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1 Introduction

This note is intended to summarize some data about the precision of various multidimensional quadrature
rules. The real aim of this investigation is to justify the claim that a sparse grid is “better” than a product
rule, at least if the spatial dimension is high enough.

In this context, one rule is better than another if, for a given precision and spatial dimension, it requires
fewer function evaluations, a quantity which we will symbolize by N. We expect that a sparse grid rule will
always “eventually” be better than a product rule, by which we mean that there is a crossover dimension
M0 and precision P0 so that the sparse grid is better than the product rule for any pair (M,P) for which
both M0 ≤M and P0 ≤ P.

Since there are many ways of constructing product grids and sparse grids, it is not surprising that this
data is hard to track down. Here, we concentrate on some simple, popular cases, and work out the details
in tables for moderate dimensions and precisions.

2 Multidimensional Precision

A 1D quadrature rule is said to have precision P if, for any polynomial p(x) of degree P or less, the estimated
integral produced by the quadrature rule is exact. By linearity of integration and quadrature, it is sufficient
to verify that a quadrature rule produces the exact result for the P+1 monomials 1, x, x2, ..., xP .

Similarly, an M-dimensional quadrature rule has precision P if, for any polynomial p(~x) of total degree P
or less, the estimated integral produced by the quadrature rule is exact. The total degree of a polynomial in
the M-dimensional variable ~x is the maximum of the sums of the exponents of the individual terms. Thus,
the total degree of x3y2z + x5yz4 + y3 is 10. Again, to verify that a multidimensional quadrature rule has
precision P, it is sufficient to check that the rule produces the exact integral of each monomial

∏M
i=1 xei

i for
which

∑M
i=1 ei ≤ P .

3 Multidimensional Monomials of Total Degree P

To measure multidimensional precision, you have to generate multidimensional monomials. The number of
monomials of total degree P increases rapidly with the spatial dimension M. A formula for the number of

1



M-dimensional monomials of total degree exactly equal to P is

(P + M − 1)!
P !(M − 1)!

This formula is simply counting the number of partitions of P into M ordered parts.
To justify this formula, it is useful to turn to the theory of permutations. We can represent any M-

dimensional monomial of total degree P as a sequence of P 1’s and M-1 divider symbols |. For instance, the
monomial x5yz4, of total degree 10, would be represented by 11111|1|1111. This representation creates a
1-to-1 mapping between the monomials and strings of 1’s and |’s. But such strings are easy to count using the
standard formula for the number of permutations of P+M-1 objects with P objects of one indistinguishable
type, and M-1 of another.

Here is a table of the number of M-dimensional monomials of degree exactly P:

P \ M 1 2 3 4 5 6 7 8 9 10
0 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9 10
2 1 3 6 10 15 21 28 36 45 55
3 1 4 10 20 35 56 84 120 165 220
4 1 5 15 35 70 126 210 330 495 715
5 1 6 21 56 126 252 462 792 1,287 2,002
6 1 7 28 84 210 462 924 1,716 3,003 5,005
7 1 8 36 120 330 792 1,716 3,432 6,435 11,440
8 1 9 45 165 495 1,287 3,003 6,435 12,870 24,310
9 1 10 55 220 715 2,002 5,005 11,440 24,310 48,620

10 1 11 66 286 1,001 3,003 8,008 19,448 43,758 92,378
11 1 12 78 364 1,365 4,368 12,376 31,824 75,582 167,960

Note that this table is symmetric in the sense that column M matches row P-1.
We can usefully consider a few entries of the table much further out. In particular, for M=100, the

number of monomials of the first few total degrees is 1, 100, 5050, and 171700. Similarly, for degree P=99,
the number of monomials in the first few dimensions is 1, 100, 5050 and 171700.

Finally, note the very interesting fact that the growth factor from column M to M+1 is the multiplier
P+M

M , so that, as you move along row P, the growth factor is tending to 1. This is a remarkable feature.

4 Multidimensional Monomials of Total Degree P or Less

The number of monomials of total degree less than or equal to P can be derived by allowing one more divider
which can be thought of as storing the amount by which the monomial’s degree is less than P. Thus, if we
were considering monomials of degree 10 or less, the representation for x3y2z would be 111|11|1|1111. And
again applying the formula for permutations of objects, some of which are indistinguishable, we have that
the number of monomials of total degree less than or equal to P is

(P + M)!
P !M !

Thus, for M = 100, the number of monomials up to a given total degree is 1, 101, then 5151.
Moreover, the alert observer will note that the following table, which counts the monomials of degree up

to and including P, can be derived from the previous table simply by dropping the first column.
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P \ M 1 2 3 4 5 6 7 8 9 10
0 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11
2 3 6 10 15 21 28 36 45 55 66
3 4 10 20 35 56 84 120 165 220 286
4 5 15 35 70 126 210 330 495 715 1,001
5 6 21 56 126 252 462 924 1,716 2,002 3,003
6 7 28 84 210 462 924 1,716 3,003 5,005 8,008
7 8 36 120 330 792 1,716 3,432 6,435 11,440 19,448
8 9 45 165 495 1,287 3,003 6,435 12,870 24,310 43,758
9 10 55 220 715 2,002 5,005 11,440 24,310 48,620 92,378

10 11 66 286 1,001 3,003 8,008 19,448 43,758 92,378 184,756
11 12 78 364 1,365 4,368 12,376 31,824 75,582 167,960 352,716

Note that this table is symmetric in the sense that column M, after skipping the first entry, matches row
P.

Just as for the previous table, the rate of growth as you move along row P actually slows down. The
multiplier to go from column M to M+1 is P+M+1

M+1 , so that the growth factor is tending to 1.
The number of monomials of total degree P or less is a rough measure of the inherent difficulty involved

in producing a quadrature rule that will have precision P.

5 Products of the Clenshaw-Curtis Rule

Our first multidimensional rule will be formed as a product of the 1D Clenshaw-Curtis rule (“CC”).
For the 1D case, the CC rule of order N has a precision of

P (CC) =

{
N − 1 if N is even;
N if N is odd.

If we employ the standard product rule construction to create a CC product rule of order NM , the precision
result is the same:

P (CCM ) =

{
N − 1 if N is even;
N if N is odd.

We now ask the following question: If we wish to obtain a CC product rule of precision P, how many
points N will be required in our quadrature rule?

P \ M 1 2 3 4 5
1 1 1 1 1 1
3 3 9 27 81 243
5 5 25 125 625 3,125
7 7 49 343 2,401 16,807
9 9 81 729 6,561 59,049

11 11 121 1,331 14,641 161,05

P \ M 6 7 8 9 10
1 1 1 1 1 1
3 729 2187 6,561 19,683 59,049
5 15,625 78,125 390,625 1,953,125 9,765,625
7 117,649 823,543 5,764,801 40,353,608 282,475,264
9 531,441 4,782,969 43,046,720 387,420,480 3,486,784,320

11 1,771,561 19,487,172 214,358,881 2,357,947,691 25,937,424,601
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Of course, the growth factor for row P, to get from column M to M+1, is P. This does not decrease
with increasing M, and of course it gets much worse for increasing P.

6 Products of the Gauss-Legendre Rule

A very common 1D quadrature rule is known as the Gauss-Legendre rule (“GL”). It is often preferred for
computations in which high accuracy is desired, since it achieves about twice the precision of standard
interpolatory rules.

For the 1D case, the GL rule of order N has a precision of

P (GL) = 2 ∗N − 1.

If we employ the standard product rule construction to create a GL product rule of order NM , the precision
result is the same:

P (GLM ) = 2 ∗N − 1.

The precision table for Gauss-Legendre:
P \ M 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
3 2 4 8 16 32 64 128 256 512 1024
5 3 9 27 81 243 729 2,187 6,561 19,683 59,049
7 4 16 64 256 1024 4096 16,384 65,536 262,144 1,048,576
9 5 25 125 625 3,125 15,625 78,125 390,625 1,953,125 9,765,625

11 6 36 216 1,296 7,776 46,656 279,936 1,679,616 10,077,696 60,466,176
13 7 49 343 2,401 16,807 117,649 823,543 5,764,801 40,353,607 282,475,249
15 8 64 512 4,096 32,768 262,144 2,097,152 16,777,216 134,217,728 1,073,741,824

The improvement over the CC rule is stunning. However, this relates directly to the fact that we are
essentially comparing PM and (P + 1)M/2M . We are still looking at exponential growth, but the base is
about half as large.

7 Clenshaw-Curtis Sparse Grids

The standard method of generating a multidimensional sparse grid from the 1D Clenshaw-Curtis rule takes
full advantage of the nestedness of the rule. It does so by prescribing that the sequence of 1D rules being
used show grow exponentially in order. Thus, the selected 1D rules rise rapidly in order, so that, formally,
a 1D sparse grid of precision 15 uses 129 points. Actually, of course, in 1D a Clenshaw Curtis rule of order
15 would be sufficient to reach precision 15.

If we look at a row of the table, we see that the excessive number of points used in dimension 1 is
moderated by a very slow growth rate with increasing dimension. This guarantees that, for a particular
precision level, the product rule formulas will quickly surpass the sparse grid in terms of number of points
required.

P \ M 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
3 3 5 7 9 11 13 15 17 19 21
5 5 13 25 41 61 85 113 145 181 221
7 9 29 69 137 241 389 589 849 1,177 1,581
9 17 65 177 401 801 1,457 2,465 3,937 6,001 8,801

11 33 145 441 1,105 2,433 4,865 9,017 15,713 26,017 41,265
13 65 321 1,073 2,929 6,993 15,121 30,241 56,737 100,897 171,425
15 129 705 2,561 7,537 19,313 44,689 95,441 190,881 361,249 652,065
17 257 1,537 6,017 18,945 51,713 127,105 287,745 609,025 1,218,049 2,320,385
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8 Delayed Clenshaw-Curtis Sparse Grids

We observed in the previous section that the Clenshaw-Curtis sparse grid tables had a peculiar behavior in
column 1, where a much lower order rule would be sufficient to achieve the desired accuracy. We presume
that an inflated order in column 1 influences all the values in the same row.

This observation raises the question of whether it is possible to further improve the performance of the
sparse grid procedure by controlling the excessive growth in the number of points used in the 1D case.
Presumably, if we can control the first column of the table, the rows will behave as well, since the rate of
growth along a row seems to be very moderate.

The proposal for treating this issue is sometimes called a delayed sparse grid. Essentially, this approach
tries to retain the advantages of nestedness, while avoiding the costs of relentless exponential growth. This is
done, roughly speaking, by reusing a given 1D rule until it would no longer satisfy the precision requirement,
and only then jumping to the next (exponentially larger) rule.

To see how this would work, suppose that column 1 of the above table was replaced by the values 1, 3, 5,
9, 9, 17, 17, 17, 17. This would mean that for precision 17, dimension 1, we would use 17 points rather than
257, and that, presumably, the entries in the precision 17 row would all drop, perhaps by a linear factor of
more than 10.
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