
Insensitive functionals, inconsistent gradients, spurious minima,
and regularized functionals in flow optimization problems

John Burkardt∗ Max Gunzburger∗ Janet Peterson∗

Abstract

We use the simple context of Navier-Stokes flow in a channel with a bump to examine problems
caused by the insensitivity of functionals with respect to design parameters, the inconsistency
of functional gradient approximations, and the appearance of spurious minima in discretized
functionals. We discuss how regularization can help overcome these problems. Along the way,
we compare the discretize-then-differentiate and differentiate-then-discretize approaches to op-
timization, especially as they relate to the issue of inconsistent functional gradients. We close
with a discussion of the implications that our observations have on more practical flow control
and optimization problems.

Key words: flow control, flow optimization, regularization, inconsistent gradients, spurious min-
ima, insensitive functionals

1 Introduction

The optimization or control of flows through the use of high-fidelity CFD simulation codes coupled
with sophisticated optimization strategies has, over the last dozen or so years, become a subject
of great interest to the engineering and applied mathematics communities. Many great successes
using this coupled strategy, both theoretical and practical, have been seen. However, the routine
use of such a strategy is not yet realized for two reasons. First, for many problems, especially in
three dimensions, the cost of approximate flow solves is still too high to make practical optimization
(which usually requires multiple flow solves) a reality. Second, a number of pitfalls can arise when
one applies the coupled CFD-optimization strategy which can render even the best optimizer useless
or at least ineffective in producing desired optimal solutions. It is this second difficulty that we
want to address in this paper. Using a very simple flow optimization problem, we systematically
show how a number of pitfalls can arise.

The specific pitfalls we consider are:
• the possible insensitivity of functionals with respect to design parameters;
• the possible inconsistency of functional gradient approximations; and
• the possible appearance of spurious minima in discretized functionals.

We examine how regularization of the objective functional can help avoid or overcome the pitfalls.
All this is done in the context of very simple optimization problems for low Reynolds number,
viscous, incompressible flow in a two-dimensional channel having a bump along one of its walls.
Along the way, we also compare the discretize-then-differentiate and differentiate-then-discretize
approaches to optimization, especially in the context of the second pitfall. We end with a brief

∗Department of Mathematics, Iowa State University, Ames IA 50011-2064. Supported by the Air Force Office of
Scientific Research under grant number F49620-95-1-0407.

1

discussion of the implications that our study has to more complex, and therefore more useful, flow
control and optimization problems.

We note that a nozzle design problem for Euler flows containing shock waves for which spurious
minima also arise is discussed in [11]. The effects of inaccuracies in computed sensitivities for flows
with discontinuities is discussed in [1].

1.1 The model problem

We consider steady, incompressible, viscous flow in the channel 0 < x < 10 and 0 < y < 3 having
a bump on the lower wall extending from x = 1 to x = 3. The flow is described by solutions of the
stationary Navier-Stokes system

− 1
Re

∆u + u · ∇u + ∇p = 0 and ∇ · u = 0 in the channel (1)

along with the boundary conditions

u = 0 on the lower and upper walls, (2)

u =
(

u
v

)
=

(
α0y(3 − y)

0

)
at the inflow x = 0 , (3)

along with standard outflow conditions at x = 10, the downstream end of the channel. In (1)–(3),
u and p denote the velocity and pressure fields, respectively, Re is the Reynolds number, and α0 is
a parameter that determines the mass flow rate at the inflow. We denote by u and v the horizontal
and vertical components, respectively, of the velocity vector u.

The bump is determined as a sum of Bezier polynomials [4]; some of the coefficients in the sum
are determined by the requirement that the bump continuously meets the straight channel walls
on either side of it; there remain three coefficients {αk}3

k=1 at our disposal to effect changes in the
flow field. The coefficient α0 appearing in the inflow boundary condition (3) is another parameter
at our disposal. The exact details of the description of the bump and of other aspects of the model
problem are not crucial to the discussion we are about to undertake. Here, it suffices to assume
that the bump is described by

yB(x;α1, α2, α3) = Ψ(x) +
3∑

k=1

αkΦk(x) for 1 ≤ x ≤ 3 , (4)

where Ψ(x) and Φk(x), for k = 1, 2, 3, are given functions.
We compute a target flow (ûh, v̂h, p̂h) by solving the Navier-Stokes system (1)–(3) (by a finite

element method) with the parameters chosen to be

α̂0 = 0.5, α̂1 = 0.375, α̂2 = 0.5, and α̂4 = 0.375. (5)

Although the bump is described as a sum of higher degree polynomials, for the target values of the
bump parameters, the target bump reduces to a parabola.

The objective functional is given by, for some xm in the interval [3, 10],

J h(α0, α1, α2, α3) =
∫ 3

0

(
uh(xm, y;α0, α1, α2, α3) − ûh(xm, y)

)2
dy (6)

so that it measures the discrepancy between the horizontal velocity component uh of the discretized
flow and the horizontal velocity component ûh of the target flow along a vertical line across the

2

channel located at the position x = xm downstream of the bump. Note that (6) is a discretized
functional since the integrand involves the discretized target flow ûh and uh, a candidate flow
determined by solving the discretized flow equations for a particular guess for the parameters. The
functional could be (and usually is) further discretized by approximating the integral in (6) by a
numerical integration rule. In the finite element setting, the integrand is a polynomial and we can
easily perform the integration in (6) exactly.

The optimization problem is then given as follows: for a given xm, minimize the functional J h

with respect to the parameters {αk}3
k=0, subject to (uh, vh, ph) satisfying the discretized Navier-

Stokes equations.
For all our calculations, we choose the value of the Reynolds number to be 10 and we apply a

Taylor-Hood finite element discretization of the Navier-Stokes system [6]. Unless otherwise noted,
we use a logically Cartesian grid of size h = 0.25, with the obvious squeezing in the region above
the bump. (This level of grid refinement is sufficient to obtain accurate flow solutions for Re = 10.)
Optimization is effected by a quasi-Newton BFGS/trust region method [3, 5] with a very tight
convergence tolerance = 10−9. For all cases, the initial values of the four parameters are chosen to
be zero. Note that the target flow and parameters are feasible, i.e., an optimizer should be able to
obtain exact values of the parameters and the value of the functional at the optimum is zero. Of
course, gradient based optimization algorithms are required to find a point in parameter space at
which the gradient of the functional vanishes; in general, they will not make use of the fact that,
in our case, the functional itself vanishes at such a point. However, the vanishing of the functional
at the optimum certainly is information we can use to monitor the performance of optimization
methods.

The number of optimization steps given in the tables below are relatively high since we are
converging solutions to an extremely tight tolerance; in practice, it makes no sense to iterate
beyond something a little smaller than the discretization error for the approximate solution of the
state equations; in that case, the number of iteration steps needed will be drastically reduced.

It is difficult to come up with a more straightforward or elementary flow control or optimization
problem than the one we consider here. However, as we shall see, even in this simple setting, all
sorts of difficulties can arise.

1.2 Determining the gradient of the functional

The optimization method we use employs the gradient of the functional to determine new guesses
of the parameters from old guesses. We use two approaches for determining the gradient; the first is
a discretize-then-differentiate approach and the second is a differentiate-then-discretize approach.

The first approach is to approximate the gradient of the functional by a finite difference quotient
approximation. For example, for the first parameter, we have

∂J h

∂α0
≈ J h(α0 + δα0, α1, α2, α3) − J h(α0, α1, α2, α3)

δα0
, (7)

where δα0 is a chosen (usually small) increment in the parameter α0. Similar expressions hold for
the other three parameters. Here, ∂J h/∂αk, k = 0, 1, 2, 3, denote the components of the gradient
of the functional with respect to the parameters {αk}3

k=0. Note that to determine the approximate
first component of the gradient by (7), we need to solve the flow system (1)–(3) for the parameter
set {α0 + δα0, α1, α2, α3}. To determine approximations to all four components of the gradient of
the functional requires four additional approximate flow solves.

An approximation to the gradient of the functional can be detemined more efficiently with the

3

help of the sensitivities

uk =
(

uk

vk

)
=

∂u

∂αk

∂v

∂αk

 and pk =
∂p

∂αk
for k = 0, 1, 2, 3 . (8)

In general, we cannot determine the sensitivities exactly. In a differentiate-then-discretize approach
which we refer to as the sensitivity equation method, we first differentiate the flow system (1)–(3)
with respect to each of the design parameters {αi}3

k=0 to obtain the four continuous sensitivity
systems: for k = 0, 1, 2, 3,

− 1
Re

∆uk + uk · ∇u + u · ∇uk + ∇pk = 0 and ∇ · uk = 0 in the channel, (9)

uk = 0 on the lower and upper walls except along the bump, (10)

and

uk =

0 if k = 0

−
(

∂u
∂y

)
Φk if k = 1, 2, 3

along the bump, (11)

uk =
{

y(3 − y) if k = 0
0 if k = 1, 2, 3

and vk = 0 at the inflow x = 0 , (12)

and the same outflow conditions as used for the velocity u and pressure p. For details, see, e.g.,
[7, 8]. We then determine approximate sensitivities by discretizing (9)–(12), e.g., by using the same
finite element method as was used to discretize the flow system (1)–(3). We denote the approximate
sensitivities determined by this process, e.g., by first differentiating the flow equations and then
discretizing the resulting continuous sensitivity equations, by(

∂u

∂αk

)h

,

(
∂v

∂αk

)h

, and
(

∂p

∂αk

)h

, for k = 0, 1, 2, 3 . (13)

One can instead use a discretize-then-differentiate approach for determining approximate sensi-
tivities. In this approach, one first discretizes the flow equations, e.g., by a finite element method.
Then one differentiates the discretized flow equations with respect to the design parameters to
obtain four systems of discrete equations for the approximate flow sensitivities. We denote the
approximate sensitivities determined by this process, e.g., by first discretizing the flow equations
and then differentiating the resulting discretized flow equations, by

∂uh

∂αk
,

∂vh

∂αk
, and

∂ph

∂αk
, for k = 0, 1, 2, 3 . (14)

These are the approximate sensitivities obtained when one uses an automatic differentiation method-
ology to obtain sensitivities; see, e.g., [2] or [10].

Although both (13) and (14) are approximations to the exact sensitivities (8), they are in general
not the same, e.g., (

∂u

∂αk

)h

�=
(

∂uh

∂αk

)
;

4

the differentiation and discretization steps do not commute.
The gradient of the discretized functional (6) can be determined from either

∂J h

∂αk
≈

∫ 3

0

(
(uh − ûh)

(
∂u

∂αk

)h
)∣∣∣∣∣

(xm,y)

dy (15)

using (13) or from
∂J h

∂αk
=

∫ 3

0

(
(uh − ûh)

∂uh

∂αk

)∣∣∣∣
(xm,y)

dy (16)

using (14). Note that (15) only yields an approximation to the gradient of the discretized functional
because we use (13) instead of (14). On the other hand, (16) yields the exact gradient of the
discretized functional (6). Both (15) and (16) may be viewed as approximations of the gradient of
the same continuous functional which involves exact solutions of the Navier-Stokes system (1)–(3);
however, the fact that (16) is the exact gradient of the discretized functional while (15) is not the
exact gradient of anything can and will have an important role to play in our discussions.

In our discussions, we will not consider both (7) and (16); both of these are discretize-then-
differentiate approaches and have been found to have very much the same effects when used in
gradient-based flow control and optimization methods, so long as the increments δαk used in the
finite difference approach are small; see, e.g., [1, 7]. Thus, we will use (7), i.e., finite difference quo-
tient functional gradient approximations, as a representative discretize-then-differentiate approach
and (15), i.e., the sensitivity equation method, as a representative differentiate-then-discretize ap-
proach.

We note that the gradient of the functional can also be determined or approximated through
the use of solutions of adjoint equations; see, e.g., [8, 9]. Both discretize-then-differentiate and
differentiate-then-discretize strategies may again be employed. With regard to the issues, diffi-
culties, and remedies discussed here, adjoint equation approaches do not offer any advantages or
disadvantages over the finite difference quotient or sensitivity-based approaches. Thus, we will not
consider adjoint equation approaches in this paper.

2 Insensitive cost functionals

We choose the matching line to be located at xm = 9; see Figure 1.

Figure 1: The target flow (ûh, v̂h) in the channel and the matching line at x = 9.

We first use (15) to evaluate the gradient of the functional, i.e., we use solutions of the discretized
continuous sensitivity equations. With a tolerance of 10−9, the optimizer declared that satisfactory
convergence was achieved after 20 iterations and returned the values given in Table 1.

5

α0 α1 α2 α3 J h max |∇J h|
0.5000 0.0767 0.0656 0.2760 0.6 × 10−9 0.3 × 10−5

Table 1: Parameter, functional, and gradient values after 20 optimizer iterations using solutions of
discretized continuous sensitivity equations to evaluate the gradient of the functional.

Note that the optimal value of α0 is very close to its target value of 0.5 but that the three bump
parameters are nowhere close to theirs, despite the fact that the functional and its gradient are
very small. In fact, the value of the functional for the initial parameters is 0.4 so that the value of
the functional has been reduced by 9 orders of magnitude!

If we instead determine the gradient of the functional using (7), i.e., a finite difference quotient
approximation, we obtain an even more surprising set of parameter values after 10 iterations; see
Table 2. Again, α0 is very close to its target value and the functional and its gradient are very
small, but the bump parameters are all zero, i.e., there is no bump! The bump shapes for the target
parameters and for the parameters of Tables 1 and 2 are given in Figure 2.

α0 α1 α2 α3 J h max |∇J h|
0.5000 0 0 0 0.3 × 10−8 0.2 × 10−6

Table 2: Parameter, functional, and gradient values after 10 optimizer iterations using the finite
difference quotient approach to evaluate the gradient of the functional.

Figure 2: Bump and flow near the bump for the target flow (left) and the optimal flows determined
using functional gradient approximations using the sensitivity equation method (middle) and finite
difference quotient gradient approximations (right).

Why do we obtain such inaccurate bumps even though the functional and its gradient are very
small? Why is the “optimal” inflow parameter so good but the bump parameters so bad?

First, let’s see why α0 is so good. The role of optimization with respect to α0 is to get the mass
flow at the inflow to be the same as that of the target flow at the matching line. Thus, it is no
wonder that the optimizer very quickly finds the right value for α0; this is typical for parameters
that determine the values of gross, e.g. integral, features of the flow.

For our choices of Reynolds number and matching plane location, once the mass flow at the
inflow is equal to the mass flow across the matching plane (as is true once α0 has converged), not
only is the optimal profile at the matching plane that for Poiseuille flow, but it is in fact essentially
identical to that of the target flow, irrespective of the shape of the bump. This must be so because,
for low values of the Reynolds number, at the matching line the target flow and the optimal flow
both are very nearly Poiseuille flows with the same mass flow. Thus, for any values of the bump

6

parameters, the functional

J h(α0, α1, α2, α3) =
∫ 3

0

(
uh(9, y;α0, α1, α2, α3) − ûh(9, y)

)2
dy

is small because uh(9, y;α0, α1, α2, α3) is very close to ûh(9, y).
Next, let’s see why the computed approximation to the gradient of the discrete functional is

small, even though the bump parameters are way off their correct values. Part of the answer
lies with the sensitivities; the sensitivities with respect to the bump parameters are big near the
bump, but are minute far downstream of the bump and, in particular, at the matching line x = 9;
see Figure 3. (In contrast, the sensitivity of the flow field with respect to α0 at the matching
line is not small.) This merely reflects the fact that at low values of the Reynolds number, no
matter what shape the bump takes, the flow at a matching plane far downstream of the bump
is going to be Pouisselle flow. The approximate gradient of the discrete functional with respect
to the bump parameters given by (15) is small for any values of the bump parameters because,
first, uh(9, y;α0, α1, α2, α3) = ûh(9, y), i.e., the flow and target flows are essentially the same, and
second, because the velocity sensitivity at the matching line is small. The second cause, i.e., the
smallness of the sensitivities, is the important one since it remains in effect even if we had chosen
a target flow that was not feasible.

Figure 3: Sensitivity of the flow velocity with respect to the second bump parameter α2 at the
target values of the parameters.

Note that the problem is not with the optimizer; it did its job very well. The optimizer
found values for the four parameters such that gradient of the functional is small; in addition,
the functional itself was small at those values of the parameters, as we expect it to be for the
functional we are using. The problem is that the functional is very insensitive to changes in the
bump parameters. Thus, care must be exercised in setting up optimization problems to make sure
that the functional is not insensitive to some or all of the design parameters. Alternately, if one
has a functional that one wants to minimize and it is insensitive to changes in a design parameter,
we might as well forget about that parameter and optimize with respect to only those parameters
that can effect appreciable changes in the value of the functional.

3 Inconsistent functional gradients

In order to work with a more sensitive functional, from now on we set xm = 3, i.e., we move the
matching line to the back of the bump; see Figure 4. Otherwise, the problem specification remains
the same. As we shall see, our troubles are just starting!

We determine the gradient of the functional using the approximate sensitivities determined by
discretizing the continuous sensitivity equations. The optimizer gets confused after 33 iterations
at which point it quits at the parameter values given in Table 3. Now, not only are the bump

7

Figure 4: The target flow (ûh, v̂h) in the channel and the matching line at x = 3.

parameters not good and the value of the functional not small, but more importantly, the computed
gradient of the functional is not small. The shape of the bump and the corresponding velocity field
for the parameters of Table 3 are given in Figure 5. Note that the oscillatory nature of the bump
is very different from the target bump given in Figure 4.

α0 α1 α2 α3 J h max |∇J h|
0.5058 -0.0185 0.4352 -0.0448 0.4 × 10−3 0.2 × 10−1

Table 3: Parameter, functional, and gradient values after 33 optimizer iterations using solutions of
discretized continuous sensitivity equations to evaluate the gradient of the functional.

Figure 5: Bump geometry and flow field resulting after 33 optimizer iterations using solutions of
discretized continuous sensitivity equations to evaluate the gradient of the functional.

The optimizer can handle functional values that are not small; after all, it doesn’t know that
for the exact minimizer, the value of the functional is zero. However, the optimizer can’t live
with nonzero gradients since at local or global minima, the gradient should be zero. Why did the
optimizer quit even though the gradient isn’t small?

To get an indication of what has gone wrong, let’s draw a line (in the four-dimensional parameter
space) through the global minimizer (the parameter values for the target flow given by (5)) and the
parameter values returned by the optimizer after 33 iterations as given in Table 3. Let’s evaluate
the functional along that line as well as the derivative of the functional in the direction of the line.
The results are given in Figure 6.

It is clear from Figure 6 that the optimizer did not stop at a local minimum of the functional;
so why did it stop? From the plots of the functional and its directional derivative along the line,

8

0 5 10 15 20 25 30

0.00000

0.00013

0.00025

0.00038

0.00050

Marching parameter S

J2
(B

et
a(

S
))

Cost functional J2 along a line

O

0 5 10 15 20 25 30

-0.00250

0.00000

0.00250

0.00500

0.00750

0.01000

Marching Parameter S

d/
dS

 J
2(

B
et

a(
S

))

Cost gradient dJ2/dS along a line

Figure 6: Functional (left) and directional derivative of the functional (right) along the line in
parameter space joining the global minimum and the values of the parameter returned by the
optimizer after 33 iterations; the circle identifies the point at which the optimizer stopped.

we glean the following information about the behavior of the functional

0 ≤ s < 11 the functional increases
11 < s < 25 the functional decreases
25 < s ≤ 30 the functional increases

and its directional derivative

0 ≤ s < 8 the gradient of the functional is positive
8 < s < 25 the gradient of the functional is negative
25 < s ≤ 30 the gradient of the functional is positive

as a function of arc length s along the line. There is a serious inconsistency in these figures: in the
interval 8 ≤ s ≤ 11, the functional is increasing in s but the computed gradient of the functional
determined by the differentiate-then-discretize sensitivity-based method is negative.

Let’s explore this a little more by examining a two-dimensional slice of parameter space that
passes through the global minimum and the point in parameter space returned by the optimizer
after 33 iterations. We compute the functional on that plane and the direction of the projection of
the negative of the gradient onto that plane; these are displayed in Figure 7. Note that the negative
of the gradient should be perpendicular to the level curves of the functional and should point in
the direction of decreasing functional values.

From Figure 7 we see lots of places where the negative gradient is not perpendicular to the
level curves. The optimizer doesn’t care about this; all the optimizer cares about is that when it
is given a functional and its gradient, that the negative of the gradient points downhill. Then it
can guarantee that, for a sufficiently small step size, it can find new values of the parameters that
reduce the value of the functional. Again, from Figure 7, we see that there certainly are locations
in the two-dimensional slice at which the negative of the gradient is pointing uphill. Although
examining a single two-dimensional slice out of a four-dimensional space is not definitive, what
probably happened after 33 iterations is that the optimizer found a point in parameter space at
which the functional it was given increases in the direction of the negative functional gradient it
was also given. The optimizer cannot live with this inconsistency since it cannot find a step along
the direction of the negative gradient, no matter how small it chooses the step, which results in a
decrease in the value of the functional. At such a juncture, the optimizer just quits.

9

Figure 7: Level curves of the functional and projected negative approximate gradient of the func-
tional on a two-dimensional slice of parameter space containing the global minimum (circle) and
the values of the parameter returned by the optimizer after 33 iterations (square); the approximate
gradient of the functional is determined by the differentiate-then-discretize approach.

Let’s now compute an approximation to the gradient of the functional using a finite difference
quotient approximation, i.e., a discretize-then-differentiate approach. In Figure 8, using the same
two-dimensional slice as was used for Figure 7, we again provide level curves of the functional
and direction vectors for the projected negative of the approximate gradient. Now there are no
inconsistencies; the approximate gradient projected onto the two-dimensional slice is always nearly
perpendicular to the level curves and the negative of the projected approximate gradient always
points downhill.

In Figure 9, we zoom into the vicinity of the point in parameter space returned by the optimizer
when it used the approximate gradients found by the differentiate-then-discretize approach. We see
that there are lots of nearby locations at which the differentiate-then-discretize sensitivity based
negative gradient points in the wrong direction (uphill); the finite difference quotient based negative
gradient points in the right direction (downhill). Note the points for which the angle between the
two approximate gradients is larger than π/2.

The discretize-then-differentiate sensitivity based approach, e.g., using automatic differentia-
tion software, produces the exact gradient of the discrete functional which is being minimized, so
of course, that gradient also points in the right direction; using finite difference quotient approxi-
mations with small increments δαk also produces consistent gradients. For this reason, some be-
lieve that the discretize-then-differentiate approach is superior to the differentiate-then-discretize
approach. The differentiate-then-discretize approach does not produce an exact gradient of any
functional (continuous or discrete) and is more prone to producing inconsistent functional gradi-
ents. For the problem we are considering, if the grid size is sufficiently small, then all approaches
must produce consistent gradients; however, the differentiate-then-discretize approach can produce
an inconsistent gradient at a practical (from the point of simulation accuracy) grid size. Al-
though this seems very bad, we shall see below that the solution of another difficulty also helps the
differentiate-then-discretize approach produce consistent gradients. To this end, note that even the
differentiate-then-discretize approach produces a consistent gradient near the global minimizer.

10

Figure 8: Level curves of the functional and projected negative approximate gradient of the func-
tional on the same two-dimensional slice of parameter space used for Figure 7; the gradient of the
functional is determined by the finite difference quotient approach. The square and circle have the
same meaning as in Figure 7.

Figure 9: Level curves of the functional and projected negative approximate gradients of the func-
tional on the same two-dimensional slice of parameter space used for Figures 7 and 8 and in
the vicinity of the point (the filled square) returned by the optimizer after 33 iterations of the
differentiate-then-discretize sensitivity equation approach; the direction of the approximate nega-
tive gradient of the functional determined by both the finite difference quotient approximation and
by the sensitivity equation approach are displayed.

4 Spurious minima

Now that we know that using finite difference quotients to approximate the gradient of the functional
yields consistent gradients, let’s solve the optimization problem (with the matching line located at

11

x = 3) using those gradient approximations instead of the differentiate-then-discretize approach
used for Table 3. The optimizer declares convergence after 44 iterations and returns the data in
Table 4 for the optimal solution. Note the very small gradient of the functional which indicates that
the solution provided by the optimizer is at least a local minimizer of the discretized functional.
However, the bump parameters are again not close to those for the target flow. Note that although
the bump parameters are far from those of the target flow, the value of the functional is quite
small, i.e., the target flow is well matched at the line x = 3 even with the wrong bump parameters,
i.e., the wrong bump looks a lot like the target bump as far as the flow at x = 3 is concerned; see
Figure 10.

α0 α1 α2 α3 J h max |∇J h|
0.5078 0.1407 0.5394 0.0599 0.3 × 10−6 0.2 × 10−9

Table 4: Parameter, functional, and gradient values after 44 optimizer iterations using finite differ-
ence quotient approximations of the gradient of the functional.

Figure 10: Bump geometry and flow field resulting after 44 optimizer iterations using finite differ-
ence quotient approximations of the gradient of the functional.

Let’s again look at the functional along the line in four-dimensional parameter space joining the
global minimizer and the computed minimizer of Table 4; see Figure 11. We see that it certainly
looks like the computed solution is a local minimizer of the functional; in fact the value of the
functional at this location is very small (≈ 0.2 × 10−9.)

Results along lines in four dimensions are not very conclusive, so let’s again look at the functional
on a two-dimensional slice determined by a plane going through the global minimizer and the
optimal solution of Table 4. Figure 12 displays the curves of the functional and the direction of the
negative approximate gradient. Again, both the position of the computed solution among the level
curves of the functional and the gradient of the functional indicate that the optimizer has indeed
found a local minimizer of the functional.

Is this local minimizer for real, or is it a spurious one introduced by the discretization process?
A good (but not foolproof) way to check if a suspect solution (especially one with oscillatory
behavior) is really a solution or whether it is a numerical artifact is to refine the grid. If upon
refinement the solution seems to converge, then there is a good chance that it is an actual solution;
if upon refinement the suspect solution gets worse, e.g., oscillates with bigger amplitude or higher
frequency, then chances are good that it is a numerical artifact. In Table 5 and visually in Figure 13,
one can see the non-convergence of the bump parameters as the grid size is reduced; the oscillations
in the bump geometry have higher amplitude as the grid size is reduced.

12

0 5 10 15 20 25

0.00000

0.00020

0.00040

0.00060

0.00080

Equally spaced points

C
os

t F
un

ct
io

na
l J

Cost functional sampled along a line

 Local

Minimum

 Global

Minimum

Figure 11: Functional along the line in parameter space joining the global minimizer and the
computed minimizer of Table 4.

Figure 12: Level curves of the functional and projected negative gradient of the functional on a
two-dimensional slice of parameter space containing the global minimum (circle) and computed
minimum returned by the optimizer after 44 iterations (square); the gradient of the functional is
determined by a finite difference quotient approach.

grid size α0 α1 α2 α3 J h

0.250 0.5078 0.1408 0.5394 0.0600 0.3 × 10−6

0.167 0.5087 -1.4610 0.3596 -0.0841 0.1 × 10−4

0.125 0.5111 -1.9128 0.2984 -0.2906 0.1 × 10−4

Table 5: Converged parameter and functional values for different grid sizes; the optimizer uses
finite difference quotient approximations of the gradient of the functional.

13

Figure 13: Bump geometry and flow field for a grid size h = 0.25 (top) and h = 0.167 (bottom).

Thus, we conclude that the local minimizer found by the optimizer is a spurious, numerically
induced one.

5 Regularization of the functional

It is clear that, at least for some initial conditions, the optimizer leads us to the spurious local
minimum. How can one get to the desired global minimum? To avoid the spurious minimum, in
fact, to get rid of it altogether, one can used a penalized objective functional; since the solution
corresponding to the spurious minimizer contained unwanted oscillations in the bump geometry,
we add a penalty term which penalizes such oscillations. Thus, we choose the penalized objective
functional

J h
ε (α0, α1, α2, α3) = J h(α0, α1, α2, α3) +

ε

2

∫ 3

1

(
dyB

dx

)2

dx

=
1
2

∫ 3

0

(
uh(xm, y;α0, α1, α2, α3) − ûh(xm, y)

)2
dy +

ε

2

∫ 3

1

(
dyB

dx

)2

dx ,

(17)

where yB(x;α1, α2, α3) is the function that determines the bump and ε is a penalty parameter. Of
course, the case ε = 0 corresponds to the unpenalized functional, i.e., J h

0 = J h.
First, in Table 6, let’s see what the optimizer does as we change ε. In that table, for various

values of the penalty parameter, we give the number of steps taken by the optimizer to converge,
the converged values of the parameters and functional found by the optimizer, and the value of

G =
1
2

∫ 3

1

(
dyB

dx

)2

dx

which is a measure of the amount of oscillation in the bump geometry.
Recall that the parameters for the matching function, i.e., the parameters we are trying to find,

are α0 = 0.5, α1 = 0.375, α2 = 0.5, and α3 = 0.375. For all values of ε, the inflow parameter α0

14

ε steps α0 α1 α2 α3 G J h

1 22 0.5127 0.0026 0.0044 0.0032 0.4 × 10−4 0.8 × 10−2

10−1 11 0.5122 0.0273 0.0467 0.0356 0.5 × 10−2 0.8 × 10−2

10−2 19 0.5057 0.1740 0.3262 0.2706 0.2 × 100 0.4 × 10−2

10−3 31 0.5006 0.2515 0.4677 0.3665 0.5 × 100 0.5 × 10−3

10−4 40 0.5004 0.2849 0.5001 0.3636 0.5 × 100 0.6 × 10−4

10−5 47 0.5056 0.1305 0.5442 0.1527 0.1 × 101 0.1 × 10−4

10−6 47 0.5075 0.1387 0.5406 0.0712 0.6 × 100 0.1 × 10−5

10−7 43 0.5077 0.1405 0.5395 0.0611 0.6 × 100 0.4 × 10−6

0 44 0.5077 0.1407 0.5394 0.0599 0.6 × 100 0.3 × 10−6

Table 6: Converged parameter and functional values and optimizer steps for different values of the
penalty parameter ε; G is a measure of the amount of oscillation in the bump geometry.

is pretty well matched. The best match for the bump parameters α1, α2, and α3 occurs around
ε = 10−4. The match of the bump parameters gets worse if we raise or lower the value of ε from
that value, but for different reasons. For large values of ε, the match deteriorates because the global
minimizer of the functional J h

ε moves further away from the global minimizer of the functional J h;
the latter is what we are trying to find. In fact, as ε gets large, the penalty term in the functional
J h

ε becomes dominant so that the minimization of that functional forces dyB/dx → 0, i.e., to a
no bump situation; we already see evidence of this behavior even for ε = 1. For small values of
ε the match deteriorates because the penalty term ceases to provide enough regularization and a
spurious local minimizer evidently captures the optimization iterates that start with the zero initial
condition. Not surprisingly, the larger the value of ε, the better the penalty term does in reducing
G, the measure of the oscillations in the bump geometry.

Now, let’s set ε = 2 × 10−4, which is in the range of values for the penalty parameter which
appeared to give solutions which reasonably match the target values. Using this value, let’s examine
the level curves of the functional on a two-dimensional slice of parameter space; these are displayed
in Figure 14. It seems that the spurious local minimizer is now not present. Of course, the global
minimizer of J h

0.0002 is not the same as the global minimizer of J h; this is the price one has to pay
for regularization.

Figure 14: Level curves of the penalized cost functional (with ε = 0.0002) and the positions of the
global minimizer of that functional (open circle), the global minimizer of the unpenalized functional
(filled circle), and the spurious local minimizer of the unpenalized functional (filled square).

15

5.1 A hybrid algorithm

We still have not accomplished our goal of finding the global minimizer of J h. Given that we now
suspect that, for an appropriate value of ε, the spurious minimum is not present and thus we can
get reasonably close to the global minimizer of J h, we can develop the following two-stage hybrid
algorithm:

1. step through the optimization method for the penalized functional J h
ε until satisfactory con-

vergence is achieved; we are now located at the global minimizer of the penalized functional;

2. using the results of stage 1 as an initial condition, step through the optimization for the
unpenalized functional J h until satisfactory convergence is achieved.

In this way, we trust that the iterates will converge to the global minimizer of the unpenalized
functional.

The optimal values of the parameters determined by the hybrid algorithm are

α0 = 0.5000, α1 = 0.3735, α2 = 0.5001, and α3 = 0.3747.

At last we have obtained a very good match to the parameters of the target flow!
The convergence tolerances used in the two stages of the hybrid algorithm need not be the same.

In fact, it is usually more efficient to use a looser tolerance for stage 1 since one is not interested
in obtaining accurate minimizers of the penalized functional. The role of the iteration using the
penalized functional is merely to produce a good enough initial condition for the optimization of the
unpenalized functional, where “good enough” means we are at a point in parameter space which
is in the attraction region of a true, i.e., not spurious, minimizer of the unpenalized functional. In
our example, optimization of the penalized functional produced the parameter values α0 = 0.5004,
α1 = 0.2764, α2 = 0.4952, and α3 = 0.3649 which are very good initial guesses for the optimization
of the unpenalized functional.

The hybrid algorithm requires the choice of two parameters in addition to whatever parameters
are set for the optimization of the unpenalized functional. One must choose a penalty parameter,
e.g., ε in (17), and a convergence tolerance for the optimization of the penalized functional.

6 Concluding remarks

In the context of a very simple, low Reynolds number, steady, incompressible viscous flow in a
channel, we have shown how three pitfalls can be encountered in the numerical approximation of
flow control and optimization problems. We have also shown how these pitfalls can be avoided
or circumvented, most notably through the regularization of the objective functional. We now
discuss some of the implications that our observations have on more complex and more practical
flow control and optimization problems.

6.1 Insensitive functionals

The first pitfall we encountered is insensitive functionals, i.e., the functional is insensitive to changes
in one or more of the design parameters. For example, the functional chosen in section 2 was
extremely insensitive to the parameters α1, α2, and α3 which determine the shape of the bump.

There are actually two ways to view insensitive functionals, depending on whether the central
goal of optimization is to extremize the objective functional as well as possible or is to find, in

16

some sense, “good” values for the design parameters. In many, if not most, practical flow control
and optimization problems, the central goal is the first of these. The choice for the mathematical
objective functional is dictated by the physical objective one wants to achieve. If the goal of
optimization is, e.g., to make a given objective functional as small as possible, what does the
insensitivity of the cost functional with respect to a design parameter tell us? The answer is
simple: we can eliminate that design parameter from the problem since it is useless for meeting
our objective. For example, if in the simple problem of section 2 one really wanted to match the
horizontal velocity component at the downstream position xm = 9 to that of the target flow, one
should not have used the bump parameters α1, α2, and α3 as design parameters. Instead, one should
have fixed these parameters to some convenient values, e.g., α1 = α2 = α3 = 0, and optimized with
respect to the single inflow mass rate parameter α0. Clearly, for any fixed values for α1, α2, and α3,
we can do a wonderful job of meeting the objective of making the functional (6) with xm = 9 small
using the single parameter α0 for optimization. Of course, in practical situations, one may find
that after eliminating any useless design parameters, the remaining parameters are not sufficient
in number or effect to satisfactorily achieve the physical objective; in this case, one may be able to
identify other effective design parameters which can be added to the optimization process; if not,
then one must be content with what the remaining design parameters can do.

The second view of insensitive functionals for which the goal of optimization is to find a “good”
set of design parameters, does arise in practice. If the central goal of optimization is to determine
“good” parameter values and one finds that the cost functional is insensitive to one or more of those
parameters, then one must change the cost functional to one that is more sensitive. For example,
in section 2, we were not happy with the values of the bump parameters produced by the optimizer,
even though the cost functional was clearly rendered as small as our tolerances allowed. We then
went on, in section 3, to change the objective functional so that it is more sensitive to the bump
parameters.

For both views of insensitive cost functional, one has to identify which design parameters have
negligible or insufficient effect on the cost functional. Often, intuition can be used to eliminate
such design parameters from the very start. For example, in section 2, it should have been obvious
to us that the bump parameters were useless in the context of the functional (6) with xm = 9.
Thus, we either change the cost functional (the second view) or not use the bump parameters for
optimization (the first view). Where intuition fails, sensitivity analyses can be very useful. For
example, even if we had no intuition about the problem of section 2, a cursory look at Figure
3 would convince us that the second bump parameter α2 is useless for affecting the value of the
functional (6) with xm = 9.

Thus, insensitivities of the cost functional can be used to

• reduce the number of design parameters by eliminating from the design process those param-
eters which do not appreciably affect the cost functional; or

• induce changes in the choice of design parameters by replacing the useless parameters by
others that have a greater effect on the cost functional; or

• induce changes in the cost functional so that it becomes more sensitive to the design param-
eters.

All three of these will result in more efficient use of the optimizer, e.g., fewer iterations, and/or
better results, e.g., lower functional values or better design parameter values.

17

6.2 Inconsistent gradients

The second pitfall we encountered was inconsistent approximate gradients of the objective func-
tional. (Of course, we assume that the functional is differentiable.) This occurred when we used the
differentiate-then-discretize approach. If one instead uses a discretize-then-differentiate approach,
this is very unlikely to happen. In fact, if exact differentiations are used, as is the case when one
employs automatic differentiation software, one determines the exact gradient of the discretized
cost functional so that gradients cannot be inconsistent. If one uses a finite difference quotient
approximation to the gradient of the functional, then one can always obtain consistent gradients by
choosing small enough variations in the values of the parameters, e.g., by making δαk small enough
in formulas such as (7).

The approximate gradients found by the differentiate-then-discretize approach are not the exact
gradients of any functional. However, they are approximations to the gradients of both the contin-
uous and discretized functionals. If the approximate sensitivities are sufficiently accurate, e.g., if a
sufficiently fine grid is used to determine sensitivities, then functional gradients found by formulas
such as (15) should be consistent. After all, as the grid size tends to zero, approximate gradients
found this way should converge to the exact gradient of the continuous functional. However, it may
be the case, as it was in section 3, that a grid that is sufficiently fine to result in acceptable flow
approximations may not result in sensitivities that are sufficiently accurate to avoid inconsistencies
in the gradient of the functional. This is a situation one would like to avoid, i.e., having to use a
finer grid for sensitivity calculations than is necessary for flow solutions.

At first glance, it would seem that the possibility of encountering inconsistent approximate
gradients renders differentiate-then-discretize approaches much less desirable than discretize-then-
differentiate approaches. There are two factors that should be taken into consideration before one
jumps to this conclusion. The first is that the two most commonly used discretize-then-differentiate
approaches are, for the same computational parameters, more costly than the sensitivity equation
method. Finite difference quotient approximations to the gradient of the functional require addi-
tional expensive nonlinear flow solutions, in fact, at least one additional solution for each design pa-
rameter. Automatic differentiation software usually involve substantial overhead which makes them
more costly to run than do hand-coded sensitivity equations software. However, there is a more
important reason not to dismiss differentiate-then-discretize approaches, namely that regulariza-
tion of the cost functional usually eliminates the occurrence of inconsistent approximate gradients.
Furthermore, in the vicinity of true minimizers, computed gradients, even for differentiate-then-
discretize approaches, are usually consistent. As a result, the hybrid algorithm of section 5.1 can
be used not only to avoid spurious minima, but also to avoid inconsistent gradients.

6.3 Spurious minima

The third pitfall we encountered was artificial, numerically induced spurious minima. We also saw in
Table 5 and Figure 13 an indication that as the grid size is reduced, the spurious minimizer does not
disappear, but instead represents a point in parameter space that moves further away from the true
minimizer. The implication of this observation is that for a sufficiently small grid size, the spurious
minimizer will be sufficiently far way from the true minimum so that a reasonable starting guess,
e.g., the origin in parameter space, would belong to the attraction region of the true minimizer.
Thus, it seems that one can circumvent the spurious minima pitfall by using a sufficiently small
grid size. This conclusion is of little practical utility. As we saw in our simple example, a good
optimizer can yield iterates that converge to a spurious minimizer for grid sizes that are adequate
to obtain good flow approximations. On the other hand, for the sake of efficiency, one does not

18

want to use a grid size smaller than that needed to obtain acceptable flow approximations. Thus,
reducing the grid size is not usually a viable way to circumvent spurious minima. Fortunately, in
section 5, we saw that a more practical means of avoiding the spurious minima pitfall is through
the regularization of the cost functional.

References

[1] J. Appel and M. Gunzburger; Difficulties in sensitivity calculations for flows with discon-
tinuities, AIAA J. 35, 1997, pp. 842–848.

[2] C. Bischof, P. Khademi, A. Mauer, and A. Carle, Adifor 2.0: automatic differentiation
of Fortran 77 programs. Comput. Sci. Engrg. 3 1996, pp. 18–32.

[3] J. Dennis and R. Schnabel; Numerical Methods for Unconstrained Optimization and Non-
linear Equations, Prentice Hall, Englewood Cliffs, 1983.

[4] G. Farin; Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide,
Academic, San Diego, 1988.

[5] D. Gay, Algorithm 611 subroutines for unconstrained minimization using a model/ trust-
region approach, ACM Trans. Math. Soft. 9, 1983, pp. 503-524.

[6] V. Girault and P. Raviart; Finite Element Methods for Navier-Stokes Equations, Springer,
Berlin, 1975.

[7] M. Gunzburger; Sensitivities in computational methods for optimal flow control, in Com-
putational Methods for Optimal Design and Control, Birkhäuser, Boston, 1998, pp. 197–236.

[8] M. Gunzburger; Sensitivities, adjoints, and flow optimization, Inter. J. Num. Meth. Fluids.
31, 1999, pp. 53–78.

[9] M. Gunzburger; Adjoint equation-based methods for control problems in viscous, incom-
pressible flows, to appear in Flow, Turbul., Comb.

[10] N. Rostaing, S. Dalmas, and A. Galligo; Automatic differentiation in Odysee, Tellus
45a 1993, pp. 558–568.

[11] X. Wu, E. Cliff, and M. Gunzburger; An optimal design problem for a two dimensional
flow in a duct, Opt. Control Appl. Meth. 17 1996, pp. 329–339.

19

