.5. Boundary velocity forcing functions and initial data

The specific choices used for c(t) in the reduced-order
simulation using the system (11) are given as follows.

• Case 1 – a hat function with respect to time (solid curve
in the left of Fig. 5):

cðtÞ ¼

400

3
t þ 1 for 0 6 t 6 0:03;

� 400

3
t þ 9 for 0:03 6 t 6 0:06:

8>><>>:
• Case 2, 3, and 4 – sinusoidal functions with respect to

time:

cðtÞ ¼ 3þ 2 sinð2aptÞ for 0 6 t 6 0:06;

where a = 10 for Case 2 (dashed curve in the left of
Fig. 5), a = 25 for Case 3 (dotted curve in the left of
Fig. 5), and a = 50 for Case 4 (dotted curve in the
middle of Fig. 5).

• Case 5 – a ‘‘general’’ function with respect to time (dot-
dashed curve in the middle of Fig. 5):

cðtÞ ¼ 3þ 2 cosð18ptÞ sinð70pðtþ 10ÞÞ for 0 6 t 6 0:06:

• Case 6: a hat function with respect to time (solid curve in
the right of Fig. 5):

cðtÞ ¼
180t þ 1 for 0 6 t 6 0:05;

�180t þ 19 for 0:05 6 t 6 0:1:

�
• Case 7: a ‘‘general’’ function with respect to time (dot-

dashed curve in the right of Fig. 5):

cðtÞ ¼ 6� 5 cosð9ptÞ sinð90t þ bÞ for 0 6 t 6 0:1;

where b = arcsin(3/5).

The initial data u0(x) is chosen to be the steady state
solution of the Navier–Stokes system for c = 1 for Cases
1 and 6 and c = 3 for the other five cases. These choices
insure that the initial and boundary data for each case
are compatible.

Some remarks about the seven boundary forcing func-
tions c(t) used in the computational experiments are in
order. First, for all seven cases, that function is completely
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Fig. 5. The seven choices for the inflow forcing function c(t) u
different from the step function used to generate the snap-
shots. This is, of course, how one wants to use a reduced-
order model: generate a reduced-basis using snapshots
determined from finite element simulations for some spe-
cific choice of data for the Navier–Stokes system, and then
solve the reduced-order model for a variety of different
data. Second, we note that Cases 1–5 are mostly of an
‘‘interpolatory’’ nature. In the first place, for those cases,
we have that 1 6 c(t) 6 5 which is exactly the same bounds
satisfied by the function c(t) used to generate the snap-
shots. In the second place, for Cases 1–5, the reduced-
order simulations are carried out over the time interval
[0,0.06] which is only 20% larger than the time interval
[0,0.05] used to generate the snapshots. Cases 6 and 7
are much more ‘‘extrapolatory’’ in nature. First, we have
that 1 6 c(t) 6 10 so that the reduced-order simulations
see values of c that are twice as large as what is seen
during the generation of snapshots. Second, the time inter-
val used for the reduced-order simulations is [0,0.1] which
is twice as large as that used for the generation of
snapshots.
3.6. Computational results

For all seven cases, full finite element solutions employ-
ing thousands of unknowns are determined so that they
may be compared to the POD and CVT reduced-order
solutions for the same data. Specifically, for the comp-
arisons, we use the measures E(t) and ET defined in (12)
and (13), respectively.

In Figs. 6–12, plots of E(t) vs. the time t are provided for
each of the seven test problems described in Section 3.5.
The top of row of each figure is for POD-based reduced-
order modeling; plots are provided for eight different
choices for K, the dimension of the POD basis. The values
of K used range from 4 to 16. The middle row of each figure
provides similar information for CVT-based reduced-order
modeling. Thus, the top two rows of each figure can be
used to study the performance of each reduced-order
model as the dimension of the reduced-bases is increased.
The bottom row of each figure provides some selected plots
of E(t) for both the POD and CVT-based reduced-order
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sed in the reduced-order simulations plotted vs. the time t.
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Fig. 6. E(t) for the POD and CVT-based reduced-order models vs. time t for Case 1.
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solutions and can be used to compare the relative perfor-
mance of the two approaches.

An examination of Figs. 6–12 shows, at least for the T-
cell example we consider, that very low-dimensional POD
and CVT-based reduced-order models are both quite effec-
tive at approximating full finite element solutions; one sees
that even for bases of dimension less than 10, the ‘‘error’’
E(t) is small. One also sees that if the dimension K of the
basis is about 12, increasing that dimension effects very lit-
tle improvement in the performance of the POD and CVT
reduced-order models. This is an indication that POD and
CVT reduced-order models of dimension about 12 already
effectively capture all of the information contained in the
snapshot set that, in our example, has cardinality 500. This
conclusion can also be inferred from Table 4 where the
space-time ‘‘error’’ ET vs. K is listed. We see that there is
almost no reduction in this error if K is increased from
12 to 16.

Comparing Figs. 6–10 and Figs. 11, 12 that respec-
tively correspond to ‘‘interpolatory’’ and ‘‘extrapolatory’’
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Fig. 7. E(t) for the POD and CVT-based reduced-order models vs. time t for Case 2.
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uses of the reduced-order models, we see that the ‘‘errors’’
in the latter case are not much worse that those for
the former, although there is some deterioration evident
in the performance of the reduced-order models near
the end of the extrapolated simulation time interval
[0,0.1].

Finally, Figs. 6–10 and Table 4 show that, as far as the
ability of POD and CVT-based reduced-order models to
approximate full finite element solutions, there is very little
to choose between them.
4. Concluding remarks

We saw in Sections 2.1 and 2.2 that snapshots can be
viewed either as finite element coefficient vectors or as finite
element functions. The net effect of taking the latter view is
the appearance of the finite element mass matrix M in, e.g.,
(8). Although handling the appearance of the mass matrix
does not add a significant cost to the determination of a
reduced basis, it also does not appreciably affect the effec-
tiveness of the reduced-order model. For this reason, in
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Section 3.6, we only provided results based on viewing
snapshots as coefficient vectors.

The results given in Section 3.6 show that POD and
CVT-based reduced-order modeling seem to be equally
effective with regards to their ability to approximate solu-
tions of the Navier–Stokes system for low values of the
Reynolds number. POD-based reduced-order modeling
has also been shown to be effective for some high Reynolds
number problems but CVT-based reduced-order modeling
has not been extensively applied, either in this or other
papers, for this case. Thus, no conclusive comparisons of
the merits of the two approaches can be made until
CVT-based reduced-order modeling is applied to high
Reynolds number problems.

The costs of determining a single POD and CVT
reduced-order basis are pretty much the same. Certainly,
once a reduced basis has been determined, the costs of
carrying out a POD or CVT reduced-order simulations
are the same. So, the only cost difference between the two
approaches is what it costs to determine a reduced basis.
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There are two contributions to the latter cost. First is the
cost incurred for generating the snapshot set; since the con-
struction of POD and CVT bases both use the same snap-
shot set, this cost is the same for the two approaches.
Furthermore, although the costs of generating the POD
and CVT bases from a given set of snapshots may be differ-
ent, for both approaches that cost is miniscule compared to
the cost of generating the snapshot set itself. For example,
for the T-cell problem, the cost of determining a reduced-
order basis from the snapshot set is less than one-half of
one percent of the cost of determining the snapshot set
itself. POD does have one advantage over CVT, namely
that the POD bases are nested, i.e., a POD basis contains
all the POD bases of lower dimension; this it not true about
CVT bases. Again, this advantage is not huge since the
costs of determining a second basis, should one be needed,
from the snapshot set is very small compared to the cost of
determining the snapshot set itself.

As has already been mentioned, at this point in time,
one cannot give a definitive answer to the question of
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which reduced-order modeling approach is better. There
have been many variations on the POD theme already
developed in the literature, but the usefulness of these vari-
ations and especially what improvements they effect over
plain-vanilla POD has not yet been clearly demonstrated.
There are also several improvements possible in CVT-
based reduced-order modeling. For example, it is possible
that a judicious choice for the CVT-density function q(Æ)
(see Section 2.2) can result in better performance. Perhaps
after ‘‘improved’’ POD and CVT-based reduced-order
models have been developed and thoroughly tested and
after CVT-based models have been applied to high Rey-
nolds number problems an answer to the question of which
approach is better will become apparent. Certainly, at this
time, one cannot say that CVT-based reduced-order mod-
eling has definite advantages over the POD alternative.

In the end, it may not be necessary to choose between
the POD and CVT approaches to reduced-order modeling
since it is possible to develop combinations of the two
approaches that hopefully would take advantage of the
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best features of both. For example, one could use a CVT
algorithm to cluster the snapshots and then apply a POD
analysis to each cluster separately instead of to the whole
snapshot set. The final reduced basis would consist of the
collection of POD basis vectors for all the clusters. More
sophisticated POD-CVT combinations are discussed in
[9]. The development and testing of such combined
reduced-order models is currently under way.

It is of interest to compare the CPU times for effecting a
simulation of the T-cell problem using a POD or CVT-
based reduced-order model with that needed for a full finite
element simulation. Such a comparison is given in Table 5
for the input data of Case 2. All computations were carried
out on a Dell Precision Workstation 650 with dual
3.02 GHz CPUs. Note that 32,855 s were required to
obtain the 500 snapshots that recall were generated by a
calculation over the time interval (0, 0.05) which was
shorter than the interval (0, 0.06) used in the simulations
of Table 5. We see from the table the tremendous reduction
in computing time that is effected by using a reduced-order



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
4 POD basis
5 POD basis
6 POD basis
7 POD basis

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 10
–3

  8 POD basis
10 POD basis
12 POD basis
16 POD basis

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
4 CVT basis
5 CVT basis
6 CVT basis
7 CVT basis

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 10
–3

  8 CVT basis
10 CVT basis
12 CVT basis
16 CVT basis

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
4 POD basis
6 POD basis
4 CVT basis
6 CVT basis

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 10
–3

8 POD basis
12 POD basis
8 CVT basis
12 CVT basis

Fig. 12. E(t) for the POD and CVT-based reduced-order models vs. time t for Case 7.

J. Burkardt et al. / Comput. Methods Appl. Mech. Engrg. 196 (2006) 337–355 353
model. For example, once the reduced-bases have been
determined (presumably this is considered an ‘‘off-line’’ cal-
culation), one can do 2553 12-dimensional POD or CVT
simulations for the same cost as a single full finite element
simulation; one can do 28,673 six-dimensional reduced-
order simulations for the same price! It is exactly this tre-
mendous decrease in the costs of simulations that makes
reduced-order modeling a subject of such intense interest.

In fact, the results given in Table 5 are pessimistic

because the reduced-order simulations were carried out
using a finite element-type assembly of the reduced-order
model (10). If that model is pre-assembled, i.e., if we use
(11) with a pre-assembly of the matrices and tensors
involved, a substantial reduction in the CPU times for
reduced-order modeling can be realized.

Finally, we want to emphasize that both POD and CVT
reduced-order modeling seem to do a good job at extract-
ing all of the useful information contained in snapshot sets.
Thus, more attention than has so far been expended should
be paid to developing methodologies for determining good



Table 4
ET for the POD and CVT-based reduced-order models vs. the dimension
K of the reduced-basis space for Case 5

K POD CVT

4 6.125e�02 5.264e�02
5 3.255e�02 1.012e�01
6 2.192e�02 2.976e�02
7 2.097e�02 4.038e�02
8 1.914e�02 2.147e�02
10 1.830e�02 1.857e�02
12 1.787e�02 1.761e�02
16 1.736e�02 1.721e�02

Table 5
For Case 2, the CPU times in seconds for POD or CVT simulations vs. the
dimension K of the reduced basis and the CPU time for the full finite
element simulation

K CPU time

4 0.641
5 0.719
6 1.375
7 2.078
8 3.515
10 8.093
12 15.438
16 52.438

Full FEM 39,427
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snapshot sets, i.e., to determine snapshot sets that contain
the information needed to accurately approximate the
results of the problems one wishes to apply a reduced-order
model to.
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