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INTRO: We Work on Problems that are Too Big

Richardson tries to predict the weather.
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INTRO: Big Problems Are Worth Doing

In 1917, Richardson’s first efforts to compute a weather prediction were
simplistic and mysteriously inaccurate.

But he believed that with better algorithms and more data, it would be
possible to predict the weather reliably.

Over time, he was proved right, and the prediction of weather became
one of the classic computational problems.

Soon there was so much data that making a prediction 24 hours in
advance could take...24 hours of computer time.

Even now, accurate prediction of weather is only possible in the short
range. In August 2012, the predicted path of Hurricane Isaac was first
going to be near Tampa, but then the predictions gradually shifted
westward to New Orleans, giving that city only a few days warning.
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INTRO: Big Problems Can Be Solved
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INTRO: For Years, Speeding Up the Clock was Enough

When computer clock speeds stopped improving, computer architects
explored other ways that hardware could be used to produce results
faster, using parallel programming.

OpenMP takes advantage of the fact that a single computer chip now
contains a big blob of memory, and many cores. The cores could be
running independent programs, each with separate memory. But
OpenMP runs a single program, with one core in charge, and the others
helping out on loops, working on a shared memory.

MPI takes advantage of the dramatic improvement in communication
speed between separate computers. It assumes that programs are running
on each computer, and figures out how to quickly send small set of
information between the programs that allow a single calculation to be
distributed over separate computers.
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INTRO: Networking Has Speeded Up

Inter-computer communication has gotten faster and cheaper.

It seemed possible to imagine that an “orchestra” of low-cost machines
could work together and outperform supercomputers, in speed and cost.

That is, each computer could work on part of the problem, and
occasionally send data to others. At the end, one computer could gather
up the results.

If this was true, then the quest for speed would simply require connecting
more machines.

But where was the conductor for this orchestra?
And who would write the score?
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INTRO: Early Clusters Were Ugly, but Worked
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INTRO: Cluster Computing Can Use MPI

MPI (the Message Passing Interface) manages a parallel computation on
a distributed memory system.

The user arranges an algorithm so that pieces of work can be carried out
as simultaneous but separate processes, and expresses this in a C or
FORTRAN program that includes calls to MPI functions.

At runtime, MPI:

distributes a copy of the program to each processor;

assigns each process a distinct ID;

synchronizes the start of the programs;

transfers messages between the processes;

manages an orderly shutdown of the programs at the end.

9 / 144



INTRO: Compilation of an MPI Program

Suppose a user has written a C program myprog.c that includes the MPI
calls necessary for it to run in parallel on a cluster.

The program invokes a new include file, accesses some newly defined
symbolic values, and calls a few functions... but it is still just a
recognizable and compilable C program.

The program must be compiled and loaded into an executable program.
This is usually done on a special compile node of the cluster, which is
available for just this kind of interactive use.

mpicc -o myprog myprog.c

A command like mpicc is a customized call to the regular
compiler (gcc or icc, for instance) which adds information
about MPI include files and libraries.
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INTRO: Interactive Execution

On some systems, the user’s executable program can be run interactively,
with the mpirun command:

mpirun -np 4 ./myprog

Here, we request that 4 processors be used in the execution.

What happens next depends on how MPI has been configured.
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INTRO: Interactive Execution on One Machine

If the machine where you are working has multiple cores, then it’s
actually possible for MPI to run a separate program on each core, all
locally on that one machine.

In this case, it is trivial for these programs to be synchronized (started at
the same time) and to communicate.

However, of course, the number of MPI processes that can be run in this
way is strictly limited by the number of cores you have. And on your
laptop or desktop, that won’t be many.

On the other hand, it’s a very nice way to test drive MPI before going to
an unfriendly, far away cluster.

This is how we will do almost all our MPI experiments in the lab session!
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INTRO: Interactive Execution on Multiple Machines

The other possibility for interactive use is that your machine can reach
other machines, that MPI is set up on those machines as well, that these
machines all have the same architecture (so a program compiled on one
machine will run on any of them) and that there is fast communication
among the machines.

If MPI is configured in the right way, then a request like

mpirun -np 4 ./myprog

will cause your compiled program to be copied to the other machines on
the list. Then MPI will “magically” start all the programs at the same
time, allow them to communicate, and manage a clean shutdown.

(I am leaving out one detail, which is that usually, your mpirun
command will include a list of the machines that you want to try to use
for your run.)
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INTRO: Indirect Execution on Multiple Machines

Finally, when people are serious about running a lot of processes in
parallel with MPI, then they end up having to work on a cluster.

The user compiles the program on the head node or compile node of the
cluster, but then has to write a special script file, which requests that the
parallel job be run on “so many” cores.

This request is then submitted to a scheduling program, which (after a
minute, an hour, or a day) finds enough machines available to run your
program, returning the results to you on completion.

Our local Research Computing Center (RCC) cluster works this way, and
you can easily get an account there.
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INTRO: Compare OpenMP and MPI

If you are familiar with OpenMP, then it may help to point out some
important differences between these two parallel programming systems:

In OpenMP, there is a shared memory, which is usually a single processor.
One program is running, but it can call on helper processes or “threads”
to carry out parallel loop operations.

In MPI, separate programs are running. They may all be running on a
single processor, but they are more likely on separate computers. In any
case, they do not share memory. If they need to communicate, they must
send a message.

We will see that MPI requires more programming effort than OpenMP,
but is much more powerful. We’ll start our MPI exploration with a simple
problem.
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EXAMPLE:

Suppose we want to approximate an integral of the form
∫
[0,1]m

f (x)dx

by a Monte Carlo procedure.

Perhaps we want to do this in such a way that we have confidence that
our error is less than some tolerance ε.

Calling the random number generator m times gives us a random sample
argument x i = (x i

1, x
i
2, ..., x

i
m). We evaluate f (x i ) and add that to a

running total. When we’ve generated n such samples, our integral
estimate is simply

∑n
i=1 f (x i )/n.

A good error estimate comes by summing the squares and subtracting
the square of the sum, and this allows us to decide when to stop.
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EXAMPLE:

While this simple process converges inevitably, it can converge very
slowly. The rate of convergence depends only on n, but the “distance”
we have to converge, the constant in front of the rate of convergence,
can be very large, especially as the spatial dimension m increases.

Since there are interesting and important problems with dimensions in
the hundreds, it’s natural to look for help from parallel processing.

Estimating an integral is a perfect problem for parallel processing. We
will look at a simple version of the problem, and show how we can solve
it in parallel using MPI, the Message Passing Interface.
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EXAMPLE:

For a specific example, let’s try to approximate:

I (f ) =

∫
[0,1]2
|4x − 2| ∗ |4y − 2| dx dy

The exact value of this integral is 1.

If we wish to consider an m dimensional problem, we have

I (f ) =

∫
[0,1]m

m∏
i=1

|4xi − 2|dx1dx2...dxm

for which the exact value is also 1.
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EXAMPLE: C Version

1 f1 = 0 . 0 ;
2 f 2 = 0 . 0 ;
3 f o r ( i = 0 ; i < n ; i++)
4 {
5 f o r ( j = 0 ; j < m; j++ )
6 {
7 x [ j ] = ( double ) rand ( ) / ( double ) RAND MAX;
8 }
9 va l u e = f ( m, x ) ;

10 f1 = f1 + va l u e ;
11 f2 = f2 + va l u e ∗ v a l u e ;
12 }
13 f1 = f1 / ( double ) n ;
14 f2 = f2 / ( double ) ( n − 1 ) ;
15 s t d e v = s q r t ( f 2 − f 1 ∗ f 1 ) ;
16 s t e r r = s td e v / s q r t ( ( double ) n ) ;
17 e r r o r = f ab s ( f 1 − 1 .0 ) ;

http://people.sc.fsu.edu/∼jburkardt/latex/acs2 mpi 2013/myprog seq.c
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EXAMPLE: F90 Version

1 f1 = 0 .0
2 f2 = 0 .0
3 do i = 1 , n
4 c a l l random number ( h a r v e s t = x ( 1 :m) )
5 v a l u e = f ( m, x )
6 f1 = f1 + va l u e
7 f2 = f2 + va l u e ∗ v a l u e
8 end do f 1 = f1 / ( double ) n ;
9 f 1 = f1 / db l e ( n )

10 f2 = f2 / db l e ( n − 1 )
11 s t d e v = s q r t ( f 2 − f 1 ∗ f 1 )
12 s t e r r = s td e v / s q r t ( db l e ( n ) )
13 e r r o r = abs ( f 1 − 1 .0D+00 )

http://people.sc.fsu.edu/∼jburkardt/latex/acs2 mpi 2013/myprog seq.f90
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EXAMPLE: Output for M = 2

N F1 stdev sterr error

1 1.2329416 inf inf 0.232942
10 0.7625974 0.9751 0.3084 0.237403
100 1.0609715 0.8748 0.0875 0.060971

1000 1.0037517 0.8818 0.0279 0.003751
10000 0.9969711 0.8703 0.0087 0.003028
100000 0.9974288 0.8787 0.0028 0.002571

1000000 1.0005395 0.8824 0.0009 0.000539

We can only print the error because we already know the answer. If we
didn’t know the answer, what other information suggests how well we are
doing?
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EXAMPLE: Output for M = 10

N F1 stdev sterr error

1 0.0643729 inf inf 0.935627
10 1.1999289 2.4393 0.7714 0.199929
100 1.2155225 6.2188 0.6219 0.215523

1000 1.2706223 6.2971 0.1991 0.270622
10000 0.9958461 4.4049 0.0440 0.004153
100000 1.0016405 4.3104 0.0136 0.001640

1000000 1.0056709 4.1007 0.0041 0.005670

The standard deviation and error are significantly larger at 1,000,000
samples than for the M=2 case.
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EXAMPLE: Output for M = 20

N F1 stdev sterr error

1 0.0055534 inf inf 0.99444
10 0.3171449 0.9767 0.3089 0.68285
100 0.2272844 0.9545 0.0954 0.77271

1000 1.7362339 17.6923 0.5595 0.73623
10000 0.7468981 7.7458 0.0775 0.25310
100000 1.0327975 17.8886 0.0566 0.03279

1000000 0.9951882 16.5772 0.0166 0.00481

The standard deviation and error continue to rise for the M = 20 case
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EXAMPLE: Output for M = 20

The Monte Carlo method will converge “eventually”.

If we have a fixed error tolerance in mind, and (of course) we don’t know
our actual correct answer, then we look at the standard error as an
estimate of our accuracy.

Although 1,000,000 points was good enough in a 2 dimensional space,
the standard error is warning us that we need more data in higher
dimensions.

If we want to work on high dimensional problems, we will be desperate to
find ways to speed up these calculations!
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PARALLEL: Is Sequential Execution Necessary?

Now let’s ask ourselves a peculiar question:

We used a serial or sequential computer. The final integral estimate
required computing 1,000,000 random x and y coordinates, 1,000,000
function evaluations, and 1,000,000 additions, plus a little more (dividing
by N at the end, for instance).

The computation was done in steps, and in every step, we computed
exactly one number, random x, random y, f(x,y), adding to the sum...

A sequential computer only does one thing at a time. But did our
computation actually require this?
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PARALLEL: Is Sequential Execution Necessary?

Look at the computation of F1, our approximate integral:

F1 = ( f(x1,y1) + f(x2,y2) + ... + f(xn,yn) ) / n

We have to divide by n at the end.

The sum was computed from left to right, but we didn’t have to do it
that way. The sum can be computed in any order.

To evaluate f(x1,y1), we had to generate a random point (x1,y1).

Does the next evaluation, of f(x2,y2) have to come later? Not really! It
could be done at the same time.
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PARALLEL: Is Sequential Execution Necessary?

So a picture of the logical priority of our operations is:

x1 y1 x2 y2 ....... xn yn <--Generate
f(x1,y1) f(x2,y2) ....... f(xn,yn) <--F()
f(x1,y1)+f(x2,y2)+.......+f(xn,yn) <--Add

(f(x1,y1)+f(x2,y2)+.......+f(xn,yn))/n <--Average

So we have about 2 ∗ n + m ∗ n + n + 1 operations, so for our example,
an answer would take about 5,000,000 “steps”.

But if we had n cooperating processors, generation takes 1 step, function
evaluation m = 2 steps, addition log(n) ≈ 20 steps, and averaging 1, for
a total of 25 steps.

And if we only have k processors, we still run k times faster, because
almost all the work can be done in parallel.
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PARALLEL: What Tools Do We Need?

To take advantage of parallelism we need:

multiple cheap processors

communication between processors

synchronization between processors

a programming language that allows us to express which processor
does which task;

And in fact, we have multicore computers and computer clusters, high
speed communication switches, and MPI.
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PARALLEL: Is Sequential Execution Necessary?

The FSU Research Computing Center (RCC) facility has a High
Performance Computing (HPC) cluster with 6,464 cores, using the high
speed Infiniband communication protocol.

User programs written in MPI can be placed on the “head node” of the
cluster.

The user asks for the program to be run on a certain number of cores; a
scheduling program locates the necessary cores, copies the user program
to all the cores. The programs start up, communicate, and the final
results are collected back to the head node.
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PARALLEL: What Must the User Do?

Someone wishing to run a problem in parallel can take an existing
program (perhaps written in C or C++), and add calls to MPI functions
that divide the problem up among multiple processes, while collecting the
results at the end.

Because the Monte Carlo integration example has a very simple
structure, making an MPI version is relatively simple.
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MPI: Logical outline of computation

We want to have one program be in charge, the master. We assume
there are K worker programs available, and that the master can
communicate with the workers, sending or receiving numeric data.

Our program outline is:

The master chooses the value N, the number of samples.

The master asks the K workers to compute N/K samples.

Each worker sums N/K values of f (x).

Each worker sends the result to the master.

The master averages the sums, reports the result.
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MPI: The Master Program

1 SEND va l u e o f n/k to a l l wo rke r s
2 RECEIVE f 1 p a r t and f 2 p a r t from each worker
3 f1 = 0 . 0 ;
4 f 2 = 0 . 0 ;
5 f o r ( j = 0 ; j < k ; j++ )
6 {
7 f1 = f1 + f 1 p a r t [ j ] ;
8 f 2 = f2 + f 2 p a r t [ j ] ;
9 }

10 f1 = f1 / ( double ) n ;
11 f2 = f2 / ( double ) ( n − 1 ) ;
12 s t d e v = s q r t ( f 2 − f 1 ∗ f 1 ) ;
13 s t e r r = s td e v / s q r t ( ( double ) n ) ;
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MPI: The Worker Program

1 RECEIVE va l u e o f n/k from master
2 f 1 p a r t = 0 . 0 ;
3 f 2 p a r t = 0 . 0 ;
4 f o r ( i = 0 ; i < n/k ; i++)
5 {
6 f o r ( j = 0 ; j < m; j++ )
7 {
8 x [ j ] = ( double ) rand ( ) / ( double ) RAND MAX;
9 }

10 va l u e = f ( m, x ) ;
11 f 1 p a r t = f 1 p a r t + va l u e ;
12 f 2 p a r t = f 2 p a r t + va l u e ∗ v a l u e ;
13 }
14 SEND f 1 p a r t and f 2 p a r t to master .
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MPI: Parallelism

Communication overhead: If we have K workers, the master needs to
send one number N/K to all workers. The master needs to receive 2 ∗ K
real numbers from the workers.

Computational Speedup: The sampling computation, which originally
took N steps, should now run as fast as a single computation of N/P
steps.

Old time ≈ N ∗ one sample

New time ≈ (N/K ) ∗ one sample + (3 ∗ K ) ∗ communications.

37 / 144



MPI: How Many Programs Do You Write?

So, to use MPI with one master and 4 workers, we write 5 programs, put
each on a separate computer, start them at the same time, and hope
they can talk ...right?

It’s not as bad. Your computer cluster software copies your information
to each processor, sets up communication, and starts them. We’ll get to
that soon.

It’s much more surprising that you don’t a separate program for each
worker. That’s good, because otherwise how do people run on hundreds
of processors? In fact, it’s a little bit amazing, because you
only have to write one program!
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MPI: One Program Runs Everything

The secret that allows one program to be the master and all the workers
is simple. If we start five copies of the program, each copy is given a
unique identifier of 0, 1, 2, 3 and 4.

The program can the decide that whoever has ID 0 is the master, and
should carry out the master’s tasks. The programs with ID’s 1 through 4
can be given the worker tasks.

That way, we can write a single program. It will be a little bit
complicated, looking something like the following example.
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MPI: One Program Runs Everything

1 eve r yone does t h i s l i n e ;
2 i f ( i d == 0 )
3 {
4 on l y the master does l i n e s i n he r e .
5 }
6 e l s e
7 {
8 each worker does t h e s e l i n e s .
9 }

10 someth ing tha t eve r yone does .
11 i f ( i d == 0 )
12 {
13 on l y the master does t h i s .
14 }
15 i f ( i d == 2 )
16 {
17 on l y worker 2 does t h i s .
18 }
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MPI: Communication Waits

The other thing to realize about MPI is that the programs start at the
same time, but run independently...until a program reaches a
communication point.

If a program reaches a RECEIVE statement, it expects a message, (a
piece of data), from another program. It cannot move to the next
computation until that data arrives.

Similarly, if a program reaches a SEND statement, it sends a message to
one or more other programs, and cannot continue until it confirms the
message was received (or at least was placed in a buffer).

Programs with a lot of communication, or badly arranged
communication, suffer a heavy penalty because of idle time!
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CODE: Accessing the MPI Include File

1 # inc l u d e <s t d i o . h>
2 # inc l u d e < s t d l i b . h>
3 # inc l u d e <math . h>
4
5 # inc l u d e ”mpi . h” <−− Nece s sa r y MPI d e f i n i t i o n s
6
7 double f ( i n t m, double x [ ] ) ;
8
9 i n t main ( i n t argc , char ∗ a rgv [ ] )

10 {
11 . . .
12 r e t u r n 0 ;
13 }
14 double f ( i n t m, double x [ ] )
15 {
16 . . .
17 r e t u r n v a l u e ;
18 }
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CODE: Initialize and Terminate MPI

1 i n t main ( i n t argc , char ∗ a rgv [ ] )
2 {
3 MPI I n i t ( &argc , &argv ) ;
4 . . .
5 <−− Now the program can a c c e s s MPI ,
6 and communicate w i th o th e r p r o c e s s e s .
7 . . .
8 MP I F i n a l i z e ( ) ;
9 r e t u r n 0 ;

10 }
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CODE: Get Process ID and Number of Processes

1 i n t main ( i n t argc , char ∗ a rgv [ ] )
2 {
3 i n t id , p ;
4 . . .
5 MP I I n i t ( &argc , &argv ) ;
6 MPI Comm rank ( MPI COMM WORLD, &i d ) ; <−− i d
7 MPI Comm size ( MPI COMM WORLD, &p ) ; <−− count
8 . . .
9 <−− Where the MPI a c t i o n w i l l o ccu r .

10 . . .
11 MP I F i n a l i z e ( ) ;
12 r e t u r n 0 ;
13 }
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CODE: Master sends N/(P-1) to each Worker

1 // The master s e t s NP = N/(P−1) .
2 // Each worker w i l l do NP s t e p s .
3 // N i s a d j u s t e d so i t e q u a l s NP ∗ ( P − 1 ) .
4 //
5 i f ( i d == 0 )
6 {
7 n = 1000000;
8 np = n / ( p − 1 ) ;
9 n = ( p − 1 ) ∗ np ;

10 }
11 //
12 // The B r o a d c a s t command s e n d s t h e v a l u e NP
13 // from t h e master to a l l w o r k e r s .
14 //
15 MPI Bcast ( &np , 1 , MPI INT , 0 , MPI COMM WORLD ) ;
16 . . . ( more ) . . .
17 r e t u r n 0 ;
18 }
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CODE: Rules for MPI Bcast (C version)

error = MPI Bcast ( data, count, type, from, communicator );

Sender input/Receiver output, data, the address of data;

Input, int count, number of data items;

Input, type, the data type, such as MPI INT;

Input, int from, the process ID which sends the data;

Input, communicator, usually MPI COMM WORLD;

Output, int error, is 1 if an error occurred.

The values in the data array on process from are copied into the data
arrays on all other processes, overwriting the current values (if any).
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CODE: Rules for MPI Bcast (F90 version)

call MPI Bcast ( data, count, type, from, communicator, error );

Sender input/Receiver output, data, the data value or vector;

Input, integer count, number of data items;

Input, type, the data type, such as MPI INT;

Input, integer from, the process ID which sends the data;

Input, communicator, usually MPI COMM WORLD;

Output, integer error, is 1 if an error occurred.

The values in the data array on process from are copied into the data
arrays on all other processes, overwriting the current values (if any).
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CODE: Examples of MPI Bcast

MPI_Bcast ( &np, 1, MPI_INT, 0, MPI_COMM_WORLD );
sends the integer stored in the scalar np
from process 0 to all processes.

MPI_Bcast ( a, 2, MPI_FLOAT, 7, MPI_COMM_WORLD );
sends the first 2 floats stored in the array a
(a[0] and a[1]) from process 7 to all processes.

MPI_Bcast ( x, 100, MPI_DOUBLE, 1, MPI_COMM_WORLD );
sends the first 100 doubles stored in the array x
(x[0] through x[99]) from process 1 to all processes.
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CODE: The Workers Work

1 f 1 p a r t = 0 . 0 ; <−− Even the master does t h i s !
2 f 2 p a r t = 0 . 0 ;
3 i f ( 0 < i d )
4 {
5 seed = 12345 + i d ; <−− What ’ s go ing on he r e ?
6 s rand ( seed ) ;
7 f o r ( i = 0 ; i < np ; i++)
8 {
9 f o r ( j = 0 ; j < m; j++ )

10 {
11 x [ j ] = ( doub l e ) rand ( ) / ( doub l e ) RAND MAX;
12 }
13 va l u e = f ( m, x ) ;
14 f 1 p a r t = f 1 p a r t + va l u e ;
15 f 2 p a r t = f 2 p a r t + va l u e ∗ v a l u e ;
16 }
17 }
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CODE: Almost There!

Once all the workers have completed their loops, the answer has been
computed, but it’s all over the place. It needs to be communicated to the
master.

Each worker has variables called f1 part and f2 part, and the master has
these same variables, set to 0. We know MPI Bcast() sends data, so is
that what we do?

The first worker to broadcast f1 part would:

successfully transmit that value to the master, replacing the value 0
by the value it computed;

unfortunately, also transmit that same value to all the other workers,
overwriting their values. That’s a catastrophe!
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CODE: The MPI Reduce Command

In parallel programming, it is very common to have pieces of a
computation spread out across the processes in such a way that the final
required step is to add up all the pieces. A gathering process like this is
sometimes called a reduction operation.

The function MPI Reduce() can be used for our problem. It assumes
that every process has a piece of information, and that this information
should be assembled (added? multiplied?) into one value on one process.
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CODE: Rules for MPI Reduce (C version)

ierr = MPI Reduce ( data, result, count, type, op, to, comm )

Input, data, the address of the local data;

Output only on receiver, result, the address of the result;

Input, int count, the number of data items;

Input, type, the data type, such as MPI DOUBLE;

Input, op, MPI SUM, MPI PROD, MPI MAX...;

Input, int to, the process ID which collects data;

Input, comm, usually MPI COMM WORLD;

Output, int ierr, is nonzero if an error occurred.
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CODE: Rules for MPI Reduce (F90 version)

call MPI Reduce ( data, result, count, type, op, to, comm, ierr )

Input, data, the address of the local data;

Output only on receiver, result, the address of the result;

Input, integer count, the number of data items;

Input, type, the data type, such as MPI DOUBLE;

Input, op, MPI SUM, MPI PROD, MPI MAX...;

Input, integer to, the process ID which collects data;

Input, comm, usually MPI COMM WORLD;

Output, integer ierr, is nonzero if an error occurred.
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CODE: using MPI Reduce()

1 // The master z e r o s out F1 and F2 .
2 //
3 i f ( i d == 0 )
4 {
5 f1 = 0 . 0 ;
6 f 2 = 0 . 0 ;
7 }
8 //
9 // The p a r t i a l r e s u l t s i n F1 PART and F2 PART

10 // a r e g a t h e r e d i n t o F1 and F2 on t h e master
11 //
12 MPI Reduce ( &f 1 p a r t , &f1 , 1 , MPI DOUBLE , MPI SUM, 0 ,

MPI COMM WORLD ) ;
13
14 MPI Reduce ( &f 2 p a r t , &f2 , 1 , MPI DOUBLE , MPI SUM, 0 ,

MPI COMM WORLD ) ;
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CODE: The Master Finishes up

The master process has the values of f1 and f2 summed up from all
the workers. Now there’s just a little more to do!

1 i f ( i d == 0 )
2 {
3 f1 = f1 / ( double ) n ;
4 f 2 = f2 / ( double ) ( n − 1 ) ;
5 s t d e v = s q r t ( f 2 − f 1 ∗ f 1 ) ;
6 s t e r r = s td e v / s q r t ( ( double ) n ) ;
7 e r r o r = f ab s ( f 1 − 1 .0 ) ;
8 p r i n t f ( ”%7d %.15g %6.4 f %6.4 f %8g\n” ,
9 n , f1 , s tdev , s t e r r , e r r o r ) ;

10 }
11
12 MP I F i n a l i z e ( ) ;

http://people.sc.fsu.edu/∼jburkardt/latex/acs2 mpi 2013/myprog mpi.c
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TIME FOR A BREAK!
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CODE: FORTRAN90 Version

Let’s go through the equivalent FORTRAN90 version of our code.

1 program main
2
3 use mpi
4
5 ( d e c l a r a t i o n s he r e )
6
7 c a l l MP I I n i t ( i e r r )
8 c a l l MPI Comm size ( MPI COMM WORLD, p , i e r r )
9 c a l l MPI Comm rank ( MPI COMM WORLD, id , i e r r )

10
11 m = 2
12 i f ( i d == 0 ) then
13 n = 1000000
14 np = n / ( p − 1 )
15 n = ( p − 1 ) ∗ np
16 end i f
17
18 c a l l MPI Bcast ( np , 1 , MPI INTEGER , 0 , MPI COMM WORLD,

i e r r )

http://people.sc.fsu.edu/∼jburkardt/latex/acs2 mpi 2013/myprog mpi.f90
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CODE: FORTRAN90 Version

The workers do their part:

1 f 1 p a r t = 0 .0
2 f 2 p a r t = 0 .0
3
4 i f ( 0 < i d ) then
5 !
6 ! C a l l my f u n c t i o n to sc ramb l e the random numbers .
7 !
8 seed = 12345 + i d
9 c a l l s r a n d f 9 0 ( seed )

10
11 do i = 1 , np
12 c a l l random number ( h a r v e s t = x ( 1 :m) )
13 v a l u e = f ( m, x )
14 f 1 p a r t = f 1 p a r t + va l u e
15 f 2 p a r t = f 2 p a r t + va l u e ∗ v a l u e
16 end do
17 end i f

http://people.sc.fsu.edu/∼jburkardt/latex/acs2 mpi 2013/myprog mpi.f90
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CODE: FORTRAN90 Version

The master gathers and publishes

1 i f ( i d == 0 ) then
2 f1 = 0 .0
3 f2 = 0 .0
4 end i f
5
6 c a l l MPI Reduce ( f 1 p a r t , f1 , 1 , MPI DOUBLE PRECISION ,

MPI SUM, 0 , MPI COMM WORLD, i e r r )
7 c a l l MPI Reduce ( f 2 p a r t , f2 , 1 , MPI DOUBLE PRECISION ,

MPI SUM, 0 , MPI COMM WORLD, i e r r )
8
9 i f ( i d == 0 ) then

10 f1 = f1 / db l e ( n )
11 f2 = f2 / db l e ( n − 1 )
12 s t d e v = s q r t ( f 2 − f 1 ∗ f 1 )
13 s t e r r = s td e v / s q r t ( db l e ( n ) )
14 e r r o r = abs ( f 1 − 1 .0D+00 )
15 w r i t e ( ∗ , ’ ( i7 , g14 . 6 , 2 x , f10 . 4 , 2 x , f10 . 4 , 2 x , g8 . 2 ) ’ ) n ,

f1 , s tdev , s t e r r , e r r o r
16 end i f
17
18 c a l l MP I F i n a l i z e ( i e r r )

http://people.sc.fsu.edu/∼jburkardt/latex/acs2 mpi 2013/myprog mpi.f90
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CODE: A “Minor” Improvement

When we run our program, what really happens?

1 The master sets up stuff, the workers are idle;
2 The master is idle, the workers compute;
3 The master collects stuff, the workers are idle.

The first and last steps don’t take very long.

But why do we leave the master idle for the (perhaps lengthy) time that
the workers are busy? Can’t it help?

Indeed, all we have to do is remove the restriction:

if ( 0 < id )

on the computation, and divide the work in pieces of size:

np = n / p
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CODE: Comments

To do simple things in MPI can seem pretty complicated. To send an
integer from one process to another, I have to call a function with a long
name, specify the address of the data, the number of data items, the
type of the data, identify the process and the communicator group.

But if you learn MPI, you realize that this complicated call means
something like ”send the integer NP to process 7”. The complicated part
is just because one function has to deal with different data types and
sizes and other possibilities.

By the way, MPI COMM WORLD simply refers to all the processes. It’s
there because sometimes we want to define a subset of the processes that
can talk just to each other. We’re allowed to make up a new name for
that subset, and to restrict the ”broadcast” and ”reduce” and
”send/receive” communications to members only.
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RUN: Installation of MPI

To use MPI, you need a version of MPI installed somewhere (your
desktop, or a cluster), which:

places the include files “mpi.h”, “mpif.h” and the F90 MPI module
where the compilers can find it;

places the MPI library where the loader can find it;

defines MPI compilers that automatically find the include file and
library;

installs mpirun, or some other system that synchronizes the startup
of the user programs, and allows them to communicate.

Two free implementations of MPI are OpenMPI and MPICH:

http://www.open-mpi.org/

http://www.mcs.anl.gov/research/projects/mpich2/
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RUN: MPI on the Lab Machines

MPI is installed on the lab machines.

Our lab machines have 8 cores, and each can run an MPI process.

To access the MPI include files, compilers, libraries, and run time
commands, you must type

module load openmpi-x86_64

Rather than typing this command every time you log in, you can insert it
into your .bashrc file in your main directory. Then it will be set up
automatically for you every time you log in.
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RUN: Working on Your Laptop

You can install MPI on your laptop or personal machine. If you’re
using a Windows machine, you’ll need to make a Unix partition or install
VirtualBox or Cygwin or somehow get Unix set up on a piece of your
system.

If your machine only has one core, that doesn’t matter. MPI will still run;
it just won’t show any speedup.

Moreover, you can run MPI on a 1-core machine and ask it to emulate
several processes. This will do a “logical” parallel execution, creating
several executables with separate memory that run in a sort of
timesharing way.
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RUN: Working on Your Laptop

If your desktop actually has multiple cores, MPI can use them.

Even if you plan to do your main work on a cluster, working on your
desktop allows you to test your program for syntax (does it compile?)
and for correctness (does it work correctly on a small version of the
problem?).

If your MPI program is called mprog.c, then depending on the version of
MPI you installed, you might be able to compile and run with the
commands:

mpicc -o myprog myprog.c
mpirun -np 4 ./myprog <-- -np 4 means run

with 4 MPI processes
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RUN: Compiler Names

Of course, you have to use the right compiler for your language.
Although the names can vary, here are typical names for the MPI
compilers:

mpicc for C programs;

mpic++, for C++;

mpif77, for Fortran77;

mpif90, for Fortran90.
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RUN: MPICC is “Really” GCC, or Something

The mpicc command is typically a souped up version of gcc, or the
Intel C compiler or something similar.

The modified command knows where to find the extra features (the
include file, the MPI run time library) that are needed.

Since mpicc is “really” a familiar compiler, you can pass the usual
switches, include optimization levels, extra libraries, etc.

For instance, on the FSU HPC system, you type:

mpicc -c myprog_mpi.c <-- to compile
mpicc myprog_mpi.c <-- to compile and load,

creating "a.out"
mpicc myprog_mpi.c -lm <-- to compile and load,

with math library
mpicc -o myprog myprog_mpi.c <-- to compile, load,

creating "myprog"
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RUN: The FSU HPC

A big advantage of writing a program in MPI is that you can transfer
your program to a computer cluster to get a huge amount of memory
and a huge number of processors.

To take advantage of more processors, your mpirun command simply
asks for more processes.

The FSU RCC HPC facility is one such cluster; any FSU researcher can
get access, although students require sponsorship by a faculty member.

While some parts of the cluster are reserved for users who have
contributed to support the system, there is always time and space
available for general users.
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RUN: Working with a Cluster

There are several headaches on a computer cluster:

It’s not your machine, so there are rules;

You have to login from your computer to the cluster, using a
terminal program like ssh;

You’ll need to move files between your local machine and the
cluster; you do this with a program called sftp;

The thousands of processors are not directly and immediately
accessible to you. You have to put your desired job into a queue,
specifying the number of processors you want, the time limit and so
on. You have to wait your turn before it will even start to run.
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RUN: Compiling on the FSU HPC

To compile on the HPC machine, transfer all necessary files to
sc.hpc.fsu.edu using sftp, and then log in using ssh or some other
terminal program.

On the HPC machine, there are several MPI environments. We’ll set up
the Gnu OpenMPI environment. For every interactive or batch session
using OpenMPI, we will need to issue the following command first:

module load gnu-openmpi

You can insert this command into your .bashrc file on the cluster login
node, so that it is done automatically for you.

Compile your program:

mpicc -o myprog myprog_mpi.c
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RUN: Executing in Batch on the FSU HPC

Jobs on the HPC system go through a batch system controlled by a
scheduler called MOAB;

In exchange for being willing to wait, you get exclusive access to a given
number of processors so that your program does not have to compete
with other users for memory or CPU time.

To run your program, you prepare a batch script file. Some of the
commands in the script “talk” to MOAB, which decides where to run
and how to run the job. Other commands are essentially the same as you
would type if you were running the job interactively.

One command will be the same module... command we needed earlier
to set up OpenMPI.
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RUN: A Batch Script for the HPC

#!/bin/bash

(Commands to MOAB:)

#MOAB -N myprog <-- Name is "myprog"

#MOAB -q backfill <-- Queue is "backfill"

#MOAB -l nodes=1:ppn=8 <-- Limit to 8 processors

#MOAB -l walltime=00:00:30 <-- Limit to 30 seconds

#MOAB -j oe <-- Join output and error

(Define OpenMPI:)

module load gnu-openmpi

(Set up and run the job using ordinary interactive commands:)

cd $PBS_O_WORKDIR <-- move to directory

mpirun -np 8 ./myprog <-- run with 8 processes

http://people.sc.fsu.edu/∼jburkardt/latex/acs2 mpi 2013/myprog.sh
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RUN: Submitting the Job

The command -l nodes=1:ppn=8 says we want to get 8 processors. We
are using the “backfill” queue, which allows general users to grab portions
of the computer currently not being used by the “paying customers”.

The msub command will submit your batch script to MOAB. If your
script was called myprog.sh, the command would be:

msub myprog.sh

The system will accept your job, and immediately print a job id, just as
65057. This number is used to track your job, and when the job is
completed, the output file will include this number in its name.
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RUN: The Job Waits For its Chance

The command showq lists all the jobs in the queue, with jobid, “owner”,
status, processors, time limit, and date of submission. The job we just
submitted had jobid 65057.

44006 tomek Idle 64 14:00:00:00 Mon Aug 25 12:11:12
64326 harianto Idle 16 99:23:59:59 Fri Aug 29 11:51:05
64871 bazavov Idle 1 99:23:59:59 Fri Aug 29 21:04:35
65059 ptaylor Idle 1 4:00:00:00 Sat Aug 30 15:11:11
65057 jburkardt Idle 4 00:02:00 Sat Aug 30 14:41:39

To only show the lines of text with your name in it, type

showq | grep jburkardt

...assuming your name is jburkardt, of course!
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RUN: All Done!

At some point, the ”idle” job will switch to ”Run” mode. Some time
after that, it will be completed. At that point, MOAB will create an
output file, which in this case will be called myprog.o65057, containing
the output that would have shown up on the screen. We can now
examine the output and decide if we are satisfied, or need to modify our
program and try again!

I often submit a job several times, trying to work out bugs. I hate having
to remember the job number each time. Instead, I usually have the
program write the “interesting” output to a file whose name I can
remember:

mpirun -np 8 ./myprog > myprog_output.txt
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RUN:

Our simple integration problem seems to have become very
complicated.

However, many of the things I showed you only have to be done once,
and always in the same way:

initialization

getting ID and number of processes

getting the elapsed time

shutting down

The interesting part is determining how to use MPI to solve your
problem, so we can put the uninteresting stuff in the main program,
where it never changes.
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RUN: Write the Main Program Once (C version)

1 i n t main ( i n t argc , char ∗ a rgv [ ] )
2 {
3 i n t id , p ;
4 double wtime ;
5 MP I I n i t ( &argc , &argv ) ;
6 MPI Comm rank ( MPI COMM WORLD, &i d ) ; <−− i d
7 MPI Comm size ( MPI COMM WORLD, &p ) ; <−− count
8 wtime = MPI Wtime ( ) ;
9 . . . Now w r i t e a f u n c t i o n

10 do work ( id , p ) ; <−− t ha t does work o f
11 . . . p r o c e s s i d out o f p .
12 wtime = MPI Wtime ( ) − wtime ;
13 MP I F i n a l i z e ( ) ;
14 r e t u r n 0 ;
15 }
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RUN: Write the Main Program Once (F90 version)

1 program main
2 use mpi
3 i n t e g e r id , i e r r , p
4 double p r e c i s i o n wtime
5 c a l l MP I I n i t ( i e r r )
6 c a l l MPI Comm rank ( MPI COMM WORLD, id , i e r r ) <−− i d
7 c a l l MPI Comm size ( MPI COMM WORLD, p , i e r r ) <−− count
8 wtime = MPI Wtime ( )
9 . . . Now w r i t e a f u n c t i o n

10 c a l l do work ( id , p ) <−− t ha t does work o f
11 . . . p r o c e s s i d out o f p .
12 wtime = MPI Wtime ( ) − wtime
13 c a l l MP I F i n a l i z e ( i e r r )
14 s top
15 end
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RUN:

Similarly, the process of compiling your program with MPI is typically
the same each time;

Submitting your program to the scheduler for execution also is done with
a file, that you can reuse; occasionally you may need to modify it to ask
for more time or processors.

But the point is, that many of the details I’ve discussed you only have to
worry about once.

What’s important then is to concentrate on how to set up your problem
in parallel, using the ideas of message passing.
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RUN:

For our integration problem, I used the simple communication routines,
MPI Bcast() and MPI Reduce().

But you can send any piece of data from any process to any other
process, using MPI Send() and MPI Receive().

These commands are trickier to understand and use, so you should refer
to a good reference, and find an example that you can understand, before
trying to use them.

However, basically, they are meant to do exactly what you think: send
some numbers from one program to another.

If you understand the Send and Receive commands, you should be able
to create pretty much any parallel program you need in MPI.
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SEND/RECV: Message Passing

Our integration example used MPI Bcast() to broadcast the number
of evaluation points for each process, and MPI Reduce() to gather the
partial sums together. These are two examples of message passing
functions. Both functions assume that the communication is between one
special process and all the others.

The MPI Send and MPI Recv functions allow any pair of processes to
communicate directly.

Let’s redo the integration program using the send/receive model.
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SEND/RECV: The Communicator Group

An MPI message is simply a set of n items of data, all of the same type.

The values in this data are to be copied from one particular process to
another. Both processes have an array of the same name. The data from
the sender is copied to the receiver, overwriting whatever was there.

The data constitutes a message, and this message can be given a tag,
which is simply a numeric identifier. In complicated programs, a receiver
might have several incoming messages, and could choose which one to
open first based on the tag value.

MPI allows you to organize processes into communicator groups, and
then restrict some communication to that group. We’ll never use that
capability, but we still have to declare our sender and receiver are in
MP COMM WORLD.

In cases where multiple messages are expected, a structure (C) or array
(FORTRAN) called status is used to figure out who sent the message.
This is something else we will not use!
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SEND/RECV: The Message Is Transferred

The default send and receive functions are very polite. The send sends
the data, and then program execution pauses...

The receiver may have been waiting a long time for this message. Or, it
may be doing other things, and only after a while reaches the receive
command. Once that happens, the message is received, and the receiver
can go to the next command.

Once the message is received, MPI tells the sender the communication
was successful, and the sender goes on.

You can see that, aside from the time it takes to transmit data, there is
also a definite synchronization issue that can arise. What’s worse, it’s
possible to accidentally write your program in such a way that everyone is
sending, and no one is receiving, causing deadlock. We won’t go into this
now.
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SEND/RECV: MPI Send (C version)

error = MPI Send ( &data, count, type, to, tag, communicator );

Input, (any type) &data, the address of the data;

Input, int count, the number of data items;

Input, int type, the data type (MPI INT, MPI FLOAT...);

Input, int to, the process ID to which data is sent;

Input, int tag, a message identifier, (0, 1, 1492 etc);

Input, int communicator, usually MPI COMM WORLD;

Output, int error, is 1 if an error occurred;
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SEND/RECV: MPI Send (FORTRAN version)

call MPI Send ( data, count, type, to, tag, communicator, error )

Input, (any type) data, the data, scalar or array;

Input, integer count, the number of data items;

Input, integer type, the data type (MPI INTEGER,
MPI REAL...);

Input, integer to, the process ID to which data is sent;

Input, integer tag, a message identifier, that is, some numeric
identifier, such as 0, 1, 1492, etc;

Input, integer communicator, set this to MPI COMM WORLD;

Output, integer error, is 1 if an error occurred;
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SEND/RECV: MPI Recv (C version)

error= MPI Recv ( &data, count, type, from, tag, communicator,
status);

Input, (any type) &data, the address of the data;

Input, int count, number of data items;

Input, int type, the data type (must match what is sent);

Input, int from, the process ID you expect the message from, or if
don’t care, MPI ANY SOURCE;

Input, int tag, the message identifier you expect, or, if don’t care,
MPI ANY TAG;

Input, int communicator, usually MPI COMM WORLD;

Input, MPI Status status, (auxiliary diagnostic information).

Output, int error, is 1 if an error occurred;
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SEND/RECV: MPI Recv (FORTRAN version)

call MPI Recv( data, count, type, from, tag, communicator, status, error)

Output, (any type) data, the data (scalar or array);

Input, integer count, number of data items expected;

Input, integer type, the data type (must match what is sent);

Input, integer from, the process ID from which data is received
(must match the sender, or if don’t care, MPI ANY SOURCE);

Input, integer tag, the message identifier (must match what is sent,
or, if don’t care, MPI ANY TAG);

Input, integer communicator, (must match what is sent);

Input, integer status(MPI STATUS SIZE), (auxiliary diagnostic
information in an array).

Output, integer error, is 1 if an error occurred;
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SEND/RECV: How SEND and RECV Must Match

MPI_Send ( data, count, type, to, tag, comm )
| | V | |

MPI_Recv ( data, count, type, from, tag, comm, status )

The MPI SEND() and MPI RECV() must match:

1 count, the number of data items, must match;
2 type, the type of the data, must match;
3 to, must be the ID of the receiver.
4 from, must be the ID of the sender, or MPI ANY SOURCE.
5 tag, a message “tag” must match, or MPI ANY TAG.
6 comm, the name of the communicator, must match

(for us, always MPI COMM WORLD).
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CODE2: What Do We Change?

Using MPI Bcast() to broadcast the value of np:

all the processes executed the same MPI Broadcast() command;

process 0 was identified as the “sender”;

Using MPI Send() and MPI Recv() to broadcast the value of np:

process 0 calls MPI Send() p-1 times, sending to each process;

Each process calls MPI Recv() once, to receive its message.
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CODE2: The Original Version

1 //
2 // The B r o a d c a s t command s e n d s t h e v a l u e NP
3 // from t h e master to a l l w o r k e r s .
4 //
5 MPI Bcast ( &np , 1 , MPI INT , 0 , MPI COMM WORLD ) ;
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CODE2: The Revised Version

1 //
2 // The master p r o c e s s s e n d s t h e v a l u e NP to a l l w o r k e r s .
3 //
4 tag1 = 100 ;
5 i f ( i d == 0 )
6 {
7 f o r ( to = 1 ; to < p ; to++ )
8 {
9 MPI Send ( &np , 1 , MPI INT , to , tag1 , MPI COMM WORLD ) ;

10 }
11 }
12 e l s e
13 {
14 from = 0 ;
15 MPI Recv ( &np , 1 , MPI INT , from , tag1 , MPI COMM WORLD,
16 s t a t u s ) ;
17 }
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CODE2: What Do We Change?

Using MPI Reduce() to sum the items f1 part into f1:

all processes executed MPI Reduce(), with process 0 identified as
receiver;

the reduction was identified as an MPI SUM;

the values of f1 part were automatically summed into f1;

Using MPI Send() and MPI Recv():

Process 0 must call MPI Recv() p-1 times, “collecting” f1 part
from each worker process;

Process 0 must explicitly add f1 part to f1;

Each worker process calls MPI Send() to send its contribution.
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CODE2: Original Version

1 //
2 // The p a r t i a l r e s u l t s i n F1 PART and F2 PART
3 // a r e g a t h e r e d i n t o F1 and F2 on t h e master
4 //
5 MPI Reduce ( &f 1 p a r t , &f1 , 1 , MPI DOUBLE , MPI SUM, 0 ,

MPI COMM WORLD ) ;
6
7 MPI Reduce ( &f 2 p a r t , &f2 , 1 , MPI DOUBLE , MPI SUM, 0 ,

MPI COMM WORLD ) ;
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CODE2: Revised Version

1 tag2 = 200 ;
2 tag3 = 300 ;
3 i f ( i d != 0 )
4 {
5 to = 0 ;
6 MPI Send ( &f 1 p a r t , 1 , MPI DOUBLE , to , tag2 ,

MPI COMM WORLD ) ;
7 MPI Send ( &f 2 p a r t , 1 , MPI DOUBLE , to , tag3 ,

MPI COMM WORLD ) ;
8 }
9 e l s e

10 {
11 f1 = f 1 p a r t ;
12 f2 = f 2 p a r t ;
13 f o r ( from = 1 ; from < p ; from++ )
14 {
15 MPI Recv ( &f 1 p a r t , 1 , MPI DOUBLE , from , tag2 ,

MPI COMM WORLD, s t a t u s ) ;
16 f1 = f1 + f 1 p a r t ;
17 MPI Recv ( &f 2 p a r t , 1 , MPI DOUBLE , from , tag3 ,

MPI COMM WORLD, s t a t u s ) ;
18 f2 = f2 + f 2 p a r t ;
19 }
20 }
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CODE2: Comments

It should be clear that we just made our program longer and uglier.

You can see that MPI Bcast() and MPI Reduce() are very convenient
abbreviations for somewhat complicated operations.

We went “backwards” because we want to understand how the
MPI Send() and MPI Recv() commands work, so we took a simple
example and looked at it more closely.

The “tag” variables allow us to have several kinds of messages, but to
send or receive only a particular one. Here, we used tags of 100, 200 and
300 to indicate the messages containing np, f1 part and f2 part.
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SATISFY: The Logical Satisfaction Problem

Recall the ”SATISFY” problem, which we discussed earlier as an
example for OpenMP programming.

Logicians and electric circuit designers both worry about the logical
satisfaction problem. When logicians describe this problem, they assume
that they have n logical variables b1 through bn, each of which can be
false=0 or true=1.

Moreover, they have a formula involving these variables, as well as logical
operators such as and, or, not.

f = b_1 AND ( b_2 OR ( b_1 AND NOT b_5 ) OR ...

Their simple question is, what values of the variables b will make the
formula have a value that is true, that is, what values satisfy this
formula?
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SATISFY: The Brute Force Approach

While there are some cases of the satisfaction problem that allow for
an efficient approach, there is an obvious brute force approach that has
three advantages:

it always finds all the solutions;

it is easy to program;

it is easy to do in parallel.

The brute force approach is:

1 generate every possibility

2 check if it’s a solution

Under MPI, we can solve this problem in parallel if we can determine how
to have each process check a limited range, and report all solutions
encountered.
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SATISFY: Logical Vector = Binary Number

We are searching all possible logical vectors of dimension n. A logical
vector, containing TRUE or FALSE, can be though of as a binary vector,
which can be thought of as an integer:

FFFF = (0,0,0,0) = 0
FFFT = (0,0,0,1) = 1
FFTF = (0,0,1,0) = 2
FFTT = (0,0,1,1) = 3
...
TTTT = (1,1,1,1) = 15

so we can parallelize this problem by computing the total number of
possibilities, which will be 2n, and dividing up the range among the
processors.
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SATISFY: Logical Vector = Binary Number

For example, we might have 1,024 possibilities, and 10 processes.

A formula for the ranges is:

lo = floor ( ( p * 1024 ) / 10 )
hi = floor ( ( ( p + 1 ) * 1024 ) / 10 )

giving us the table:

Process P Start Stop before
----------- -------- -----------

0 0 102
1 102 204
2 204 307
3 307 409

... ... ...
9 921 1024
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SATISFY: A Simple FORTRAN Code

!

! Compute the number of binary vectors to check.

!

ihi = 2 ** n

write ( *, ’(a)’ ) ’’

write ( *, ’(a,i6)’ ) ’ The number of logical variables is N = ", n

write ( *, ’(a,i6)’ ) ’ The number of input vectors to check is ", ihi

write ( *, ’(a)’ ) ’’

write ( *, ’(a)’ ) ’ # Index ---------Input Values------------------------’

write ( *, ’(a)’ ) ’’

!

! Check every possible input vector.

!

solution_num = 0;

do i = 0, ihi - 1

call i4_to_bvec ( i, n, bvec )

value = circuit_value ( n, bvec )

if ( value == 1 ) then

solution_num = solution_num + 1

write ( *, ’(2x,i2,2x,i10)’ ) solution_num, i

write ( *, ’(23i1)’ ) bvec(1:n)

end if

end do

http://people.sc.fsu.edu/∼jburkardt/f src/satisfy/satisfy.html
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SATISFY: Issues

What issues do we face in creating a parallel version?

We must define a range for each processor;

The only input is n;

Each processor works completely independently;

Each processor prints out any solution it finds;

The only common output variable is solution num.
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SATISFY: Write the Main Program Once (F90 version)

1 program main
2 use mpi
3 i n t e g e r id , i e r r , p
4 double p r e c i s i o n wtime
5 c a l l MP I I n i t ( i e r r )
6 c a l l MPI Comm rank ( MPI COMM WORLD, id , i e r r ) <−− i d
7 c a l l MPI Comm size ( MPI COMM WORLD, p , i e r r ) <−− count
8 wtime = MPI Wtime ( )
9 . . .

10 c a l l s a t i s f y p a r t ( id , p )
11 . . .
12 wtime = MPI Wtime ( ) − wtime
13 c a l l MP I F i n a l i z e ( i e r r )
14 s top
15 end

http://people.sc.fsu.edu/∼jburkardt/f src/satisfy mpi/satisfy mpi.html
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SATISFY: The Subprogram

1 s u b r o u t i n e s a t i s f y p a r t ( id , p )
2 i n t e g e r , pa ramete r : : n = 23
3 i n t e g e r bvec ( n ) , c i r c u i t v a l u e , i , i h i , i l o
4 i n t e g e r so lu t i on num , s o l u t i o n n um l o c a l , v a l u e
5 i n t e g e r id , i e r r , p
6
7 i l o = i d ∗ ( 2 ∗∗ n ) / p
8 i h i = ( i d + 1 ) ∗ ( 2 ∗∗ n ) / p
9 s o l u t i o n n um l o c a l = 0

10
11 do i = i l o , i h i − 1
12 c a l l i 4 t o b v e c ( i , n , bvec )
13 v a l u e = c i r c u i t v a l u e ( n , bvec )
14 i f ( v a l u e == 1 ) then
15 s o l u t i o n n um l o c a l = s o l u t i o n n um l o c a l + 1
16 w r i t e ( ∗ , ∗ ) s o l u t i o n n um l o c a l , id , i , bvec ( 1 : n )
17 end i f
18 end do
19 c a l l MPI Reduce ( s o l u t i o n n um l o c a l , so lu t i on num , 1 ,

MPI INTEGER , &
20 MPI SUM, 0 , MPI COMM WORLD, i e r r )
21 r e t u r n
22 end 108 / 144



SATISFY: The output

If we run our code, assuming the functions i4 to bvec() and
circuit value() are suppplied, we get output like this:

# P I BVEC
1 1 3656933 01101111100110011100101
2 1 3656941 01101111100110011101101
3 1 3656957 01101111100110011111101
4 1 3661029 01101111101110011100101
5 1 3661037 01101111101110011101101
6 1 3661053 01101111101110011111101
7 1 3665125 01101111110110011100101
1 2 5754104 10101111100110011111000
2 2 5754109 10101111100110011111101
3 2 5758200 0101111101110011111000
4 2 5758205 10101111101110011111101
1 3 7851229 11101111100110011011101
2 3 7851261 11101111100110011111101
3 3 7855325 11101111101110011011101
4 3 7855357 11101111101110011111101

109 / 144



Distributed Memory Programming with MPI

1 Introduction
2 Approximating an Integral
3 MPI and Distributed Computing
4 An MPI Program for Integration
5 Coding Time!
6 Run Time
7 The Send and Receive Commands
8 Approximating an Integral with Send and Receive
9 The SATISFY Example
10 The Heat Equation
11 The Heat Program
12 Conclusion

110 / 144



HEAT: Independent Cooperating Processes

Now that we have an idea of how the MPI Send() and MPI Recv()
commands work, we will look at an example where we really need them!

The physical problem we will consider involves the behavior of
temperature along a thin wire over time.

The heat equation tells us that we can solve such a problem given an
initial condition (all temperatures at the starting time) and the boundary
conditions (temperatures, for all times, at the ends of the wires.)

There are standard techniques for discretizing this problem.

The parallel feature will come when we apply domain decomposition -
that is, we will divide the wire up into segments that are assigned to a
process. As you can imagine, each process will need to communicate with
its left and right neighbors.
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HEAT: Statement of the Problem

Determine the values of H(x , t) over a range of time t0 <= t <= t1 and
space x0 <= x <= x1, given an initial condition:

H(x , t0) = ic(x)

boundary conditions:

H(x0, t) =bcleft(t)

H(x1, t) =bcright(t)

and a partial differential equation:

∂H

∂t
− k

∂2H

∂x2
= f (x , t)

where k is the thermal diffusivity and f represents a heat source term.
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HEAT: Discretized Heat Equation

The discrete version of the differential equation is:

h(i , j + 1)− h(i , j)

dt
− k

h(i − 1, j)− 2h(i , j) + h(i + 1, j)

dx2
= f (i , j)

We have the values of h(i , j) for 0 <= i <= N and a particular “time” j .
We seek value of h at the “next time”, j + 1.

Boundary conditions give us h(0, j + 1) and h(N, j + 1), and we use the
discrete equation to get the values of h for the remaining spatial indices
0 < i < N.
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HEAT: Red, Green and Blue Processes Cooperating

114 / 144



HEAT: What Messages Are Needed?

At a high level of abstraction, it’s easy to see how this computation could
be done by three processes, which we can call red, green and blue, or
perhaps “0”, “1”, and “2”.

Each process has a part of the h array.

The red process, for instance, updates h(0) using boundary conditions,
and h(1) through h(6) using the differential equation.

Because red and green are neighbors, they will also need to exchange
messages containing the values of h(6) and h(7) at the nodes that are
touching.

C, C++, FORTRAN77 and FORTRAN90 versions of an MPI program for this 1D heat program are available.

See, for example http://people.sc.fsu.edu/∼jburkardt/c src/heat mpi/heat mpi.html
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HEAT: Can This Work For A Hairier Problem?

In more realistic examples, it’s actually difficult just to figure out what
parts of the problem are neighbors, and to figure out what data they
must share in order to do the computation.

In a finite element calculation, in general geometry, the boundaries
between the computational regions can be complicated.

But we can still break big problems into smaller ones if we can:

create smaller, reasonably shaped geometries;

identify the boundary elements;

locate the neighbors across the boundaries;

communicate data across those boundaries.
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HEAT: A Complicated Domain Can Be Decomposed

A region of 6,770 elements, subdivided into 5 regions of similar size and
small boundary by the ParMETIS partitioning program.

ParMETIS is available from http://glaros.dtc.umn.edu/gkhome/
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HEAT: Decomposition is a Common MPI Technique

So why does domain decomposition work for us?

Domain decomposition is one simple way to break a big problem into
smaller ones.

Because the decomposition involves geometry, it’s often easy to see a
good way to break the problem up, and to understand the structure of
the boundaries.

Each computer sees the small problem and can solve it quickly.

The artificial boundaries we created by subdivision must be “healed” by
trading data with the appropriate neighbors.

To keep our communication costs down, we want the boundaries between
regions to be as compact as possible.

118 / 144



HEAT: One Process’s View of the Heat Equation

If we have N nodes and P processes, then process K is responsible for
computing the heat values at K = N/P nodes. We suppose the process
is given the starting values, and must compute estimates of their
changing values over M time steps.

If you have the current values of your K numbers, you have enough
information to update K − 2 of them.

But to update your first value, you need to:

use a boundary rule if your ID is 0

or call process ID-1 to copy his K -th value.

Similarly, updating your K -th value requires you to:

use a boundary rule if your ID is P-1

or call process ID+1 to copy his first value.

Obviously, your neighbors will also be calling you!
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HEAT: A Process Communicates with Its Neighbors

We assume here that each process is responsible for K nodes, and that
each process stores the heat values in an array called H. Since each
process has separate memory, each process uses the same indexing
scheme, H[1] through H[K], even though these values are associated
with different subintervals of [0,1].

The X interval associated with process ID is [ ID∗N
P∗N−1 ,

(ID+1)∗N−1
P∗N−1 ];

Include two locations, H[0] and H[K+1], for values copied from
neighbors. These are sometimes called “ghost values”.

It’s easy to update H[2] through H[K-1].

To update H[1], we’ll need H[0], copied from our lefthand neighbor
(where this same number is stored as H[K]!).

To update H[K], we’ll need H[K+1] copied from
our righthand neighbor.
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HEAT: It Looks Like This Might Work

This program would be considered a good use of MPI, since the problem
is easy to break up into cooperating processes.

The amount of communication between processes is small, and the
pattern of communication is very regular.

The data for this problem is truly distributed. No single process has
access to the whole solution.

The individual program that runs on one process looks a lot like the
sequential program that would solve the whole problem.

It’s not too hard to see how this idea could be extended to a similar
time-dependent heat problem in a 2D rectangle.
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PROGRAM: Initialize and Finalize

# include <stdlib.h>
# include <stdio.h>
# include "mpi.h"

int main ( int argc, char *argv[] )
{
MPI_Init ( &argc, &argv );
MPI_Comm_rank ( MPI_COMM_WORLD, &id );
MPI_Comm_size ( MPI_COMM_WORLD, &p );

The “good stuff” goes here in the middle!

MPI_Finalize ( );
return 0;

}
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PROGRAM: What Needs to Be Communicated?

As we begin our calculation, processes 1 through P-1 must send what
they call h[1] to their “left neighbor”.

Processes 0 through P-2 must receive these values, storing them in the
ghost value slot h[k+1].

Similarly, processes 0 through P-2 send h[k] to their “right neighbor”,
which stores that value into the ghost slot h[0].

Sending this data is done with matching calls to MPI Send and
MPI Recv. The details of the call are more complicated than I am
showing here!
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PROGRAM: Pseudo Code for Communication

if ( 0 < id )
MPI_Send ( h[1] => id-1 )

if ( id < p-1 )
MPI_Recv ( h[k+1] <= id+1 )

if ( id < p-1 )
MPI_Send ( h[k] => id+1 )

if ( 0 < id )
MPI_Recv ( h[0] <= id-1 )
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PROGRAM: Actually, This is a Bad Idea

Our communication scheme is defective however. It comes very close to
deadlock, when processes sit in a useless wait state that will never end.

The problem here is that by default, an MPI process that sends a
message won’t continue until that message has been received.

So, if all the processes work exactly in synch, they will all try to send
something to their left at the same time, and they can’t move to the next
step until the send is completed (that is, until the message is received.)

But no one can actually receive, because that’s the next instruction...
except that process 0 didn’t have to send, so it can receive! That frees
up process 1, which can now receive from process 2, and so on...

Our program will work, but MPI provides a combined MPI Send Recv()
that could handle this situation in a better way.
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PROGRAM: Once Data is Transmitted, Compute!

Once each process has received the necessary boundary information in
h[0] and h[k+1], it can use the four node stencil to compute the
updated value of h at nodes 1 through k.

Actually, hnew[1] in the first process, and hnew[k] in the last one, need
to be computed by boundary conditions.

But it’s easier to treat them all the same way, and then correct the two
special cases afterwards.
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PROGRAM: The Time Update Step

1 f o r ( i = 1 ; i <= k ; i++ )
2 {
3 hnew [ i ] = h [ i ] + dt ∗ (
4 + k ∗ ( h [ i −1] − 2 ∗ h [ i ] + h [ i +1] ) /dx/dx
5 + f ( x [ i ] , t ) ) ;
6 }
7
8 i f ( i d == 0 )
9 {

10 hnew [ 1 ] = bc ( 0 . 0 , t ) ;
11 }
12 i f ( i d == p−1 )
13 {
14 hnew [ k ] = bc ( 1 . 0 , t ) ;
15 }
16 /∗
17 R e p l a c e o l d H by new .
18 ∗/
19 f o r ( i = 1 ; i <= k ; i++ )
20 {
21 h [ i ] = hnew [ i ] ;
22 }
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PROGRAM: The Brutal Details

Here is almost all the source code for a working version of the heat
equation solver.

I’ve chopped it up a bit and compressed it, but I wanted you to see how
things really look.

This example is available in C, C++, F77 and F90 versions. We will be
able try it out with MPI later.

http://people.sc.fsu.edu/∼jburkardt/c src/heat mpi/heat mpi.html
http://people.sc.fsu.edu/∼jburkardt/cpp src/heat mpi/heat mpi.html
http://people.sc.fsu.edu/∼jburkardt/f77 src/heat mpi/heat mpi.html
http://people.sc.fsu.edu/∼jburkardt/f src/heat mpi/heat mpi.html
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PROGRAM: Main program

# include <stdlib.h>

# include <stdio.h>

# include <math.h>

# include "mpi.h" <-- MPI Include file

int main ( int argc, char *argv[] )

{

int id, p;

double wtime;

MPI_Init ( &argc, &argv ); <-- Start MPI
MPI_Comm_rank ( MPI_COMM_WORLD, &id ); <-- Assign ID
MPI_Comm_size ( MPI_COMM_WORLD, &p ); <-- Report number of processes.
wtime = MPI_Wtime(); <-- Start timer.

update ( id, p ); <-- Execute subprogram.

wtime = MPI_Wtime() - wtime; <-- Stop timer.
MPI_Finalize ( ); <-- Terminate.

return 0;

}

130 / 144



PROGRAM: Auxilliary Functions

double boundary_condition ( double x, double time )

/* BOUNDARY_CONDITION returns H(0,T) or H(1,T), any time. */

{

if ( x < 0.5 )

{

return ( 100.0 + 10.0 * sin ( time ) );

}

else

{

return ( 75.0 );

}

}

double initial_condition ( double x, double time )

/* INITIAL_CONDITION returns H(X,T) for initial time. */

{

return 95.0;

}

double rhs ( double x, double time )

/* RHS returns right hand side function f(x,t). */

{

return 0.0;

}
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PROGRAM: UPDATE Initialization

void update ( int id, int p )

{

Omitting declarations...
k = n / p;

/* Set the X coordinates of the K nodes. */

x = ( double * ) malloc ( ( k + 2 ) * sizeof ( double ) );

for ( i = 0; i <= k + 1; i++ )

{

x[i] = ( ( double ) ( id * k + i - 1 ) * x_max

+ ( double ) ( p * k - id * k - i ) * x_min )

/ ( double ) ( p * k - 1 );

}

/* Set the values of H at the initial time. */

time = 0.0;

h = ( double * ) malloc ( ( k + 2 ) * sizeof ( double ) );

h_new = ( double * ) malloc ( ( k + 2 ) * sizeof ( double ) );

h[0] = 0.0;

for ( i = 1; i <= k; i++ )

{

h[i] = initial_condition ( x[i], time );

}

h[k+1] = 0.0;

dt = time_max / ( double ) ( j_max - j_min );

dx = ( x_max - x_min ) / ( double ) ( p * n - 1 );
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PROGRAM: Set H[0] and H[K+1]

for ( j = 1; j <= j_max; j++ )

{

time_new = j * dt;

/* Send H[1] to ID-1. */

if ( 0 < id ) {

tag = 1;

MPI_Send ( &h[1], 1, MPI_DOUBLE, id-1, tag, MPI_COMM_WORLD );

}

/* Receive H[K+1] from ID+1. */

if ( id < p-1 ) {

tag = 1;

MPI_Recv ( &h[k+1], 1, MPI_DOUBLE, id+1, tag, MPI_COMM_WORLD, &status );

}

/* Send H[K] to ID+1. */

if ( id < p-1 ) {

tag = 2;

MPI_Send ( &h[k], 1, MPI_DOUBLE, id+1, tag, MPI_COMM_WORLD );

}

/* Receive H[0] from ID-1. */

if ( 0 < id ) {

tag = 2;

MPI_Recv ( &h[0], 1, MPI_DOUBLE, id-1, tag, MPI_COMM_WORLD, &status );

}

}
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PROGRAM: Update the Temperatures

/* Update the temperature based on the four point stencil. */

for ( i = 1; i <= k; i++ )

{

h_new[i] = h[i]

+ dt * k * ( h[i-1] - 2.0 * h[i] + h[i+1] ) / dx / dx

+ dt * rhs ( x[i], time );

}

/* Correct settings of first H in first interval, last H in last interval. */

if ( 0 == id ) {

h_new[1] = boundary_condition ( 0.0, time_new );

}

if ( id == p - 1 ) {

h_new[k] = boundary_condition ( 1.0, time_new );

}

/* Update time and temperature. */

time = time_new;

for ( i = 1; i <= k; i++ ) {

h[i] = h_new[i];

}

} <-- End of time loop

} <-- End of UPDATE function
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PROGRAM: Where is the Solution?

Since each of the P processes has computed the solution at K nodes,
our solution is “scattered” across the machines.

If we needed to print out the solution at the final time as a single list, we
could do that by having each process print its part (can be chaotic!) or
they can each send their partial results to process 0, which can create
and print a single unified result.

135 / 144



PROGRAM: Communication Issues

Our program, as written, still has some problems. If we imagine all the
processes working about equally fast, then they all issue a SEND, and
wait for it to be completed.

But the SEND’s can’t complete until someone on the other side receives
the message. Nobody can, because they’re all still waiting for their
SEND’s to complete as well.

Well, that’s not true, because process p-1 didn’t have to send. So that
process receives, freeing up process p-2. So then process p-2 can receive
its message from process p-3 and so on.

This can be fixed by using MPI Isend() and MPI Irecv() which send
the data immediately without waiting for confirmation of receipt.
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Immediate SEND/RECV: MPI ISend (C version)

error = MPI Isend ( &data, count, type, to, tag, communicator,
&request );

Input, (any type) &data, the address of the data;

Input, int count, the number of data items;

Input, int type, the data type (MPI INT, MPI FLOAT...);

Input, int to, the process ID to which data is sent;

Input, int tag, a message identifier, (0, 1, 1492 etc);

Input, int communicator, usually MPI COMM WORLD;

Output, MPI Request &request, tracks the communication status;

Output, int error, is 1 if an error occurred;
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Immediate SEND/RECV: MPI Isend (FORTRAN version)

call MPI Isend ( data, count, type, to, tag, communicator, request, error )

Input, (any type) data, the data, scalar or array;

Input, integer count, the number of data items;

Input, integer type, the data type (MPI INTEGER,
MPI REAL...);

Input, integer to, the process ID to which data is sent;

Input, integer tag, a message identifier, that is, some numeric
identifier, such as 0, 1, 1492, etc;

Input, integer communicator, set this to MPI COMM WORLD;

Output, integer request, tracks the communication status;

Output, integer error, is 1 if an error occurred;
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Immediate SEND/RECV: MPI Irecv (C version)

error= MPI Irecv ( &data, count, type, from, tag, communicator,
&request );

Input, (any type) &data, the address of the data;

Input, int count, number of data items;

Input, int type, the data type;

Input, int from, the sender’s ID or MPI ANY SOURCE;

Input, int tag, the message tag or MPI ANY TAG;

Input, int communicator, usually MPI COMM WORLD;

Output, MPI Request &request, tracks the communication status;

Output, int error, is 1 if an error occurred;
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Immediate SEND/RECV: MPI Irecv (FORTRAN version)

call MPI Irecv( data, count, type, from, tag, communicator, request,
error )

Output, (any type) data, the data (scalar or array);

Input, integer count, number of data items expected;

Input, integer type, the data type;

Input, integer from, the sender’s ID or MPI ANY SOURCE;

Input, integer tag, the message tag or MPI ANY TAG;

Input, integer communicator, (must match what is sent);

Output, integer request, tracks the communication status;

Output, integer error, is 1 if an error occurred;
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CONCLUSION: Comparison

Now you’ve seen two methods for programming an algorithm that can be
carried out in parallel.

In OpenMP, we can think that we are improving a sequential algorithm
by having loops that execute very fast because multiple threads are
cooperating. Because the memory is shared, we have to be careful that
individual threads don’t interfere with each other. Data is public by
default.

In MPI, we essentially have complete, separate sequential programs that
are running in parallel. Memory is distributed (not shared), and so data is
private by default. To share a data item, we must explicitly send a
message.
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CONCLUSION: Comparison

OpenMP essentially runs on one computer, and so parallelism is limited
by the number of cores, and memory is limited to what is available on
one computer.

MPI can run on hundreds or thousands of computers. The hardware
limitation for MPI is the communication speed.

OpenMP is a simple system. It is easy to start with an existing program
and make small, stepwise modifications, turning it into a parallel program
one loop at a time.

MPI is a complex system. Typically, you need to rethink parts of your
algorithm, create new data, and add function calls. Your MPI program
may look substantially different from your original.
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CONCLUSION: Web References

www-unix.mcs.anl.gov/mpi/, Argonne Labs;

www.mpi-forum.org, the MPI Forum

www.netlib.org/mpi/, reports, tests, software;

www.open-mpi.org , an open source version of MPI;

www.nersc.gov/nusers/help/tutorials/mpi/intro

Gropp, Using MPI;

Openshaw, High Performance Computing;

Pacheco, Parallel Programming with MPI ;

Petersen, Introduction to Parallel Computing;

Quinn, Parallel Programming in C with MPI and OpenMP;

Snir, MPI: The Complete Reference;

144 / 144


