Gridding the Earth for Climate Models

John Burkardt
Department of Scientific Computing
Florida State University

3:30-4:45pm, 21 February 2014,
Graduate Student Seminar ISC5934
http://people.sc.fsu.edu/~jburkardt/presentations/...
sphere_grid_2014 _fsu.pdf

1/60

The Spherical Mesh

o Planar Meshes

@ The STRIPACK Sphere Mesh
@ The SCVT Sphere Mesh

@ Examples

PLANE: Analysis of PDE’s

A fundamental problem of analysis is the study of the partial
differential equations used to model the physical processes that we
observe in nature or human engineering.

Such processes include coolant flow in a nuclear reactor, the design and
analysis of airplane wings, and weather and climate prediction.

We typically confine such problems to a bounded region or surface, which
we imagine is easy to define and analyze.

PLANE: Hurricane's Are PDE's

In some sense, predicting the path of Hurricane Sandy seems like just a
more complicated version of a standard homework problem - although
one that is important to solve quickly and accurately!

We focus on the complicated weather dynamics (the equations), but not
so much that this storm occurs on a sphere (the geometry).

he probable path of the storm center bu
azardous conditions can occur outside

PLANE: Discretized Geometry

Typically, the partial differential equations describe how quantities such
as mass, heat, velocity, pressure, electric potential or magnetic force vary
in time over a specified region.

When such problems are handled on a computer, the geometry of the
region is an important issue. For physically important problems, the
region is not the unit square, so modeling the geometry is not trivial. A
standard technique sprinkles the region and its boundary with many
sample points, at which a solution is to be computed.

Once the geometry is discretized, we have induced some kind of space of
possible solutions; we can discretize our differential and integral
operators. We can determine the “neighbors” of each sample point, and
finally set up and solve the discrete equations

Notice that we had to determine the geometry discretization first, and
that in some sense, everything depends on the geometric model!

We will focus on a case where a proper geometry model becomes a vital (3
part of the calculation.

PLANE: Points, Areas, Connections

Supposing we have a problem involving the transport of a scalar
quantity through the region, carried along on some moving medium. How
would we dissect our geometry?

We will want sample points along the boundary lines, to register the
inflow and outflow of the quantity. The interior of the region will need a
set of points at which the unknown quanitity is to be computed.

When modeling the differential equation, we may need to know how the
quantity varies over space. If we look for the value at the nearest sample
point, we are implicitly dividing the region into subregions, for which the
sample points are representative.

The partial differential equation describes, essentially, how the quantity
changes locally, over infinitesimal distances and times. To approximate
this measurement of change in space, each sample point must be
somehow related to all its neighbors.

PLANE: The Unit Square

If we're on a unit square, it's easy to choose sample points, to dissect
the region into subregions, and to determine the connections between
sample points.

AN

b N

@ Sample points or nodes tell where the values are known.

@ Subregions or elements are areas where a particular value
dominates.

@ Connections or triangulations tell which elements can directly
influence each other.

PLANE: General Geometry Points

But airplanes, cars, and countries aren't well modeled by unit squares.

The geometry of a typical general region can represent a substantial cost,
and can exert a substantial influence on the efficiency and accuracy of a
solution method.

A curved boundary, or internal obstacles or holes, can be a significant
feature that must be approximated well.

If the region includes a long and thin portion, then a volume-wise uniform
point distribution severely undersamples the thin region.

We need automatic methods to select points, elements, and
connections.

PLANE: General Geometry

Here is an example of such a problem, in which a biological researcher
wishes to study the diffusion of a surface-based pollutant through a lake,
which includes an island.

One challenge is simply to follow the boundary carefully.

A second challenge arises because the pollutant concentration changes
rapidly near the shoreline; given a fixed budget of sample points, we want
to put more of them where the action is.

f ({
AN
500 1 \

!
/ i
TN,

200

PLANE: General Geometry Nodes

Could we start with a regular grid, and then keep just those points that
are inside the lake region? Away from the boundaries, this might be
almost OK, (but not really!) but it doesn’t place points on the boundary,
and it does a terribly irregular job of sampling the geometry near the
boundary.

We must return to this issue, but for the moment, let's just assume we've
picked sample points for the interior and boundary somehow, and move
on to the second and third geometric tasks.

o0

600

500

400}

300

200 feeie

10/ 60

PLANE: General Geometry Elements

We need to break up the region into sets of points associated with
each sample point, and the natural way to do this is to choose the
nearest sample point.

Such a subdivision by distance is known as a Voronoi diagram.

There are automatic procedures for computing the Voronoi diagram for a
bounded, 2D region with polygonal boundaries
(...assuming the region lies in the plane!)

700

00

500

a0

a0

2m

11/60

PLANE: General Geometry Triangulation

To get the connection information, we want to know which elements
are neighbors.

Represent each element by its center node, and carry out a triangulation
algorithm. Now we have a connection map.

12/60

PLANE: Algorithm for General Geometry Elements

For a closed, bounded region D of the 2D plane, with the Euclidean
distance function, with n distinct sample points p;, we know that:

@ to each p; there corresponds a Voronoi region V;;
@ the union of the V; is the region D
@ the interiors of distinct Voronoi regions have no intersection;

@ If p; is near the boundary, the boundary of V; may include part of the
(curved?) boundary, but the remainder of the boundary is polygonal;

@ away from the boundary, each V; is convex;

13/60

PLANE: General Geometry Triangulation

We can say that two sample points p; and p; are “connected” if their
corresponding regions V; and V; share a boundary of positive length.
(Common boundaries of zero length are exceptional, but can be handled.)

To define the connections, then, we can simply draw lines from each
point to its neighbor across their common boundary.

Such a procedure is easy to do by sight, but it may not be obvious that it
can be computed, or how such information can be stored computationally.

In fact, given a set of points p; in the plane, there is a standard
geometric object known as the Delaunay triangulation, which records
exactly this information.

14/ 60

PLANE: General Geometry Triangulation

It is called a triangulation because the pattern of connections can be
seen as a collection of groups of three nodes.
The Delaunay triangulation has the following properties:

@ the triangulation is maximal; no more triangles can be added to it
without resulting in an illegal crossing of two connections;

@ consider all maximal triangulations of the given points; for each
triangulation, record the smallest angle over all its triangles; the
Delaunay triangulation achieves the largest value for this measure.

@ the triangulation can be described by triples of sample point indices;

@ the Delaunay triangulation and the Voronoi diagram are dual graphs;

@ if three sample points form one of the Delaunay triangles, then the

circle through those points (“circumcircle”) does not include any
other points in its interior (we'll need this condition later!)

PLANE: General Geometry Triangulation

The empty circumcircle condition: a triangulation of a set of points
has the Delaunay property if and only if the circumcircle for each triangle
in the triangulation never properly contains a fourth point of the set.

In ciccle ABE In cicele ADE

Diclaunay Triangulation Won-Dielaunay Tonangulation

16 /60

PLANE: General Geometry Triangulation

A fast and efficient program for computing the Delaunay triangulation
of a set of points in the plane is available in the triangle library by
Jonathan Shewchuk.

AVA OV N

Pav, &
RS AP
ARSI ANROES AR PORSESES
RS SRSANCRNEIY TORSIARREE
o A v i XSSOSR
R R O RS

SOSKY

e R S KR R SRR IR ERe
A B S K RSOk ERNY
BRI R I AR D D RO A s> RREES
e A R S A A VA VAN AVix YA A LSRR
DR BRI DR R IR NAR AR DRSNS RN

Source: Shewchuk (2005)

This library is so reliable and efficient that later, when we are working on
a sphere, we will be searching for some way to redefine our problem so
that triangle can help us.

PLANE: Dual Graphs

The Delaunay triangulation and the Voronoi diagram are dual graphs.

If we regard our element mesh as fundamental, then the dual mesh
creates a node for each area, and connects nodes when the corresponding
areas are in contact, creating a triangulation.

If we imagine the mesh as a decomposition of a country into territories,
each with a capital city, then the dual triangulation may be thought of as
the network of roads that connect capitals of adjacent territories.

Conversely, if we have a planar graph of capital cities and their
connections, then the boundaries of the corresponding countries are
found by drawing the perpendicular bisectors of the capital roads.

18/ 60

PLANE: Well-Distributed Nodes

Good elements and triangulations depend on starting with
well-distributed nodes. This is hard for peculiar geometries, regions with
holes or small corridors. One procedure, by Strang and Persson, is a

MATLAB program called distmesh.

5%
\7 \
Tare)
A
X

e

7
Vavy

5
%

vy
Va)
1\

AV

A

I
TSRS
SR

AVAVAVAVAY
RGP ARE

AVAVaY)

o
T

YAVAaY,

VaPay

e
%

COOO0ER, e
A ORI
ORI

KRS,

<
“:‘
Y,

The user defines the boundary of the region. The program places a
regular array of points within the region, connects them with the
Delaunay triangulation, and treats these connections like repulsive
springs. Points near the boundary are missing a neighbor on that side
and move closer. The mesh naturally adjusts to the geometry in a

beautiful way.

PLANE: Well-Distributed Nodes

We will prefer a related method that is more closely tied to the Voronoi
diagram.

We start with an arbitrary scattering of nodes in the region. We
construct the Voronoi diagram. We replace the original nodes by the
centroids of the Voronoi polygons. This is like moving the capital city to
the center of the territory. But when we move the capital cities, we must
recompute the Voronoi diagram. Repeating this process long enough, the
nodes settle down to a well-distributed pattern known as a Centroidal
Voronoi Tessellation or CVT.

Let us watch this process in an animation, in which we start with the
worst possible initial configuration, namely, all the points crammed into
one tiny region.

Animation: cvt_movie_p08_cramped.mov

20/ 60

PLANE: CVT Algorithm #1

The basic CVT algorithm in 2D is easy to describe:

Choose n points p at random in the region;

while (not satisfied)
compute the Voronoi diagram for the points p;
for each p(i), compute c(i) = Voronoi polygon centroid;
replace all p by c.

The results can be beautiful, and it can be shown that they minimize an

energy function. Improvements occur quickly at the beginning, but then

slow down. A more serious issue is that, depending on the circumstances,
the algorithm may not be easy to implement in practice:

@ Voronoi algorithms are not always available, convenient, or efficient.
(This becomes a real issue in higher dimensions.)

@ Unless the boundary is polygonal, some Voronoi polygons will
actually have curved edges.

@ Weighted or nonuniform meshes cannot be generated this way.

21/60

PLANE: What is a Nonuniform Mesh?

Surely mesh uniformity is a good thing - why would we ever want a
nonuniform mesh?

We might like to create nonuniform meshes in order to have more points
near the boundary, or a transition range where sudden changed are
expected. For an advection problem, we might to grade the mesh to
correspond with the flow gradients.

Typically, a user requests a nonuniform mesh by specifying a mesh density
function h(x, y) over the region, that indicates the relative density of the
mesh at each point. Taking h(x, y) = 1 as a base value, then higher and
lower values in a region will request more or fewer mesh points.

In the simplest case, we can restrict the mesh density to affecting only
the location of the nodes, and compute the elements and triangulation in
the usual way. A version of the CVT algorithm can easily handle this
initial requirement.

22/60

PLANE: CVT Algorithm #2

This CVT algorithm uses sampling, and hence only approximates the
correct result. The user supplies a procedure sample() returning points
in the region distributed according to the desired density.

p = sample (n); <-- Starting points

while (not satisfied)
s = sample (big number); <-- Approximate the geometry
c(i) = average of all points nearest to p(i);
replace all p by c.

We are essentially replacing the Voronoi diagram and centroid calculation
by a Monte Carlo estimate. The mesh density function shows up in the
integral implicitly, through the user’'s sample() function.

This procedure may be approximate, and somewhat slow but:
@ it can be carried out in any geometry that the user can sample;
@ it can impose any mesh density that the user can formulate;
@ it works the same way in any spatial dimension;
@ it can work on any surface or constrained region for which a distance
can be consistently defined;
@ there is no need for external Voronoi or triangulation software.

23/60

PLANE: Nonuniform Meshing

The first plot shows the evolution in time of a 1D CVT with
nonuniform density. The second and third plots are converged results for
nonuniform densities in the circle and square.

B ”’
. W]

\ \ i
| LERRRRLL H/ /

\ i

) W]
Hﬂ It/
. AL

2 o4 05 o8 o
Generator positions

24/ 60

PLANE: The 2D Planar Problem is NOT a Problem

With the CVT algorithm to provide nodes that are distributed
uniformly, or according to a nonuniform pattern we specify, we can
reliably compute our elements and connections, and hence set up a mesh
on a region in a general 2D geometry;

Because the CVT algorithm extends to other dimensions, we can use
similar procedures in 3D, for instance.

But now we will consider trying to transfer our procedures to a region so
familiar that we often mistakenly think of it as a plane, the 2D curved
spherical surface we call the earth.

If we want to use our CVT approach, we must adjust for the fact that
the surface is curved.

The Spherical Mesh

@ Planar Meshes

@ The STRIPACK Sphere Mesh
@ The SCVT Sphere Mesh

@ Examples

26 /60

STRIPACK: The Uncooperative Surface

We live on a sphere...

...but the sphere is so large that locally, it seems flat.

27 /60

STRIPACK: The Uncooperative Surface

Among the peculiar properties of a sphere, we note that

@ ‘straight” lines on a sphere are great circles;

o therefore, all straight lines must intersect;

@ there is no point at infinity, polygons don’t really have “insides”;

@ the sphere cannot generally be covered by congruent triangles or
polygons;

@ two triangles on a sphere are similar (same angles) only if they are
congruent (same size)!

the average of points on the sphere is not itself on the sphere;
circles around a fixed point grow with radius, then get smaller,

a circle of latitude does not represent a line of shortest distance;

spherical triangle angles can sum to anything between 7 and 3m;

28/ 60

STRIPACK: Well-Distributed Points?

As one indication of the difficulty of working on a sphere, we cannot, in
general, answer the question of how to arrange n points on the sphere so
that they are maximally separated. This is an open research question,
and people have tabulated their best results, so far, for arrangements.

@ The Tammes problem asks for the maximal size of n nonverlapping
circles on the sphere.

@ The Thomson problem asks for the arrangement of n electrons on
the surface of the sphere which minimize the total Coulomb energy.

Only a few best results have actually been proven. Cases up to a few
hundred points have been studied.

29/60

STRIPACK: We Need Millions of Nodes

We are working with a climate modeling group at Los Alamos National
Laboratory, whose MPAS software simulates the interactions of the
atmosphere, ocean, and land over the entire globe.

They currently use meshes whose elements are about 15 kilometers on a
side, or roughly 200 square kilometers in size. The surface area of the
earth is about 510 million square kilometers; we need about 2 million
elements, defined by nodes for which we can confidently say that they are
about 15 kilometers apart.

PAS

Model for Prediction Across Scales

http://mpas-dev.github.io/

30/60

STRIPACK: The Latitude/Longitude Mesh

A familiar spherical mesh uses equally spaced latitude/longitude points.

10
.’.oo ®0000® o&.
(] o0)
5 PAOAL IR T LA AR
Ne ¢ "Coe® 0,
. %o ® "% o 0° _%ed»
o 0 000. ® ¢ o © ..0.
E o0 %o o o 0 L 0ee
b “’. ® o o © ..‘
Qo. ® o o © .OO
N e e e 22
e ® o o ° o
‘ko: o o :o“.
10) 9850

&

--Y axis--

o

o
o

--X axis--

STRIPACK: The Latitude/Longitude Mesh

The correspnoding elements are quadrilateral, except at the poles,
where there seems to be a singularity.

--Z axis--

--Y axis-- ° --X axis-- 32/60

STRIPACK: The Latitude/Longitude Mesh

The LL grid has several advantages:
@ the grid is easy to generate, for any level of refinement;
@ the elements are logical squares, except at the poles;
@ the LL grid provides a coordinate system;
However...
Latitude and longitude lines seem to be orthogonal...but they aren't!
The grid includes preferred directions;
The LL coordinate system becomes singular at the poles;
The elements vary enormously in size and shape;
As we refine elements touching the poles include a tiny angle;
Having two element types is a problem.
As a product grid, local refinements are not easy.

33/60

STRIPACK: The CVT Option

There are many ways of trying to set up a grid on the sphere. Our
experiences with the 2D plane suggest that the CVT approach was very
flexible there.

But our concerns are:
e Can we determine a good initial grid, so that the CVT iteration
converges rapidly?
@ Do we have the mathematical analysis and software tools necessary
to carry out a version of the CVT algorithm on the sphere?

@ If so, can the CVT algorithm produce a satisfactory mesh of millions
of points in a reasonable amount of computing time?

34/60

STRIPACK: Initial Grid

The 12 vertices of the icosahedron are perfectly separated on the
sphere. If we triangulate these vertices, we get 20 faces. If we bisect each
edge, we can replace each face with four smaller ones, which are no
longer congruent, and no longer “perfectly” placed. As we repeatedly
refine this grid by bisection, the mesh degrades, but is still very
acceptable as a starting point.

\cosahedal sphere git Icosshedral sphere grid Icosahedral sphere grid

STRIPACK: The STRIPACK Program

stripack is a Fortran77 program, written by Robert Renka, and
available as ACM TOMS algorithm #772.

Given a set of points on the unit sphere, stripack can compute the
vertices of the Voronoi polygons around each point, or it can organize the
points into Delaunay triangles.

Thus, stripack enables us to carry out the CVT algorithm for nodes, and
then to organize the sphere surface into elements and connections.

sphere_grid_icost _f1 gohere_grid_icost_f3

sphere_grid_cosl_f2

STRIPACK: CVT Initialization

To achieve a 15 kilometer element width on the Earth’s surface, we
need about 2,000,000 elements of uniform size. The starting nodes for
the CVT iteration are created by “bisecting” an icosahedral set of nodes
9 times.

Nodes
12

42

162

642
2,562
10,242
40,962
163,842
655,362
2,631,442

wn

=+

[0)
©

O© O ~NOOL S WN - O

37/60

STRIPACK: Modified CVT Algorithm

We outline how the grid initialization and stripack can fit into a CVT
algorithm for the sphere:

Choose n initial points p using the bisection grid;

while (not satisfied)
stripack computes the Delaunay triangulation for points p;
implicitly compute the Voronoi diagram for points p;
for each p(i), compute c(i) = Voronoi polygon centroid;
replace all p by c.

Thus, stripack is an acceptable, and correct method for producing the
meshes we need on the surface of a sphere.

38/60

STRIPACK: STRIPACK Deficiencies

For our multi-million node spherical mesh problem, however, stripack
has some serious deficiencies:

@ written in an outdated FORTRANTY7 programming style;
@ the algorithm is slow;

@ it is not amenable to parallel programming;

@ it cannot deal with subregions of the sphere,

@ it cannot handle variable mesh densities.

For our problems, a CVT mesh requires hundreds or thousands of
iterations. Each iteration requires the computation of a Delaunay
triangulation, that is, a call to stripack. Time efficiency is a serious
issue, so we benchmark our stripack algorithm by timing it over a single
triangulation. In a production run, the problem will be larger, and will be
triangulated thousands of times!

It takes about 208 seconds (/3.5 minutes) for stripack to triangulate
the level 7 mesh with 163,842 nodes, on an Intel Core 2 CPU.

39/60

STRIPACK: The STRIPACK Program

So stripack can do what we need, but it just takes a long time!

f5_woronoi

--Z axis--

- axis--

The Spherical Mesh

@ Planar Meshes

@ The STRIPACK Sphere Mesh
@ The SCVT Sphere Mesh

@ Examples

41/60

SCVT: No Speedup Without Parallelism

Programs for enormous problems like weather prediction must run
extremely fast. Their results are so valuable that huge data centers are
constructed for them. The weather prediction program has expanded to
run over a model of the entire Earth; now it is repeatedly shrinking the
size of the elements used in the model.

For decades, the program's appetite for computing power could be
matched by the increase in computer processor speed and power.

However, an absolute performance ceiling was reached sometime around
the year 2005, when processor clock speeds of about 4 Gigahertz were
achieved. No processor will ever run significantly faster than this!

The only way to keep computational science advancing requires parallel
programming.

42 /60

SCVT: No Speedup Without Parallelism

Modern “supercomputers” are stacks of thousands of ordinary PC's.
They only seem to run fast if the problem can be worked on in parallel.

Sequential algorithms for big problems have no future!

World’s #1 Open Science Supercomputer

Flagship accelerated computing system | 200-cabinet Cray XK7 supercomputer |
18,688 nodes (AMD 16-core Opteron + NVIDIA Tesla K20 GPU) |

CPUs/GPUs working together — GPU accelerates | 20+ Petaflops

43 /60

SCVT: A Plan for Parallel Meshing

A parallel version of stripack did not seem feasible.
But we could see how to do parallel triangulation in the plane.

Suppose we could divide a planar region into subregions, in such a way
that every node fell into at least one subregion. Separate processors
could compute the triangulation of each subregion independently -
perhaps invoking the triangle program to do this.

So if we had 10 processors, we might do this task 10 times faster...
if we could patch the individual triangulations together.

44/60

SCVT: Independent Triangulation of Subregions

But the triangulations would disagree along boundaries, because each
subregion would only be able to work with the nodes it contained.

Recall: a Delaunay triangle's circumcircle contains no other nodes.

For our patchwork triangulation, this test becomes unreliable near the
boundary, because the circumcircle might contain nodes we don't see.

So the outermost layer of triangles cannot be guaranteed.

We can handle this problem if we give each processor its own nodes, but
also a thick layer of nodes from neighboring processors. Now we compute
the triangulation in each expanded subregion, and discard all triangles
whose circumcircle extends outside the subregion.

The overlap will only cause us to compute some correct triangles more
than once.

SCVT: Sharing the Updated Node Positions

Another issue can arise if we are carrying out the CVT algorithm. Each
step of the algorithm starts with a set of nodes p, and replaces them by
the centroids c of their Voronoi polygons.

If we are working in parallel, then the processors need to agree on where
all the nodes are. Each node “belongs” to just one processor, but, if it is
in an overlap region, its position must be visible to other processors.
Once the CVT update step is completed, each processor informs its
immediate neighbors of the updated node positions.

In some cases, a node will move so much that its “ownership” will
actually be transferred from one processor to another.

46 /60

SCVT: Voronoi Diagrams from Delaunay Triangulations

While stripack() can compute both Voronoi diagrams and Delaunay
triangulations, we are going to rely on the triangle() library, and just get
a triangulation back.

But the CVT iteration requires us to construct the polygons associated
with the Voronoi diagram, so that we can compute their areas and
centroids.

Since the two objects are dual graphs, it should not be surprising that, if
we are careful, the triangulation can be mined for the data we need.

47 /60

SCVT: Voronoi Diagrams from Delaunay Triangulations

Every triangle splits at its circumcenter into three pieces (red, green,
blue). Each piece forms part of a Voronoi polygon (all the green pieces).

This means one call to triangle() will give us both the triangulation and
Voronoi information.

(In some cases, the circumcenter can lie outside the triangle, but it turns
out that this causes no problems.)

48 /60

SCVT: From Sphere to Plane

What we have said, so far, means that, if we plan carefully, a parallel
program can compute triangulations, Voronoi diagrams, and hence a
CVT, using the efficient triangle program...as long as we are working in
the plane.

But, of course, our climate modeling problem is set on the sphere, not
the plane. Luckily, there is a beautiful, simple conformal mapping
technique that can translate back and forth between problems on the
sphere and problems in the plane, called stereographic projection.

Such a mapping will necessarily distort many properties of the point sets
it operates on. However, as we will see, it happens to preserve exactly
the one property that we absolutely need in order for this translation to
be useful.

49 /60

SCVT: Stereographic Projection

In stereographic projection, a plane is attached to the sphere at some
point (which we can think of as the “north pole”). Points s on the sphere
are mapped to points p on the plane by drawing the line from the “south
pole” through s, and locating the intersection of this line with the plane.

Points near the south pole singularity are heavily stretched.

Stereographic Projection of Icosahedral Points

--Z axis--

50/ 60

SCVT: Stereographic Projection

Circles on the sphere are mapped to circles in the plane and vice versa.

Delaunay triangulation is defined by the empty circumcircle condition, so
stereographic projection preserves the Delaunay triangulation property.

We can start with data on the sphere, map it to the plane, triangulate it
there, and employ the triangle information back on the sphere.

Inverse Stereographic Projection of Plane Points

--Z axis--

1 i) o ~"o
0 I /‘/1
- 51/60

SCVT: The MPI-SCVT Program

We were able to convince the MPAS group that the SCVT ideas could
be used to develop an alternative approach to computing meshes for
spheres or portions of a spherical surface.

For his PhD thesis, Doug Jacobsen thought up, implemented, and tested
many of these ideas in a program called mpi-scvt.

The code splits up the surface into separate regions, assigning one to
each processor. Each processor knows its six nearest neighbors, with
which it may have to communicate after each step of the CVT iteration.
Only at the very end of the CVT iteration is it necessary for all the data
to be gathered together into a single processor.

He computed big meshes; meshes that included boundaries between land
and ocean, and sequences of meshes for time dependent problems which
had to focus on a moving disturbance.

52 /60

SCVT: The MPI-SCVT Program

He was able to match tabulated data, to model boundaries better, and to
incorporate mesh density functions to grade the mesh.

His parallel code, based on triangle(), could run as much as 40 to 4,000
times faster than a sequential code based on stripack().

The program is available at
https:/ /sourceforge.net/projects/mpi-scvt/

His thesis is available at
http://people.sc.fsu.edu/~jburkardt/pdf/jacobsen_thesis.pdf

Doug himself is now “available” at Los Alamos National Laboratory,
working with the MPAS group.

Doug Jacobsen, Max Gunzburger, Todd Ringler, John Burkardt, Janet
Peterson, Parallel Algorithm for Spherical Delaunay Triangulation and
Spherical Centroidal Voronoi Tessellation, Geosciences Model
Development, accepted August 2013.

53/60

The Spherical Mesh

@ Planar Meshes

@ The STRIPACK Sphere Mesh
@ The SCVT Sphere Mesh

e Examples

54 /60

EXAMPLE: Atmosphere Density Function

A density function for North Atlantic regional modeling

55 /60

EXAMPLE: Atmosphere Grid

EXAMPLE: Florida Ocean Grid

A closeup ocean mesh, with uniform mesh density, near Florida.

EXAMPLE: California Ocean Grid

A grid which is focussed for study of ocean currents near California.

EXAMPLE: Greenland Ice Sheet Grid

2500

2000

1500

1000

) observations
0 . S L

0 200 400 600 BO0 1000 1200 1400
x (km)

CONCLUSION: References

Qiang Du, Vance Faber, Max Gunzburger, Centroidal Voronoi
Tessellations: Applications and Algorithms, SIAM Review, Volume
41, Number 4, December 1999, pages 637-676.

Per-Olof Persson, Gilbert Strang,jbr; A Simple Mesh Generator in
MATLAB, SIAM Review, Volume 46, Number 2, June 2004, pages
329-345.

Robert Renka, Algorithm 772: STRIPACK: Delaunay Triangulation
and Voronoi Diagram on the Surface of a Sphere, ACM Transactions
on Mathematical Software, Volume 23, Number 3, September 1997,
pages 416-434.

Todd Ringler, Lili Ju, Max Gunzburger, A multiresolution method
for climate system modeling: application of spherical centroidal
Voronoi tessellations, Ocean Dynamics, Volume 58, Number 5-6,
2008, pages 475-498.

Jonathan Shewchuk, Delaunay Refinement Algorithms for Triangular
Mesh Generation, Computational Geometry, Theory and |
Applications, Volume 23, May 2002, pages 21-74.

60 /60

