
Slow Exponential Growth for Clenshaw Curtis Sparse Grids

John Burkardt
Interdisciplinary Center for Applied Mathematics

& Information Technology Department
Virginia Tech

.....
http://people.sc.fsu.edu/∼burkardt/presentations/sgmga ccs.pdf

April 4, 2014

Abstract

When Clenshaw Curtis rules are used to form a sparse grid, the orders of the underlying 1D factor
rules form an exponential series. Even for a relatively low level, the 1D order growth is unnecessary, and
is reflected in a noticeable cost in the order of the resulting sparse grid. We consider the effect of using
the Clenshaw Curtis rules in a way that maintains the nestedness but delays their exponential growth so
effectively that it becomes essentially linear. This restraint, in turn, brings down the cost of the sparse
grids while entirely meeting the desired precision levels.

1 Introduction

The sparse grid construction of Smolyak [5] is a method for producing a multidimensional quadrature rule
as a weighted sum of product rules, which are in turn typically formed by the product of 1D rules selected
from an indexed family. A common choice for the indexed family is the Clenshaw Curtis quadrature rule.
The rules in this family form a nested set, so that all the abscissas from one rule are included in the next.
The nestedness requires that the order of the rules in the indexed family grows exponentially.

The sparse grid construction produces a family of sparse grids, which are indexed in a way that is related
to the indexes of the underlying 1D rules. The exponential growth in the order of the Clenshaw Curtis 1D
family affects the order of the sparse grid, although it is not so severe as to cause the sparse grid family
order also to increase exponentially. The high order of the later 1D rules is also reflected in the ability of
the sparse grid to exactly integrate certain high degree monomials; however, this extra accuracy does not
extend the total precision of the sparse grid, and so, at least in the asymptotic sense, it is wasted, excessive
precision.

The effect is particularly noticeable for low dimensional sparse grids. The usual sparse grid construction
expects that any sparse grid of Clenshaw Curtis factors, of sparse grid level l, will achieve a precision of
2 l + 1. But if we formally construct a 1D sparse grid out of the Clenshaw Curtis family, this simply selects
successive members of the family, and so we greatly exceed our accuracy requirement by achieving accuracy
of 2l + 1, and we do so at a corresponding cost of a high order.

It turns out that this straightforward construction is not the only way to build a sparse grid that takes
advantage of the nestedness of the Clenshaw Curtis family. Smolyak’s construction does not require that
successive members of the family be distinct. It is really only important that the representative rule chosen
for a given level achieves the desired precision level. If we construct a Clenshaw Curtis family of sparse grids
with this precision requirement in mind, we can come close to achieving linear growth in the order of the 1D
factors. This economy is then reflected in the resultant sparse grid, while maintaining the desired precision,
per sparse grid level, of 2 l + 1.

1

In the following discussion, we describe the standard Clenshaw Curtis family of 1D rules with exponential
growth, which we will denoted by “CC E”, and then indicate how a related family, denoted by “CC SE” can
be chosen so that it exhibits “slow exponential growth”.

We will then compare the sparse grids that can be constructed with these two related families, and exhibit
the resulting order growth.

2 “CC E”: Clenshaw Curtis Exponential Growth Family

Clenshaw Curtis quadrature is a simple family of rules for estimating integrals. By using unequally spaced
points, it avoids the instability that makes Newton Cotes quadrature unusable beyond the first few orders.
The values of the abscissas and weights can be easily computed, and because of symmetry, a rule of odd
order n has degree of precision n, that is, it can integrate exactly the n+1 monomials 1, x, x2, . . . , xn.

The relative merits of Clenshaw Curtis and Gauss Legendre quadrature rules are often compared [6].
Gauss Legendre quadrature has the marked advantage that a rule of order n attains degree of precision
2*n-1. On the other hand, the form of the Clenshaw Curtis rules allows the construction of a nested family
of increasing order. Such nested families can offer efficiency for certain kinds of calculations, because of
the reuse of function values. It also means that when computing an integral estimate, one automatically
has available the integral estimates from all the lower rules in the family, so that convergence estimates are
exceptionally cheap.

The Clenshaw Curtis rule is usually developed over the interval [-1,1]. The classical nested family of
Clenshaw Curtis rules begins with the midpoint rule, followed by a rule of order 3 which adds the interval
endpoints, and then by rules which successively add points between each pair of points in the preceding rule.
Let us index this family by a variable lcc, denoting the level of a rule, with the midpoint rule having level
0. Moreover, let occ denote the order of a rule, that is the number of points or abscissas. Finally, let pcc
denote the polynomial degree of precision, that is, the value such that all monomials up to and including
degree pcc are integrated exactly by the rule. Then the order as a function of level is:

occ(lcc) =

{
1, if lcc = 0;
2lcc + 1, otherwise;

while the precision suggests why odd-order rules are preferred:

pcc(lcc) =

{
occ(lcc), if occ(lcc) is odd;
occ(lcc)− 1, if occ(lcc) is even;;

This means that the classical nested family of Clenshaw Curtis rules provides a list of rules whose order
and precision increases exponentially with the level index. Such a growth pattern is not uncommon; for
instance, the Gauss Patterson rules behave in almost the same way. The rapid growth in order does mean,
however, that the family becomes unusable for relatively low values of lcc; for instance, a rule of level 20
would require about a million points, and the corresponding claim of a polynomial precision of a million has
become a numerical fiction. See Figure 1.

3 “CC SE”: Clenshaw Curtis Slow Exponential Growth Family

When we constructed our family of 1D Clenshaw Curtis rules, we did so by seeking a nested family indexed
in such a way that each increased in the level resulted in a (nested) rule of higher order, with the higher
order, in turn, guaranteeing an increase in accuracy. Thie makes it possible to use the family in an adaptive
calculation, in which increasing the level guarantees a more accurate estimate. The cost of this arrangement
is incurred in the way that the order of the rules increases exponentially.

2

Figure 1: Classical Nested Clenshaw Curtis Family
The classical nested CC E family has an exponential growth in the order.

At level 10, the order is 1,024 and at level 20, it is 1,048,576.

3

But this is not the only way to set up an adaptive calculation based on Clenshaw Curtis rules (or indeed
other nested families). Suppose, instead, we consider each level of the adaptive procedure to be characterized
by the requirement that a specific minimum polynomial precision be reached. If we count our levels beginning
at 0, and if we make the typical choice of increasing precision by 2 each time, then the relationship between
the level l and the minimum precision requirement pmin would have the simple linear form:

pmin(l) = 2 l + 1 (1)

If on level l we employ the l-th element of the classical nested Clenshaw Curtis family, then of course we
easily meet (and generally greatly exceed) this precision requirement. But now that we have asserted that
a linear increase in accuracy is our main concern, we can turn to the question of choosing the lowest order
rule in our Clenshaw Curtis family that achieves that specific precision requirement.

For levels 0 through 4, the 1D rules selected by the CC E family have precisions 1, 3, 5, 9 and 17. The
corresponding minimum precision requirements are 1, 3, 5, 7 and 9. Thus, we can see that at level 3, the
CC E(3) rule exceeds the accuracy level required, and, moreover, is still good enough to meet the accuracy
requirement at level 4. So if guaranteeing accuracy is our concern, then there is really no good reason to
advance the quadrature rule from CC E(3) to CC E(4) when we move to the precision requirement of level
4.

Thus, we can now consider the construction of a related family of quadrature rules, the “CC SE” family,
which is defined as follows: CC SE(l), the quadrature rule for level l, is to be chosen as the lowest order
member of the CC E family which satisfies the linear precision requirement, Equation 1.

This dramatically slows down the growth of the order as a function of level. In particular, for the CC E
formulation, the rule of order 65 (and precision 65) occurs at level 6, though the requested accuracy is only
13. For the CC SE formulation, level 6 uses the rule of order 17 (and precision 17). Moreover, that same
rule continues in use through level 8, only then jumping to the rule of order 33, which holds tuntil level 16,
then jumping to the rule of 65, which is maintained through level 32. It should be clear that, for the CC SE
grid, the order growth becomes essentially linear, rather than exponential, as a function of the level L.

Here, we will write lcc(lccs) to indicate the level, in the standard family, of the rule which is to be used
at level lccs in the “slow” family, while occs(lccs) indicates the order of the CC SE rule and pccs(lccs)
indicates the precision. Now that we consider the minimum precision to be the guiding value in defining
what happens at a particular level, we have the following formulas:

pmin(lccs) =2 lccs + 1
lcc(lccs) =ceil(log2(lccs) + 1)

occs(lccs) =2lcc(lccs) + 1
pcc(lccs) =occs(lccs)

These facts can be used to compare the minimum precision requirement to the acheived precision:

pmin(lccs) =2 lccs + 1

=2log2(lccs)+1 + 1

≤2ceil(log2(lccs)+1) + 1

=2lcc(lccs) + 1
=pccs(lccs).

and hence we have that the CC SE element of level lccs will achieve the desired precision 2 lccs+1 or better,
and by definition, it is the lowest order rule in the nested family that will match this precision requirement.

4

Figure 2: “Slow” Nested Clenshaw Curtis Family
The slow nested CC SE family has an approximately linear growth in the order.

At level 10, the order is 32 and at levels 20 and 30, it is 64.
The white line indicates the function o = 2 ∗ l + 1.

5

4 Sparse Grids

The real motivation for this discussion is the use of Clenshaw Curtis rules for the formation of sparse grids,
which can be used to estimate integrals of functions of a multidimensional argument. In this context, the
exponential order growth of the classical CC E grid results in an anomalous result when we compute a formal
1D sparse grid. More seriously, when a sparse grid is constructed for a multidimensional problem, the order
of that sparse grid is unneccessarily increased by the use of high order 1D rules as factors.

In order to discuss this issue, we review the procedure by which a sparse grid is formed. Note that the
discussion begins at a general level, without specifying the particular family of 1D quadrature rules that are
employed as factors. In fact, a different family could be used in each spatial dimension, but that will not
concern us here. We will implicitly assume that the family is either the classical or slow Clenshaw Curtis
family. Once we have seen how the family of 1D rules forms product rules that are combined into a sparse
grid, we can address the question that concerns us, namely, the attainment of a specified degree of precision
with a relatively moderate point count.

We suppose, then, that we are interested in computing sparse grids for the quadrature of functions f(x)
where x is an element of an M-dimensional space.

We assume that we have an indexed family of 1D quadrature rules U i. These quadrature rules are
indexed by the variable i, which is called the 1D level. The index i begins at 0, and the corresponding first
1D quadrature rule is often taken to be the midpoint rule. It is understood that as the index i increases,
so do both the order (number of points) and the polynomial accuracy of the rule; the exact nature of these
relationships is not necessary to specify yet; it is enough to understand that accuracy increases with i.

We can specify a product rule for an M-dimensional space by creating a level vector, that is, an M-vector
i, each of whose entries is the 1D level which indexes the rule to be used in that spatial coordinate. The
resulting product rule may be written as U i1 ⊗ · · · ⊗ U iM . We say that this product rule has a product level
of |i| =

∑M
k=1 ik. Since the lowest value of a 1D level is taken to be 0, the lowest value of |i| is also 0. Thus,

the product rule of product level 0 is formed by M factors of the midpoint rule, each having 1D level of 0.
A product rule is a method for approximating an integral; a sparse grid is a refined method for ap-

proximating integrals that uses weighted combinations of product rules. A sparse grid can be indexed by
a variable called the sparse grid level, here symbolized by L. The lowest value of L is taken to be 0. The
sparse grid of sparse grid level L is formed by weighted combinations of those product rules whose product
level |i| falls between L−M + 1 and L.

The formula for the sparse grid has the form:

A(L, M) =
∑

L−M+1≤|i|≤L

(−1)L−|i|
(

M − 1
L− |i|

)
(U i1 ⊗ · · · ⊗ U iM)

The first sparse grid, of sparse grid level L = 0, will be formed of all product grids with product levels
between 1-M and 0. The lowest possible product level is actually 0, and is attained only by the M-dimensional
product of the midpoint rule (or whatever the first 1D quadrature rule is). So the sparse grid of sparse grid
level 0 is equal to the product rule of product level 0.

Each sparse grid A(L, M) is a weighted sum of the selected product rules. The selection is based on the
product levels, and each weighting coefficient is a power of -1 times a combinatorial coefficient.

5 Sparse Grids Using the CC E and CC SE Families

Formally, the only thing we have to do to describe a sparse grid using the CC E family is to substitute CCik

for each generic quadrature rule U ik . It may be instructive, though, to write out the specific formulas for
a few sparse grids in dimension 3, exhibiting how the sparse grid is formed by the sum of rules which are
products of the 1D CC rules:

A(0, 3) =1 · CC0 ⊗ CC0 ⊗ CC0

6

A(1, 3) =1 · CC1 ⊗ CC0 ⊗ CC0

+1 · CC0 ⊗ CC1 ⊗ CC0

+1 · CC0 ⊗ CC0 ⊗ CC1

−2 · CC0 ⊗ CC0 ⊗ CC0

A(2, 3) =1 · CC2 ⊗ CC0 ⊗ CC0

+1 · CC1 ⊗ CC1 ⊗ CC0

+1 · CC1 ⊗ CC0 ⊗ CC1

+1 · CC0 ⊗ CC2 ⊗ CC0

+1 · CC0 ⊗ CC1 ⊗ CC1

+1 · CC0 ⊗ CC0 ⊗ CC2

−2 · CC1 ⊗ CC0 ⊗ CC0

−2 · CC0 ⊗ CC1 ⊗ CC0

−2 · CC0 ⊗ CC0 ⊗ CC1

+1 · CC0 ⊗ CC0 ⊗ CC0

Now we know already the precision of the 1D CC rules. Novak and Ritter [2] have shown that a sparse
grid of level l, constructed from the usual CC E family in this way, will have total precision 2 l + 1. By this
expression we mean that such a rule can correctly compute the integral of any monomial

∏M
i=1 xei

i for which
the exponents are all nonnegative, and the sum of the exponents satisfies:

M∑
i=1

ei ≤ 2 l + 1

Except in the case M = 1, this precision result is sharp, that is, there will be monomials of total degree
2 l + 2 which cannot be exactly integrated by the rule.

The fact that the precision of the sparse grid grows linearly with the level, whereas the order and precision
of the 1D CC factors grows exponentially, is the anomaly that first suggested that there might be a more
economical way of constructing sparse grids from 1D CC rules.

Formally, the construction of a sparse grid is the same whether the CC E or CC SE family is used. Thus,
the formulas for the CC E versions of A(0, 3),A(0, 3), and A(0, 3) become formulas for the CC SE versions
simply by replacing each 1D CC E rule by the corresponding 1D CC SE rule.

Since the two 1D families are identical through the third level, it is only when a sparse grid reaches level
4 that we begin so see any differences in total order, corresponding to the use of the more economical CC SE
family.

It should be clear from the definition of the CC SE family that we are guaranteed to use the minimal
number of points in the 1D rules necessary to achieve the 1D precision requirement. It follows from Novak
and Ritter [2] that a sparse grid constructed from the CC SE family will also achieve the total precision
2 l + 1 of the CC E family. In other words, the higher order rules used by the underlying CC E family are
not necessary to achieve the total precision requirement associated with the sparse grid.

Note that the increased order of a CC E grid is not entirely wasted. It does mean that certain higher
order monomials will be integrated exactly; but because some monomials of the same degree will not be
integrated exactly, this extra accuracy does not affect the total precision or the asymptotic accuracy of the
grids. So a CC E grid may have a lower error than a CC SE grid of the same level, but the error reduction
is small, and too costly in terms of extra function evaluations.

7

6 Comparison of Accuracy

We reserve the word precision for measuring the polynomial precision of a 1d rule or multidimensional sparse
grid; it is used when claiming that a rule can integrate exactly all monomials of total degree less than or
equal to that limit.

By accuracy we may simply mean the collection of all monomials that a rule or sparse grid can integrate
exactly.

We know that a CC E sparse grid of level l will have precision 2 l + 1. For a 2D sparse grid we can make
an “accuracy plot”, which fills in a box at each point (e1, e2) for which the sparse grid can exactly integrate
xe1ye2 . If the sparse grid is of level l, then every box on or below the “precision line” x + y = 2 l + 1 must
be filled in. If the sparse grid has “extra accuracy”, then some boxes above this line may also be filled in.
Such extra accuracy will slightly improve the results of approximate integration, but presumably, the points
of extra accuracy come at the same cost as the necessary accuracy that lies on or below the precision line.
Thus, if a sparse grid’s accuracy plot shows a lot of extra accuracy above the precision line, this suggests
that the grid may be inefficient.

The following images depict the accuracy plots of 2D sparse grids of levels 0 through 3, formed from a
1D Clenshaw Curtis rule of either standard or slow exponential growth.

The following images depict the expected accuracy of 2D sparse grids of levels 4, 5, and 6, formed from
the CC E family (on the left) and the CC SE family (on the right). Note that the level 6 CC E plot goes
off the scale, reaching values of magnitude 65 on the first 2 columns and last two rows.

As the level increases, the plots of the CC E sparse grids show symptoms of the “hyperbolic cross”
phenomenon. On the other hand, the CC SE sparse grids show a strong tendency not to stray too far above
the precision line.

7 Comparison of Point Growth

A primary motivation for sparse grids is to achieve a desired level of polynomial precision for approximate
integration while avoiding the exponential cost associated with a product grid rule. Since the approximate
integral is computed as a weighted sum of function values, the “cost” of a quadrature procedure is usually
taken as the number of function evaluations, and hence, equivalently, as the number of abscissas or points.

This is one reason that it is important to be able to determine the point count or order of a sparse
grid, given its level, spatial dimension, and the underlying 1D family of quadrature rules from which it is
constructed. For the CC E and CC SE families, it is actually possible to derive simple procedures to quickly
evaluate the order. We will use such a procedure in order to produce order tables for both families.

The formula for the point count takes advantage of the nestedness of the CC E and CC SE families. We
begin by noting that for the CC E family, the order of the selected CC rule as a function of level has the
form:

order 1d = {1, 3, 5, 9, 17, 33, . . . , 2l + 1, . . .}

Because of nestedness, we may then define and easily compute the vector new 1d to count the number of
“new” points that occur for the first time at a given level:

new 1d = {1, 2, 2, 4, 8, 16, . . . , 2l−1, . . .}

Now to construct a sparse grid in dimension M and level L, Smolyak’s formula tells us to combine product
rules whose product levels lie in the limited range between max(0, L−M + 1) and L. When the underlying
family is nested, and we are only interested in what points are included in the sparse grid, we can think
of the sparse grid as being formed from the entire range of product rule levels, 0 to L. The advantage to
thinking this way is that we can now logically assign each point in the final grid a time of “first appearance”
in the grid, by starting with product rule level 0. For each point in the grid, there is a minimum product rule
level at which it appears, and for that level it appears in exactly one product grid. This means that one way

8

Figure 3: Accuracy tables for 2D CC E sparse grids, levels 0 through 3.
For these levels, the CC SE sparse grids have identical behavior.

9

Figure 4: Accuracy tables for 2D CC E and CC SE sparse grids, levels 4, 5 and 6.
Some of the CC E data for level 6 has exceeded the limits of the plot.10

L New
5 16 16
4 8 8 16
3 4 4 8 8
2 2 2 4 4 8
1 2 2 4 4 8 16
0 1 1 2 2 4 8 16

New 1 2 2 4 8 16
L 0 1 2 3 4 5

Table 1: Counting the points in a 2D CC E sparse grid.

to count all the points in the sparse grid is to count only the first appearances of points in the component
product grids.

But this turns out to be easy. Any component product rule is defined by its level vector, level 1d, which
in turn gives us a decomposition of that product grid into its 1D factors. The number of points that make
their first appearance in this grid is simply

new(level 1d) =
M∏
i=1

new 1d(level 1d(i))

and therefore the number of points in the sparse grid is

order(L, M) =
L∑

l=1

∑
|level 1d|=l

M∏
i=1

new 1d(level 1d(i))

which is the sum, over all product rule levels l from 0 to L, of the sum over all product grids of level exactly
l, of the number of points which first appear in that product grid.

For a 2D grid, the result can easily be worked out by performing what amounts to a convolution on the
new 1d vector. For instance, the order of the sparse grid of level 3, dimension 2 is

order(3, 2) = 1
+ (2 ∗ 1 + 1 ∗ 2)
+ (2 ∗ 1 + 2 ∗ 2 + 1 ∗ 2)
+ (4 ∗ 1 + 2 ∗ 2 + 2 ∗ 2 + 1 ∗ 4)
= 29

For 2D, the procedure can also be visualized in a tabular array, as in Table 7
This table shows the number of points that have their “first appearance” in each of the product rules that

is used to build a CC E sparse grid in dimension 2 of level 5. Totalling the values inside the box produces
145, the number of points in the sparse grid.

For the general case, the count is easy to program, as long as we have some procedure for generating all
possible level vectors that have a given level. Here is the body of a C++ function that computes order, the
order of a sparse grid. It is to be understood that the function comp next produces, one at a time, the
level vectors level 1d that sum to l.

new_1d = new int[level+1];
new_1d[0] = 1;
new_1d[1] = 2;
j = 1;

11

for (l = 2; l <= level; l++)
{
j = j * 2;
new_1d[l] = j;

}
level_1d = new int[m];
order = 0;
for (l = 0; l <= level; l++)
{
more = false;
for (; ;)
{
comp_next (l, m, level_1d, &more);
v = 1;
for (dim = 0; dim < m; dim++)
{
v = v * new_1d[level_1d[dim]];

}
order = order + v;
if (!more)
{
break;

}
}

}

Novak and Ritter [3] computed and displayed the point counts for sparse grids based on the standard
Clenshaw Curtis family, for levels 1 through 8, and dimensions 5, 10, 15, 20 and 25. Here, we present results
for levels 0 through 10, and dimensions 1 through 10. Where they overlap, the tables agree with Novak and
Ritter.

The same computation of order can be done for sparse grids based on the CC SE family. Now, however,
the 1D order as a function of level has the form:

order 1d = {1, 3, 5, 9, 9, 17, 17, 17, 17, 33, 33, . . .}

and the vector new 1d begins:

new 1d = {1, 2, 2, 4, 0, 8, 0, 0, 0, 16, 0, . . .}

Again, we can make a tabular array for a 2D case, as in Table 7.
Summing up the entries within the box, we compute the number of points in a CC SE sparse grid for

dimension 2, level 5, is 81.
The code to compute the order for a CC SE sparse grid is quite similar to that for a CC E, and in fact,

only the definition of new 1d needs to be revised:

new_1d = new int[level_max+1];
new_1d[0] = 1;
new_1d[1] = 2;
p = 3;
o = 3;
for (l = 2; l <= level; l++)
{

12

DIM: 1 2 3 4 5
CC E LEVEL

0 1 1 1 1 1
1 3 5 7 9 11
2 5 13 25 41 61
3 9 29 69 137 241
4 17 65 177 401 801
5 33 145 441 1,105 2,433
6 65 321 1,073 2,929 6,993
7 129 705 2,561 7,537 19,313
8 257 1,537 6,017 18,945 51,713
9 513 3,329 13,953 46,721 135,073

10 1,025 7,169 32,001 113,409 345,665
DIM: 1 2 3 4 5

CC SE LEVEL
0 1 1 1 1 1
1 3 5 7 9 11
2 5 13 25 41 61
3 9 29 69 137 241
4 9 49 153 369 761
5 17 81 297 849 2,033
6 17 129 545 1,777 4,833
7 17 161 881 3,377 10,433
8 17 225 1,361 5,953 20,753
9 33 257 1,953 9,857 38,593

10 33 385 2,721 15,361 67,425
DIM: 1 2 3 4 5

LEVEL
0 1.00 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00
4 1.88 1.32 1.15 1.08 1.05
5 1.94 1.79 1.48 1.30 1.20
6 3.82 2.48 1.96 1.64 1.45
7 7.58 4.37 2.90 2.23 1.85
8 15.11 6.83 4.42 3.18 2.49
9 15.54 12.95 7.14 4.73 3.49

10 31.00 18.62 11.76 7.38 5.12

Table 2: CC E Order, CC SE Order, CC E Order / CC SE Order, dimensions 1 to 5.
The improvement increases with level, decreases with dimension;

13

Figure 5: CC E and CC SE 2D sparse grids, levels 5, 6 and 7.
14

L New
5 8 8
4 0 0 0
3 4 4 8 8
2 2 2 4 4 8
1 2 2 4 4 8 0
0 1 1 2 2 4 0 8

New 1 2 2 4 0 8
L 0 1 2 3 4 5

Table 3: Counting the points in a 2D CC SE sparse grid.

p = 2 * l + 1;
if (o < p)
{
new_1d[l] = o - 1;
o = 2 * o - 1;

}
else
{
new_1d[l] = 0;

}
}

Again, we compute the number of points in sparse grids of levels 0 through 10, and dimensions 1 through
10. Because we are using the more economical CC SE family, however, there are some dramatic differences
when compared to the tables for the CC E sparse grid. In particular, the values in column 1 decrease
drastically.

In general, since the CCS E and CC E select the same 1D CC rules until level 4, we do not expect to see
differences in the CC SE table until that point. At level 4 and beyond, the difference is most noticeable for
low dimensional grids. Starting at any fixed location in the table, the relative improvement from using the
CC SE family becomes stronger if we decrease the dimension or increase the level.

Notice that by the time we reach dimension 10, even the CC SE sparse grid exceeds 1,000,000 points at
level 8. If we think of a million points as roughly the maximum order we would care to consider, then for
dimension 10 and beyond, the only advantage to using the CC SE family will lie in the levels 4 through 8
at best. To emphasize this point, we now compare the CC E and CC SE point counts for dimensions 5, 10,
15, 20 and 25, for levels 0 through 8:

8 Conclusion

At first glance, it might seem that a comparison of Figure 1 and Figure 2 should have completely decided
the question of whether the CC SE family is superior to the CC E family for sparse grids. The CC SE
family has essentially linear order growth while reliably achieving the 1D precision needed to guarantee the
corresponding precision of the sparse grid.

However, the fact that the CC SE family is exponentially better than the CC E family at 1D levels of 10
or more matters much less when we realize that we will rarely be interested in such high order sparse grids,
particularly for high dimensions, and that the improvement offered by the CC SE family will really only be
noticeable for sparse grids of low dimension (less than 10).

So the first conclusion of this investigation is that the use of the CC SE family, which would seem to

15

DIM: 6 7 8 9 10
CC E LEVEL

0 1 1 1 1 1
1 13 15 17 19 21
2 85 113 145 181 221
3 389 589 849 1,177 1,581
4 1,457 2,465 3,937 6,001 8,801
5 4,865 9,017 15,713 26,017 41,265
6 15,121 30,241 56,737 100,897 171,425
7 44,689 95,441 190,881 361,249 652,065
8 127,105 287,745 609,025 1,218,049 2,320,385
9 350,657 836,769 1,863,937 3,918,273 7,836,545

10 943,553 2,362,881 5,515,265 12,133,761 25,370,753
DIM: 6 7 8 9 10

CC SE LEVEL
0 1 1 1 1 1
1 13 15 17 19 21
2 85 113 145 181 221
3 389 589 849 1,177 1,581
4 1,409 2,409 3,873 5,929 8,721
5 4,289 8,233 14,689 24,721 39,665
6 11,473 24,529 48,289 88,945 155,105
7 27,697 65,537 141,601 284,209 536,705
8 61,345 159,953 377,729 823,057 1,677,665
9 126,401 361,665 930,049 2,192,865 4,810,625

10 244,289 765,089 2,136,577 5,4363,21 12,803,073

Table 4: Order as a function of level and dimension, CC E versuse CC SE family, dimensions 6 to 10.

16

DIM=5: CC E CC SE CC E/CC SE
LEVEL

0 1 1 1.00
1 11 11 1.00
2 61 61 1.00
3 241 241 1.00
4 801 761 1.05
5 2,433 2,033 1.20
6 6,993 4,833 1.45
7 19,313 10,433 1.85
8 51,713 20,753 2.49

DIM=10: CC E CC SE CC E/CC SE
LEVEL

0 1 1 1.00
1 21 21 1.00
2 221 221 1.00
3 1,581 1,581 1.00
4 8,801 8,721 1.01
5 41,265 39,665 1.04
6 171,425 155,105 1.11
7 652,065 536,705 1.21
8 2,320,385 1,677,665 1.38

DIM=15: CC E CC SE CC E/CC SE
LEVEL

0 1 1 1.00
1 31 31 1.00
2 481 481 1.00
3 5,021 5,021 1.00
4 40,001 39,881 1.00
5 261,497 257,897 1.01
6 1,471,297 1,416,817 1.04
7 7,367,857 6,808,417 1.08
8 33,647,617 29,232,337 1.15

Table 5: Comparisons of order at dimensions 5, 10, 15.

17

DIM=20: CC E CC SE CC E/CC SE
LEVEL

0 1 1 1.00
1 41 41 1.00
2 841 841 1.00
3 11,561 11,561 1.00
4 120,401 120,241 1.00
5 1,018,129 1,011,729 1.01
6 7,314,609 7,185,969 1.02
7 46,106,289 44,365,169 1.04
8 261,163,009 243,234,369 1.07

DIM=25: CC E CC SE CC E/CC SE
LEVEL

0 1 1 1.00
1 51 51 1.00
2 1,301 1,301 1.00
3 22,201 22,201 1.00
4 286,001 285,801 1.00
5 2,976,161 2,966,161 1.00
6 26,139,361 25,888,561 1.01
7 199,876,961 195,656,561 1.02
8 1,361,884,161 1,308,121,361 1.04

Table 6: Comparisons of order at dimensions 20, 25.

offer the possibility of an enormous decrease in the order of sparse grids, only provides a moderate decrease
in order, and this over a limited subset of the practical range of sparse grids.

This observation is not entirely negative, however. First of all, we see that the CC SE family can be
substituted for the CC E with little effort, and hence the improved performance over low dimensional sparse
grids can be obtained easily.

Of more importance, however, is the implication of the fact that substituting an essentially linear growth
rule for the original exponential growth rule did not make much difference.

Since replacing the CC E family by a family with linear growth did not appreciably decrease the point
growth for higher dimensions (10 < M), this suggests that the exponential growth of the CC E sparse grids
does not actually impose a significant inflation of the order of sparse grids, particularly for sparse grids that
lie within the practical range of dimension, level and order.

Hence, it is possible that the benefits of nesting may make CC E sparse grids as efficient as those formed
from more accurate but non-nested Gaussian rules.

This observation, in turn, suggest the usefulness of a further study, in which sparse grids based on the
CC E or CC SE family are compared in efficiency with those based on other quadrature families, in particular
the nested Gauss-Patterson family, and non-nested Gauss-Legendre. Such a comparison would be made by
constructing sparse grids based on each of these families, with the property that each achieves the same
precision, and then comparing the orders.

References

[1] John Burkardt, SGMGA: Sparse Grid Mixed Growth Anisotropic Rules,
http://people.sc.fsu.edu/∼burkardt/cpp src/sgmga/sgmga.html.

18

[2] Erich Novak, Klaus Ritter, High dimensional integration of smooth functions over cubes, Nu-
merische Mathematik, Volume 75, Number 1, November 1996, pages 79-97.

[3] Erich Novak, Klaus Ritter, Richard Schmitt, Achim Steinbauer, Simple cubature formulas
with high polynomial exactness, Constructive Approximation, Volume 15, Number 4, December 1999,
pages 499-522.

[4] Knut Petras, Smolyak cubature of given polynomial degree with few nodes for increasing dimension,
Numerische Mathematik, Volume 93, Number 4, February 2003, pages 729-753.

[5] Sergey Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of
functions, Doklady Akademii Nauk SSSR, Volume 4, 1963, pages 240-243.

[6] Lloyd Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Review, Volume 50,
Number 1, March 2008, pages 67-87.

19

