Introduction to MPI

http://people.sc.fsu.edu/~jburkardt/presentations/
mpi_intro_2005.pdf

John Burkardt!

1School of Computational Science
Florida State University

School of Computational Science,
21 October 2005

Burkardt Introduction to MPI

Introduction to MPI

v

Why is MPI needed?
What is an MPI computation doing?

v

v

What does an MPI program look like?

v

How (and where) do | compile and run an MPI program?

Burkardt Introduction to MPI

It Looks Easy Today

Hurricane Wilma

October 19, 2005 [

11 AM EDT Wednesday

, | NWS TPC/National Hurricane Center

W Advisory 17

N Current Center Location 17.4 N 83.2 W
Max Sustained Wind 175 mph

U

Current Movement WNW at 7 mph
@ Current Center Location
@ Forecast Center Positions
H Sustained wind > 73 mph
& Potential Day 1-3 Track Area
] B Hu ne Warning H
Hurricane Watch
mmm Tropical Storm Warning

Y

Jamaica

0 H
SH 125 250 315 500
L -

Approx. Distance Scale (Statute Mile‘;)
, 80

Richardson's Computation, 1917

Richardson’s Forecasting Factory

Burkardt Introduction to MPI

The First Computers

The Harvard College Observatory Computer Lab, 1890.

Burkardt Introduction to MPI

e Harvard Mark I: 1944

The first modern computers were awesome.

Burkardt Introduction to MPI

The ENIAC.
Smithsonian Institution Photo No. 53192.

John von Neumann wanted ENIAC for weather prediction.

Burkardt Introduction to MPI

The Cray YMP: 1990

Burkardt Introduction to MPI

Grace Hopper with a Nanosecond

Burkardt Introduction to MPI

Parallel Processing to the Rescue

A single processor is exponentially expensive to upgrade.
but a cluster of processors is trivial to upgrade; just buy some
more!

The rate of communication is an problem, so controlling the
amount of communication is important.

MPI enables the cluster of processors to work together, and
communicate.

Burkardt Introduction to MPI

Philosophy: MPI is just a library

» User program written in C, C++, F77 or F90;
» MPI operations invoked as calls to functions;

» MPI symbols are special constants.

Burkardt Introduction to MPI

Philosophy: One Program Does it All

> A single program embodies the entire task;
» This program runs on multiple processors;

» Each processor knows its ID number.

Burkardt Introduction to MPI

HELLO HELLO HELLO HELLO in C

include <stdlib.h>
include <stdio.h>
include "mpi.h"

int main (int argc, char xargv[])

int ierr;

int num_procs;

int my_id;

ierr MPI_Init (&argc, &argv

ierr = MPI_.Comm_rank (MPI,COMM,WORLD, &my._id);
if (my.id =0)

ierr = MPI_.Comm_size (MPLLCOMM.WORLD, &num_procs);

printf ("\n");
printf ("HELLOWORLD — Master process:\n");
printf (" A simple C program using MPl.\n");
printf ("\n");
printf (" The number of processes is %d.\n", num_procs);
printf ("\n");
else
{
printf (" Process %d says 'Hello, world!'\n", my_id);

ierr = MPI_Finalize ();
return 0;

Burkardt Introduction to MPI

HELLO HELLO HELLO HELLO in FORTRANT77

program main
include 'mpif.h’
integer error
integer my._id
integer num_procs

call MPI_lnit (error)

call MPI_Comm_rank (MPIL.LCOMM.WORLD, my.id, error)

if (my_.id = 0) then
call MPI_Comm_size (MPLCOMMWORLD, num_procs, error)
print , ' '
print , 'HELLOWORLD — Master process: '
print , ' A FORTRAN77 program using MPI."’
print , ' '
print , ' The number of processes is ', num_procs
print, ' '
else
print, ' '
print , ' Process ', my.id, ' says "Hello, world!""’
end if

call MPI_Finalize (error)

stop
end

Burkardt

HELLO HELLO HELLO HELLO in

include <cstdlib>
include <iostream>
include "mpi.h"

using namespace std;

int main (int argc, char xargv[])

{
int my.id;
int num_procs;

MPI:: Init (argc, argv);
my_.id = MPIl::COMMWORLD. Get_rank ();

if (my.id =0)

num_procs = MPI::COMMWORLD. Get.size ();

cout << "\n";

cout << "HELLO.WORLD — Master process:\n";
cout << " A simple G+ program using MPl.\n";

cout << " The number of processes is " << num_procs << "\n";
else
{

cout << " Process " << my-id << " says 'Hello, world!'\n";

MPI:: Finalize ();

return 0;

Burkardt

The output from HELLO*

Process 2 says " Hello, world!”

HELLO WORLD - Master Process:

A simple FORTRAN90 program using MPI.
The number of processes is 4

Process 3 says " Hello, world!"

Process 1 says " Hello, world!

Burkardt Introduction to MPI

Philosophy: Each Process(or) Has Its Own Data

MPI data is not shared, but can be communicated.

» Each process has its own data;
» To communicate, one process may send some data to another;
» Basic routines MPI_Send and MPI_Recv.

Burkardt Introduction to MPI

Communication: MPI_Send

MPI_Send (data, count, type, to, tag, channel)

v

data, the address of the data;

» count, number of data items;

v

type, the data type (use an MPI symbolic value);

v

to, the processor ID to which data is sent;

> tag, a message identifier;

v

channel, the channel to be used.

Burkardt Introduction to MPI

Communication: MPI_Recv

MPI_Recv (data, count, type, from, tag, channel, status)

>

>

>

data, the address of the data;

count, number of data items;

type, the data type (use an MPI symbolic value);
from, the processor ID from which data is received;
tag, a message identifier;

channel, the channel to be used;

status, warnings, errors, etc.

Burkardt Introduction to MPI

Communication: An example algorithm

Compute Ax x = b.

» a "task” is to multiply one row of A times x;

» we can assign one task to each processor. Whenever a
processor is done, give it another task.

» each processor needs a copy of x at all times; for each task, it
needs a copy of the corresponding row of A.

» processor 0 will do no tasks; instead, it will pass out tasks and
accept results.

Burkardt Introduction to MPI

Matrix * Vector in FORTRAN77 (Page 1)

if (my_id = master)
numsent = 0
c
c BROADCAST X to all the workers.
c
call MPI.BCAST (x, cols, MPI_.DOUBLE_PRECISION, master,
& MPI.COMM_WORLD, ierr)
c SEND row |
c

to worker process |;
do i

tag the message with the
= 1, min (num_procs —1, rows)
do j =1, cols

buffer(j) = a(i,j)

row number.

end do

call MPISEND (buffer, cols, MPI_.DOUBLE_PRECISION, i
& i, MPLCOMM.WORLD, ierr)

numsent numsent + 1

end do

Burkardt

Matrix * Vector in FORTRAN77 (Page 2)

C
C
@
@

Wait to receive a result back from any processor;
If more rows to do, send the next one back to that processor.

do i = 1, rows

call MPI.RECV (ans, 1, MPI_DOUBLE_PRECISION,
MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI.COMM_WORLD, status, ierr)

RS

sender = status (MPI.SOURCE)
anstype = status (MPI_TAG)
b(anstype) = ans

if (numsent .It. rows) then
numsent = numsent + 1
do j =1, cols
buffer(j) = a(numsent,j)

end do

call MPI.SEND (buffer, cols, MPI_.DOUBLE_PRECISION,
& sender , numsent, MPIL.LCOMMWORLD, ierr)

else

call MPISEND (MPILBOTTOM, 0, MPI_.DOUBLE_PRECISION,
& sender, 0, MPLCOMM_WORLD, ierr)

end if

Burkardt

Matrix * Vector in FORTRAN77 (Page 3)

C
C
@
@

Workers receive X, then compute dot products until
done message received

else

call MPI.BCAST (x, cols, MPI.LDOUBLE_.PRECISION, master,
& MPI.COMM.WORLD, ierr)

90 continue

call MPI_LRECV (buffer, cols, MPI_LDOUBLE_PRECISION, master,
& MPI_,ANY_TAG, MPL.COMM_WORLD, status, ierr)

if (status(MPI.TAG) .eq. 0) then
go to 200
end if

row = status (MPILTAG)
ans = 0.0
do i =1, cols
ans = ans + buffer(i) * x(i)
end do

call MPISEND (ans, 1, MPI.DOUBLE_PRECISION, master,
& row, MPIL.COMM.WORLD, ierr)

go to 90

200 continue

Burkardt Introduction to MPI

Running MPI: on Phoenix

At SCS, there is a public cluster called Phoenix.
Any SCS user can log in to phoenix.csit.fsu.edu.

Compile your MPI program with mpicc, mpiCC, mpif77.
(mpif90 is not working yet!)

Run your job by writing a condor script:
condor_submit job.condor

Burkardt Introduction to MPI

Running MPI: on Phoenix

A sample Condor script:

universe = MPI

initialdir = /home/u8/users/burkardt
executable = matvec

log = matvec.log

output = output$(NODE).txt
machine_count = 4

queue

Burkardt Introduction to MPI

Running MPI: on Teragold

Two IBM clusters, Teragold and Eclipse.
To get an account requires an application process.
Log in to teragold.fsu.edu.

Run your job by writing a LoadLeveler script:
llsubmit job.ll

Burkardt Introduction to MPI

Running MPI: on Teragold

A sample LoadLeveler script:

job_name = matvec
class = short

wall_clock_limit = 100
job_type = parallel

node = 1

tasks_per_node = 4

node_usage = shared
network.mpi = css0,shared,US
queue

mpcc_r matvec.c

myv a.out matvec

matvec > matvec.out

Burkardt Introduction to MPI

References: Books

v

Peter Pacheco, Parallel Programming with MPI ;

v

Stan Openshaw+, High Performance Computing+;

Scott Vetter+, RS/600 SP: Practical MPI Programming;
William Gropp+, Using MPI;

Marc Snir, MPI: The Complete Reference.

v

v

v

Burkardt Introduction to MPI

References: Web Pages

With prefix http://www.csit.fsu.edu/

» this talk: ~burkardt/pdf/mpi_intro.pdf

» MPI + C: ~burkardt/c_src/mpi/mpi.html
(or cpp-src, f77_src, f_src)

» Condor: ~burkardt/f_src/condor/condor.html
or

twiki/bin /view/TechHelp/UsingCondor
» LoadLeveler: supercomputer/sp3_batch.html

Burkardt Introduction to MPI

Message Passing Inyerface

As today's master process...

| BROADCAST the following MESSAGE:
Happy Parallel Trails to You!

MPI_Finalize()!

Burkardt Introduction to MPI

