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Introduction to MPI

v

Why is MPI needed?
What is an MPI computation doing?

v

v

What does an MPI program look like?

v

How (and where) do | compile and run an MPI program?
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It Looks Easy Today
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Richardson's Computation, 1917




Richardson’s Forecasting Factory
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The First Computers

The Harvard College Observatory Computer Lab, 1890.
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e Harvard Mark I: 1944

The first modern computers were awesome.
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The ENIAC.
Smithsonian Institution Photo No. 53192.

John von Neumann wanted ENIAC for weather prediction.
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The Cray YMP: 1990
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Grace Hopper with a Nanosecond
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Parallel Processing to the Rescue

A single processor is exponentially expensive to upgrade.
but a cluster of processors is trivial to upgrade; just buy some
more!

The rate of communication is an problem, so controlling the
amount of communication is important.

MPI enables the cluster of processors to work together, and
communicate.
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Philosophy: MPI is just a library

» User program written in C, C++, F77 or F90;
» MPI operations invoked as calls to functions;

» MPI symbols are special constants.
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Philosophy: One Program Does it All

> A single program embodies the entire task;
» This program runs on multiple processors;

» Each processor knows its ID number.
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HELLO HELLO HELLO HELLO in C

# include <stdlib.h>
# include <stdio.h>
# include "mpi.h"

int main ( int argc, char xargv[] )

int ierr;

int num_procs;

int my_id;

ierr MPI_Init ( &argc, &argv

ierr = MPI_.Comm_rank ( MPI,COMM,WORLD, &my._id );
if ( my.id =0 )

ierr = MPI_.Comm_size ( MPLLCOMM.WORLD, &num_procs );

printf ( "\n" );
printf ( "HELLOWORLD — Master process:\n" );
printf (" A simple C program using MPl.\n" );
printf ( "\n" );
printf (" The number of processes is %d.\n", num_procs );
printf ( "\n" );
else
{
printf (" Process %d says 'Hello, world!'\n", my_id );

ierr = MPI_Finalize ( );
return 0;
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HELLO HELLO HELLO HELLO in FORTRANT77

program main
include 'mpif.h’
integer error
integer my._id
integer num_procs

call MPI_lnit ( error )

call MPI_Comm_rank ( MPIL.LCOMM.WORLD, my.id, error )

if ( my_.id = 0 ) then
call MPI_Comm_size ( MPLCOMMWORLD, num_procs, error )
print , ' '
print , 'HELLOWORLD — Master process: '
print , ' A FORTRAN77 program using MPI."’
print , ' '
print , ' The number of processes is ', num_procs
print, ' '
else
print, ' '
print , ' Process ', my.id, ' says "Hello, world!""’
end if

call MPI_Finalize ( error )

stop
end
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HELLO HELLO HELLO HELLO in

# include <cstdlib>
# include <iostream>
# include "mpi.h"

using namespace std;

int main ( int argc, char xargv[] )

{
int my.id;
int num_procs;

MPI:: Init ( argc, argv );
my_.id = MPIl::COMMWORLD. Get_rank ( );

if ( my.id =0 )

num_procs = MPI::COMMWORLD. Get.size ( );

cout << "\n";

cout << "HELLO.WORLD — Master process:\n";
cout << " A simple G+ program using MPl.\n";

cout << " The number of processes is " << num_procs << "\n";
else
{

cout << " Process " << my-id << " says 'Hello, world!'\n";

MPI:: Finalize ( );

return 0;
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The output from HELLO*

Process 2 says " Hello, world!”

HELLO WORLD - Master Process:

A simple FORTRAN90 program using MPI.
The number of processes is 4

Process 3 says " Hello, world!"

Process 1 says " Hello, world!
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Philosophy: Each Process(or) Has Its Own Data

MPI data is not shared, but can be communicated.

» Each process has its own data;
» To communicate, one process may send some data to another;
» Basic routines MPI_Send and MPI_Recv.
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Communication: MPI_Send

MPI_Send ( data, count, type, to, tag, channel )

v

data, the address of the data;

» count, number of data items;

v

type, the data type (use an MPI symbolic value);

v

to, the processor ID to which data is sent;

> tag, a message identifier;

v

channel, the channel to be used.
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Communication: MPI_Recv

MPI_Recv ( data, count, type, from, tag, channel, status )

>

>

>

data, the address of the data;

count, number of data items;

type, the data type (use an MPI symbolic value);
from, the processor ID from which data is received;
tag, a message identifier;

channel, the channel to be used;

status, warnings, errors, etc.
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Communication: An example algorithm

Compute Ax x = b.

» a "task” is to multiply one row of A times x;

» we can assign one task to each processor. Whenever a
processor is done, give it another task.

» each processor needs a copy of x at all times; for each task, it
needs a copy of the corresponding row of A.

» processor 0 will do no tasks; instead, it will pass out tasks and
accept results.
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Matrix * Vector in FORTRAN77 (Page 1)

if ( my_id = master )
numsent = 0
c
c BROADCAST X to all the workers.
c
call MPI.BCAST ( x, cols, MPI_.DOUBLE_PRECISION, master,
& MPI.COMM_WORLD, ierr )
c SEND row |
c

to worker process |;
do i

tag the message with the
= 1, min ( num_procs —1, rows )
do j =1, cols

buffer(j) = a(i,j)

row number.

end do

call MPISEND ( buffer, cols, MPI_.DOUBLE_PRECISION, i
& i, MPLCOMM.WORLD, ierr )

numsent numsent + 1

end do
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Matrix * Vector in FORTRAN77 (Page 2)

C
C
@
@

Wait to receive a result back from any processor;
If more rows to do, send the next one back to that processor.

do i = 1, rows

call MPI.RECV ( ans, 1, MPI_DOUBLE_PRECISION,
MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI.COMM_WORLD, status, ierr )

RS

sender = status (MPI.SOURCE)
anstype = status (MPI_TAG)
b(anstype) = ans

if ( numsent .It. rows ) then
numsent = numsent + 1
do j =1, cols
buffer(j) = a(numsent,j)

end do

call MPI.SEND ( buffer, cols, MPI_.DOUBLE_PRECISION,
& sender , numsent, MPIL.LCOMMWORLD, ierr )

else

call MPISEND ( MPILBOTTOM, 0, MPI_.DOUBLE_PRECISION,
& sender, 0, MPLCOMM_WORLD, ierr )

end if
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Matrix * Vector in FORTRAN77 (Page 3)

C
C
@
@

Workers receive X, then compute dot products until
done message received

else

call MPI.BCAST ( x, cols, MPI.LDOUBLE_.PRECISION, master,
& MPI.COMM.WORLD, ierr )

90 continue

call MPI_LRECV ( buffer, cols, MPI_LDOUBLE_PRECISION, master,
& MPI_,ANY_TAG, MPL.COMM_WORLD, status, ierr )

if ( status(MPI.TAG) .eq. 0 ) then
go to 200
end if

row = status (MPILTAG)
ans = 0.0
do i =1, cols
ans = ans + buffer(i) * x(i)
end do

call MPISEND ( ans, 1, MPI.DOUBLE_PRECISION, master,
& row, MPIL.COMM.WORLD, ierr )

go to 90

200 continue
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Running MPI: on Phoenix

At SCS, there is a public cluster called Phoenix.
Any SCS user can log in to phoenix.csit.fsu.edu.

Compile your MPI program with mpicc, mpiCC, mpif77.
(mpif90 is not working yet!)

Run your job by writing a condor script:
condor_submit job.condor
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Running MPI: on Phoenix

A sample Condor script:

universe = MPI

initialdir = /home/u8/users/burkardt
executable = matvec

log = matvec.log

output = output$(NODE).txt
machine_count = 4

queue
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Running MPI: on Teragold

Two IBM clusters, Teragold and Eclipse.
To get an account requires an application process.
Log in to teragold.fsu.edu.

Run your job by writing a LoadLeveler script:
llsubmit job.ll
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Running MPI: on Teragold

A sample LoadLeveler script:

# job_name = matvec
# class = short

# wall_clock_limit = 100
# job_type = parallel

# node = 1

# tasks_per_node = 4

# node_usage = shared
# network.mpi = css0,shared,US
# queue

mpcc_r matvec.c

myv a.out matvec

matvec > matvec.out
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References: Books

v

Peter Pacheco, Parallel Programming with MPI ;

v

Stan Openshaw+, High Performance Computing+;

Scott Vetter+, RS/600 SP: Practical MPI Programming;
William Gropp+, Using MPI;

Marc Snir, MPI: The Complete Reference.

v

v

v
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References: Web Pages

With prefix http://www.csit.fsu.edu/

» this talk: ~burkardt/pdf/mpi_intro.pdf

» MPI + C: ~burkardt/c_src/mpi/mpi.html
(or cpp-src, f77_src, f_src)

» Condor: ~burkardt/f_src/condor/condor.html
or

twiki/bin /view/TechHelp/UsingCondor
» LoadLeveler: supercomputer/sp3_batch.html

Burkardt Introduction to MPI



Message Passing Inyerface

As today's master process...

| BROADCAST the following MESSAGE:
Happy Parallel Trails to You!

MPI_Finalize( )!
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