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Abstract

Scientific research involves studying some phenomenon, forming a mathematical model, and using the
model to answer interesting questions. The modeling step is crucial; whether you are looking at atoms,
hurricanes or zebras, you need to find a way to express the interesting aspects of the problem in terms
of numbers and formulas. We pose a sequence of simple problems, and urge you to think about how you
would come up with an answer.
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1 Introduction

While working on a variety of software projects, I’ve often stumbled across minor tasks that were interesting
problems by themselves.

These little problems may also give an idea of how logic, mathematics, geometry, computer science, and
plain old puzzle solving actually end up getting used in real programs.

2 The Fish on the Ceiling

One part of a science show at my local planetarium involves displaying a computer-generated model of a fish
on the planetarium’s hemispherical ceiling. A 3D model of a fish was generated on a PC as a simple line
drawing. The information in the picture was boiled down to a sequence of lines, each of which is “drawn”
on the ceiling by the planetarium’s laser.

The data describing the 3D fish model consists of pairs of lines which have the form:
P x1 y1 z1 intensity
L x2 y2 z2 intensity

where P for “point” indicates that we should move to the point (x1, y1, z1) and display it with the given
intensity, and L for “line” means we should then draw a line from that point to (x2, y2, z2), with the given
intensity. For our case, the intensity will always be 1.0, because the laser at the planetarium is only capable
of full strength or nothing.

A tiny sample of the file looks like this:

P 80.37 -2.115 3.682 1.000
L 80.37 -2.137 3.684 1.000
P 80.37 -2.137 3.684 1.000
L 68.08 -8.638 -5.089 1.000
P 69.20 -1.986 -8.112 1.000
L 80.37 -2.137 3.684 1.000

(The full fish data file, by the way, is available at http://people.sc.fsu.edu/∼jburkardt/data/vla/fish lines.vla)
Now the laser system at our planetarium takes this data file and figures out how to “draw” a corresponding

image on the ceiling. That is, it takes these 3D numbers that describe a tiny fish, and somehow makes a
corresponding drawing on the curved ceiling by moving the laser around.

Suppose we are given the data file, describing points and lines on a 3D fish, and we are given the
dimensions of the planetarium ceiling. For each (x, y, z) point in the fish data file, can we figure out the
(X, Y, Z) coordinate of the corresponding point on the dome that should be illuminated as part of the
drawing?

It’s important to know where the laser is located. Since the ceiling is half of a sphere, we will assume for
convenience that the laser is located at the center of that sphere (this is the typical arrangement.)

To think about how this might be done, suppose that, instead of a data file, we had the fish itself,
suspended five feet above the laser. If we use the laser to trace the outline of the fish, what points on the
ceiling will light up?
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Figure 1: The Neuron Projection
In the same science show, a brain neuron image was projected on the ceiling.

3 If It’s 3 O’Clock, This Must be Chicago

The Global Positioning System (GPS) is used to locate anybody, anywhere. To use it, you need a receiver,
and a very accurate clock. There is a network of GPS satellites, and at any time, there are at least three of
them within range. Each satellite sends out a signal, every 30 seconds, containing the current time, and the
satellite’s position. How does this tell you where you are?

Suppose you receive a signal from one satellite. Since the satellite is some distance from you, the signal
will take a certain time (probably a fraction of a second) to reach you. So since your own clock is very
accurate, the time on your clock when you receive the signal will differ from the time in the satellite signal,
and this difference is the amount of time it took the signal to travel to you. Knowing the speed of light,
(300,000 kilometers/second), you now know that you are so many kilometers away from the position (X,Y,Z)
of the satellite.

Let’s pretend for now that the (X,Y,Z) coordinate system used has its origin at the center of the earth,
with the Z axis sticking out the North Pole, the X axis sticking through the 0 degree longitude line at the
equator, and the Y axis through the 90 degree east longitude line at the equator.

Assuming you are just walking around on earth, your position is known, up to your location on the
surface of a sphere. Getting a distance reading from a single satellite narrows your possible locations down
to points on a circle. The signal from a second satellite gives you a second possible circle. These two circles
intersect at just two points on the surface of the earth, and you can either live with this uncertainty, or get
a third satellite’s signal to settle your position for sure.

(If we can’t assume that you’re standing on the surface of the earth, then we actually need four satellite
signals in order to determine your location. Two spheres can have a circle in common. Three spheres can
have a pair of points in common. Four spheres, in general, can only have one point in common.)

To keep things simple, let’s assume that each GPS satellite simply sends you a message telling you how
far away it is from you. Suppose, then, that at a certain time, you get distance readings from three different
satellites. Moreover, let’s assume that the satellites are in orbit 12,000 miles above the surface of the earth,
or 16,000 miles above the center of the earth, and that their locations form a sort of coordinate axes, with
longitude and latitude (0o, 0o), (90o, 0o) and (0o, 90o).

Based on the distance readings from the three satellites, can you determine your own location in (X,Y,Z)
coordinates, and in longitude and latitude?
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Figure 2: GPS Satellites
The GPS satellite network allows us to determine our position.

It might help to think about the problem in one or two dimensions first.

4 The Sneaky Flight Plan

A plane must be sent across enemy territory without being detected. The enemy has a number of detection
sites in place. Each detection site has a visibility radius of 50 miles.

The navigator for the flight comes to you with a flight plane, which consists of a sequence of points
marked on the map. The plane flies on straight line segments, from point to point, to complete its mission.
The navigator asks you to approve this flight plan. Can you? To do so, we need to determine that the plane
never gets closer than 50 miles to any detector.

One way to solve to think about solving this problem is to imagine computing the location of the plane
at itevery instant in time, and measuring the distance to each detector. This might be a possible approach,
but very tedious, even if we only computed the position every minute.

Another way would be to take a map, draw the flight plan, and then simply draw a strip around the
flight plan, 50 miles on either side, and see if any detector falls within the strip. But a computer can’t do
this, can it?

Here’s another approach. Pick a detection site. Compute the distance from the detection site to the line
segment representing the first leg of the flight plan, and then for all the other line segments. Repeat this
for all the detection sites. If you keep track of the minimum distance you encounter, that’s the closest the
plane gets to a detector.

In order to carry out such an approach, you need to think about some geometric questions of increasing
difficulty, namely, how to compute the distance from a point to:

• another point;

• a line;

• a (finite) line segment.

Sometime soon, the enemy may develop mobile detectors, still with the 50 mile visibility radius, but
able to move around the country. Suppose we manage to find out the scheduled locations of these movable
detectors. How do we check whether our flight plan is safe?
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Figure 3: The Sneaky Flight Plan
What is the closest our flight will come to the enemy radar sites?

Figure 4: The Bell Helicopter Model 206
Will any part of the helicopter touch the nearby building?

5 The Careful Crash

One of the tests that the FAA requires a new helicopter to undergo is the “sudden loss of power” test. The
helicopter takes off from the roof of a building, flies straight up 50 feet, and then cuts off power. Surprisingly,
the helicopter will not plummet to the ground, although it will fall rapidly; the rotors turn during the fall,
and actually provide a certain amount of lift and control. During the test, the pilot has to be able to use
this minimal amount of control to guide the craft to a safe landing. Moreover, the helicopter must never
come closer than 15 feet to the building at any time!

Suppose that during an execution of this test, the helicopter takes two minutes from power off to landing,
and that the flight recorder registers the time and location at every second, as a set of 4 numbers (T,X,Y,Z).
Thus, the record of the flight would consiste of 121 such sets.

Suppose that the building is shaped like a box, and that we have the (X,Y,Z) coordinates of its corners.
Using these two sets of data, can we determine how close the helicopter came to the building during the

test? Did the heliopter pass the test?
You could start this problem by thinking about in two dimensions. Draw a curve near a square, mark a

few points on the curve that represent the location of the helicopter second by second, and figure out the
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closest point. Could you tell a computer how to do this? The closest point will never be inside the square,
unless something strange happens. The closest point is usually one of the corners of the square, except in
special cases. When is that? What points in the plane are closest to a corner, and what points closest to a
side?

To work on the full problem, you need to know some tools from geometry, including how to compute the
distance from a point (X,Y,Z) to:

• another point;

• a line;

• a (finite) line segment;

• a plane;

• a (finite) rectangle;

• the surface of a box (made of 6 rectangles).

This problem is like the the “Sneaky Flight Plan”, but in three dimensions. I ran across this problem
while working at Bell Helicopter.

6 Building 3D Countries

A brain scanner, which can measure the density of tissue over a small region, can be used to search for
tumors. A tumor has a higher density than normal brain tissue. While a brain may naturally have some
regions of high density, a tumor is distinguished by the fact that it has a significantly greater volume than
such naturally occurring irregularities.

The results of a brain scan have been returned to us. The scanner made measurements over a regular 64
by 64 by 26 grid, which we can think of as a collection of cubes, also called voxels (that is, volume elements,
just as a “pixel” is a picture element). Thus, our data is a list of 64x64x26 sets of data, including a location
and a density.

We concentrate on those voxels which have a high density, and ignore the others. To determine whether
a tumor is formed, we need to know whether enough voxels are touching each other that they form a typical
tumor mass. We will assume that a collection of 50 or more contiguous high-density voxels correspond to a
tumor.

The information is all there in the data, but how can we see it? If we are lucky, we can get a graphical
image of the data and examine it. But can a computer, working just from the data, give us the answer we
need?

In essence, our problem assumes that we are given an array of 64 by 64 by 26 sets of data, representing the
location and density of each voxel. We are told the density value above which a given voxel is “suspicious”,
and we are told that 50 or more contiguous suspicious voxels are probably a tumor. Our problem is to
automate the process of tumor detection on a computer.

Once again, it might be easier to think about how to solve this problem by starting with a much simpler
version, either in 1D or 2D. In 2D, for example, we might suppose that we have placed some checkers on
a checkerboard, and now want to know how many “countries” have been formed, assuming that a country
starts out as one square containing a checker, but includes occupied neighbors, and their neighbors, if any,
and so on.

For a look at some representative brain data, see the Pittsburgh Supercomputing Center’s Function
Magnetic Resonance Imaging page at http://www.psc.edu/science/goddard.html.
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Figure 5: A Sample 3D “Map”
A brain scan noticed many small regions of high density.

Are many regions clumped together to form a tumor?

Figure 6: A Tiny 2D “Map”
In 2D, it may be easier to see how to determine the “countries”.
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Figure 7: Lewis Carroll (Charles Lutwidge Dodgson)
Lewis Carroll invented the game of Word Golf.

7 Lewis Carroll’s Word Golf

Lewis Carroll, who suffered from insomnia his whole life, invented various puzzles to keep himself amused
while trying to fall asleep. One such game he called “Word Golf” or “Word Ladders” or “Doublets”. The
problem was to take two words with the same number of letters, and try to transform one word into the
other by changing a single letter at a time, with the requirement that each change resulted in a legal English
word.

For instance, you can change word into golf in 7 steps, using the sequence:

WORD, WARD, HARD, CARD, CORD, COLD, GOLD, GOLF

Under those rules, can you change:

• HATE to LOVE?

• GOOD to EVIL?

• HORSE to WAGON?

• OUNCE to POUND?

You can’t always get from one word to another. Sometimes you can do it only with the help of unusual
words. For instance, after months of effort, I finally got from ounce to pound in 1967, but I had to use a few
Scottish dialect words, which I only found after long desperate searched through the dictionary.

ounce
|
dunce

|
dunch (Scottish dialect for a jab with the elbow)
|
bunch

|
bunco

|
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bunko
|

bunks
|

bulks
|
balks
|
calks

|
calls
|

cauls
|

cauld (Scottish dialect for ‘‘cold’’)
|
could
|
would

|
wound
|
pound

To play this game, it helps to have an agreed list of legal words. Donald Knuth, for instance, came up
with a list of 5,678 common five letter words for his Stanford Graph Base. (A copy of this list is available
at http://people.sc.fsu.edu/∼jburkardt/datasets/words/knuth words.txt).

If we agree to restrict ourselves to Knuth’s list, we can ask the question, can any five letter word on the
list be changed into any other five letter word? Or are some words aloof, refusing to be transformed?

To think about this problem, you could start by making a table of all the two letter words you can think
of. It’s easy to organize such an effort by using a piece of graph paper, marking 26 columns A through Z,
and doing the same for rows. Put a check mark in every box that represents a word. This would give you a
small sample database of two letter words to work on.

Of course, if we can’t find a path from one word to another, that doesn’t mean there isn’t one. The
only way to be sure would be to try absolutely every possibility. Such a task brings humans to tears, but
is exactly the sort of thing that computers do very well at. But if we want to turn our problem over to a
computer, we need to think more carefully about how we solve such problems in our head.

What would a computer need, in order to be able to find a sequence of transformations taking one word
to another, or to determine that there was no such sequence?

How is this problem related to the problem of building 3D countries?
This is a hard, but interesting problem. One way to approach it is to imagine a graph of all the five letter

words, with a link between pairs of words which are one change apart. Now start at the first word on the list,
and do a “breadth-first” traversal of the graph, until you reach the target word, or have no more choices.

Software to handle this problem is available in the program ladders, which is part of Donald Knuth’s
Stanford Graph Base, described at http://www-cs-faculty.stanford.edu/∼knuth/sgb.html.

8 Six Degrees of Kevin Bacon

Stanley Milgram, a researcher at Harvard, was studying social networks. Start by considering any person,
who we will consider to be at level 0; now consider all the friends of that person, whom we can designate as
level 1 persons. Each of these level 1 people has friends as well; some of them may already be in the level
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Figure 8: The Milgram Experiment
A sample journey of a letter from Omaha to Boston in Milgram’s Small World experiment.

1 group, of course, but any new people will be assigned to level 2. The process can be repeated until there
are no new additions are found.

Some questions naturally arise:

• What are the chances that the process stops before the whole world is connected?

• Assuming everyone in the US is connected by friendship to everyone else, how many steps would it
take, on average, to go from any one person to another?

• What is the distribution of loners (few friends) and super social people (many friends)?

Milgram tried out his ideas by choosing people in Omaha, Nebraska, or Wichita, Kansas and asking them
to transmit a letter to a person in Boston, Massachusetts whom they did not know. Milgram suggested that
they simply forward the letter to one of their friends whom they thought might be more closely connected
to the final destinination. Surprisingly, in most cases the letter reached its destination, often in just three
steps.

Are these results surprising? To answer that question, we might begin by asking how many friends the
typical person has; relatives, neighbors, co-workers, schoolmates, and other people one knows by name. A
value of 500 might seem reasonable. But if we take such a value as typical, then how quickly does everyone in
the US become connected starting at you? Your level 0 contains 1 person, your level 1 contains 500 people.
But level 2 contains 500x500 = 250,000 people. Level 3 will contain 5003 = 125, 000, 000 people which is
getting near the entire US population, and level 4 is about 62 billion, which far exceeds the world population!
Even though we have made some very optimistic assumptions here, it is not unreasonable to think that a
very large proportion of the world is only 4 friends away from you!

Since we can’t really go out and collect lists of friends, is there any way to study social networks like this
on the computer? One way to do this relies on the extensive data collected about movies, in particular, the
list of cast members. Suppose we consider any movie actor to be “friends” with all other actors who have
appeared in the same movie.
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Figure 9: Roscoe “Fatty” Arbuckle
It’s hard to find an actor with a Bacon number greater than 2!

Using the movie data, we can then ask questions such as how many steps it would take to get from one
actor to another, using movies as links. In fact, at one time there was a trivia game called “Six Degrees of
Kevin Bacon”, which posed the challenge of finding such a sequence of movie links between any given named
actor and Kevin Bacon.

For example, given Matthew Broderick, we can find a chain of movies linking him to Kevin Bacon as
follows:

• Matthew Broderick was in The Cable Guy with Jim Carrey;

• Jim Carrey was in Batman Forever with Val Kilmer;

• Val Kilmer was in Top Gun with Tom Cruise;

• Tom Cruise was in A Few Good Men with Kevin Bacon.

Thus, Matthew Broderick can reach Kevin Bacon in just 4 steps. There might be a better solution involving
fewer steps. The length of the shortest such solution is known as an actors Bacon Number, and you might
be surprised to find out that Matthew Broderick’s Bacon number is actually 1, although you might be
hard-pressed to determine the movie they both appeared in.

So, although we’d really like to study real people’s friendship networks, we can start with the movie link
idea. Assuming we have access to a database of movie casts, we therefore ask: Given the name of any movie
actor, how can we find a sequence of movies that link this actor to Kevin Bacon?

Can you see why this problem is related in some way to the problem of building 3D countries? Just as
two actors are linked by movies, two voxels are linked if they are physically touching.

To see a program that can produce the Kevin Bacon Number for any actor, try The Oracle of Bacon,
whose website is http://oracleofbacon.org/.

9 As the Worm Turns

A very fussy two dimensional worm decides to have his burrow built by an architect. The worm draws a
sketch of his ideal burrow, which consists of 10 square rooms arranged in a straight line. “I want something
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Figure 10: Sample Worm Homes
How many shapes are formed by 10 connected squares?

like this,” he says, “with 10 rooms, no more, no less.” The architect feels put off by this boring design.
“Must your burrow actually be straight?”, she asks. “Come to think of it, that’s not important,” says the
worm, “but the rooms must be square, and arranged so that you can enter the front room and walk from
one room to the next until you reach the last room.”

The architect pulls out a checkerboard, and begins shuffling around 10 checkers. After a while, she says,
“You know, I think there will be quite a lot of possibilities to choose from now!”

To answer questions about the possible worm homes, you have to find some way of organizing them in
your mind. A good way might be to imagine that you always put the first room at the same location, and
once you know where that room is, you have four choices about where to add on room number 2. After you
add a room, you have to decide how the next room will be joined to the current one. Often, you will have
three sides of the room to choose from, but if the house curls up against itself, some sides may no longer be
available. And it’s even possible that you come to a dead end and have to abandon a partial design.

If you can come up with an organized way of thinking about the house designs possible using 10 rooms,
you can try to answer some questions:

• Can you determine how many possible burrow designs there will be?

• Can you determine an orderly method of listing every house design?

• Can you create a “random” house design?

There’s actually some mathematics associated with this problem. A walk on a grid is a sequence of
locations p1, p2, ..., pk on the grid with the property that, for any index i, pi and pi+1 are neighbors. A self
avoiding walk is a walk which has the additional property that no grid location occurs more than once in
the sequence. Designing the worm’s house is the same as constructing a self-avoiding walk of 10 steps.

You may have heard of pentominoes, which are the 12 distinct connected shapes that can be made up of
5 connected squares. Which of the pentomino shapes cannot be thought of as self-avoiding walks? Can you
think of a procedure by which a computer could handle questions like this?

10 Origami With Proteins

Origami is the art of folding a sheet of paper to create an interesting shape, such as a bird or a frog.
Surprisingly, proteins, which contain information about the design of real birds and frogs, also are created
by folding up string of atoms into a clump that has a particular shape. It’s not hard to determine the string
of atoms making up a particular protein, but knowing this information is not enough to predict the shape
into which the string of atoms will fold up.
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Figure 11: Pentominoes
Pentominoes are made of 5 squares.

Their shapes are suggested by the letters FILNP and TUVWXYZ.

Figure 12: Protein Folding
A protein string folds into an energy-reducing shape.
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Figure 13: Prototeins
A prototein with 21 atoms might fold up like this.

In living things, a protein is constructed as a sort of string of beads, adding one component after another.
Even while the protein is being constructed, the part that is completed will begin to fold around itself, because
of the varying distribution of electrical charges on the components. The final shape of the protein is actually
an important feature; occasionally, a protein will not assume the standard shape, and in consequence, will
not be able to carry out its function.

Computational biologists want to be able to start from the formula for a protein, and work out on the
computer how the protein will fold in response to the pattern of electrical charges.

We will look at a greatly simplified problem. Our model for a protein will be a string of numbers, 0, 1,
and -1, representing neutral, positive, and negative regions. The “formula” for a protein will be its particular
string of numbers. Our string proteins will live on sheets of graph paper, where they can bend and twist in
very limited ways. We will assume that the first “atom” in a protein is associated with one cell of the graph
paper. The next atom goes in one of the four unoccupied neighboring cells, and so on.

We can imagine the protein initially being “written” out straight on the paper. Now we expect to see
some folding. Now let’s suppose that the negative and positive atoms prefer to be near each other, and that
the protein is willing to bend in various ways to allow this to happen. What is the configuration that is most
comfortable for the protein?

In order to compare configurations, we’ll have to come up with a scoring system. A crude but simple
score is as follows: every charged atom that is not the neighbor of an oppositely charged atom adds 1 to the
score.

Our modeling problem now assumes that we are given a formula for a prototein, that is, a sequence of
values of -1, 0 and +1. We now lay out any shape we want for the prototein, where a shape is created by
filling in neighboring boxes of a graph paper grid with the prototein formula values. Once we have chosen a
shape, we can evaluate the prototein’s score. Using this model for protein folding, our task is, for a given
prototein formula, find the shape (or shapes?) with the lowest possible score.

For a short prototein formula, this problem is not very hard, because we can easily consider and evaluate
every possible prototein shape. But we already saw in the “worm” problem, that as few as 10 squares can
be arranged on a graph paper grid into an enormous number of distinct shapes. So if we start to talk about
prototeins of length 20 or more, there is no chance of simply checking every possible shape.

In a case like this, we may have to be satisfied with an estimate of the lowest possible charge. We can
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Figure 14: The Tweedle Collection
These 10 paintings are to be fairly divided by two heirs.

proceed by simply generating sample shapes at random, and keeping track of the lowest charge we encounter.
To do this, we would go back to the “worm” problem. Instead of trying to construct every possible self-
avoiding walk, we would need to figure out how to create a self-avoiding walk at random. If we can do this
repeatedly, we can then compute the energy of each configuration and give a rough prediction of the best
prototein shape.

If we want to do better than this simple procedure, we would have to figure out some way that we could
take a random prototein with a good score, and try to “improve” it. From a diagram, we might see a simple
adjustment to the shape that would improve the score. The trick would be to think of how to tell the
computer to spot such opportunities automatically!

11 The Jealous Heirs

You are a lawyer, responsible for carrying out the late Aunt Tweedle’s will, in which she specified that her
art collection was to be divided, as equally as possible, between her two nephews, Dum and Dee. Aunt
Tweedle specified that the artworks could not be sold.

As a first step, you’ve had the artworks appraised. The 10 works of art were valued, in thousands of
dollars, as

771, 121, 281, 854, 885, 734, 486, 1003, 83, 62

You meet the nephews and give them a copy of the appraisals, and suggest that they agree on a fair division.
Naturally, this only begins a bitter dispute. Neither nephew cares about art, but each one cares very much
about money!

Nephew Dum suggests that he will take just three paintings, numbers 4, 5, and 8, while Dee can have
seven. But Dee points out that Dum’s art will be worth $2,742,000 while his will be only $2,538,000. Dee
suggests that Dum take pictures 5, 6 and 8 instead, but this means that Dum gets $2,622,000 while Dee
picks up $2,658,000, a solution which is closer, but not ideal.

As the lawyer, you have to wonder whether Aunt Tweedle actually knew whether there was a solution;
and if there is one, you need to find it before the heirs start lawsuits against each other.

To test your skills in resolving wills, consider the following data, which may be a little easier to work
with:
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Figure 15: The Knapsack Problem
What’s the best way to fill a knapsack?

2, 10, 3, 8, 5, 7, 9, 5, 3, 2

Can you split these numbers into two groups, which have the same sum? Obviously, one way is to simply
try every possible division of these numbers into two groups but that’s probably not what you did!

The problem of breaking up a set of items of differing values into groups of equal or nearly equal value
is known as the partitioning problem. The problem would be easy if the items (and their values) could be
divided as easily as numbers can be. But, as King Solomon himself noted, some things just are not divisible
in this way.

Faced with the problem of dividing the art works, a natural procedure might be to go back and forth
between Dee and Dum, allowing each to pick one item at a time. If they always pick the most valuable
remaining item, then Dee will get paintings 3, 4, 6, 8 and 9, with a value of $2,955,000, leaving Dum with
$2,325,000. It should be clear that, in this procedure, the first person can always get more (or, at least,
never less) than the second person, no matter how many items are to be divided.

Can you think of a simple modification of this procedure that would seem more fair, and would sometimes
result in the second person begin able to get the most value?

Suppose that, before the will is carried out, a third heir appears unexpectedly. Surely, it’s less likely that
the art works can be split into three groups of equal value. How might you search for a solution? If you
can’t find a solution, can you find a way for the heirs to choose items as fairly as possible?

12 The Knapsack Problem

In the middle of the desert, your off-road vehicle breaks down, and you realize it’s a long walk to safety. You
have a knapsack which can hold 165 pounds of supplies. You brought 10 cans of food supplies, and looking
at the labels, you see their weights in pounds listed as:

23, 31, 29, 44, 53, 38, 63, 85, 89, 82

You want to pack your knapsack as close to full as possible with cans. Assuming all the food supplies are
equally nutritious by weight, what’s your best choice?

Thus, our problem can be thought of as follows. We are given:

• A knapsack of a known total weight capacity;

• Objects of different weights;

and we are asked to:

16



• Find a way to pack the knapsack with the most amount of weight.

It might be hard to see how to even begin this problem. But let’s just take a few steps, at least! Here is
how we might start to think:

1. First of all, any object that by itself weighs more than 165 pounds is useless, and can be discarded.

2. If any object weighs exactly 165 pounds, then we can pack that, and we’re done. That’s easy to check.

3. If any two objects weight exactly 165 pounds, we can pack them, and we’re done. It’s pretty easy to
check all possible pairs.

4. I suppose we could check all sets of three, four, five objects, and so on, but isn’t this starting to get
complicated?

Indeed, there’s no guarantee that we can ever completely fill the knapsack, and if we have an awful
lot of little objects of different weights, it would take a great deal of time to check all the combinations.
Perhaps we should start by taking a “common sense” stab at the solution. An approach like this, which is
not guaranteed to get the best answer, but which seems to be based on some reasonable ideas, is sometimes
called a heuristic solution.

Our approach is as follows:

1. Take the heaviest object that will fit in the knapsack.

2. Add the heaviest remaining object that will still keep the weight below 50.

3. Keep adding objects until you reach 50 (fat chance!) or can’t add any more objects without going over
the weight.

This method has the advantage that you always know what to do next on each step. This is an example
of a “greedy” algorithm, because when picking a step, it always takes the biggest one possible.

There’s no guarantee that this will produce the best solution. In fact, if, for example, our objects weigh
110, 100, and 65 pounds, then the greedy algorithm will grab the 110 pound weight and halt, whereas the
very next two choices would give a perfect solution.

This suggests that we might start our solution using the greedy algorithm, but then try to improve it,
perhaps by deciding to recompute the solution without one of the heaviest weights. Can you think of a way
to carry this out?

If you look carefully, you can find versions of the knapsack problem in a surprising variety of situations.
Let’s suppose, for instance, that I am a thief, and have broken into a warehouse. I have to escape over
a fence, so everything I take must fit into my knapsack, which can carry no more than 165 pounds. The
warehouse is filled with objects, and I know their weights, but now I also happen to know their values in
dollars.

For a thief, the goal is to maximize the value of the haul - and that means that we look first at the price
tag, and only then at the weight! Thus, we might have 10 items, as before, of the given weights, but now
we are very interested in their corresponding values:

Item Weight Value
1 23 $92
2 31 $57
3 29 $49
4 44 $68
5 53 $60
6 38 $43
7 63 $67
8 85 $84
9 89 $87

10 82 $72
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Figure 16: The Gerrymander
Governor Gerry Proposes a Strangely-Shaped Voting District

In other words, now we are given:

• A knapsack of a known total weight capacity;

• Objects of different weights and values

and we are asked to:

• Find a way to pack the knapsack with the most value, without exceeding the weight limit.

How could a thief with a 165-pound capacity knapsack maximize the value of the haul? Hint: when shopping,
it pays to look at the price per pound. For each of the items, we can compute a corresponding “value per
pound”. This will be a strong indication of what to do next.

13 The Gerrymander

In any group of two people, the saying goes, there are at least three opinions. When large groups of people
need to agree on a single choice, an election can be held to make the choice. If there are only two choices,
and everyone votes as a group, it’s easy to determine the choice that satisfies the majority of the voters. But
in practical situations, there are many choices, and a complicated process to follow. It has been known for
ages that an election process can often be arranged to prefer, or sometimes even to guarantee, a particular
election result.

Consider the case of representative democracy, where a country or province is divided into smaller regions,
each of which elects a representative to a common council. One might think it a desirable property of this
system that the composition of the council be similar to that of the people who elected them. On the other
hand, if you were a politician, this might not be how you think!

In that case, you might hope to pack more of your party onto the council. One way to do this would
occur if you were allowed to decide the boundaries of the districts. We might suppose that each district has
to be connected, and perhaps needs to have roughly the same number of inhabitants as all the others. But
if we have any idea of the voting preferences of the inhabitants, we can surely find a way to cleverly draw
the boundaries of the districts to help our party.

This can be done by trying to all your own party members live in districts where they form a respectable
majority; the members of the opposing party live either as minorities in such a mixed district, or else in
“pure” districts where there are none of your party. If things work out for you, every member of your party
has a vote that is worth double that of the other party.
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Figure 17: The State of Iowa
Iowa’s 99 counties are divided into 5 congressional districts.

One of the early researchers in this field was Elbridge Gerry, signer of the Declaration of Independence,
vice President under James Madison, but in 1811, the Governor of the state of Massachusetts. His party
happened to be the Jeffersonian Republicans. He arranged for the voting district of Essex to be constructed
in a way that encircled the city of Boston. A cartoonist made fun of its snakey shape by drawing on a pair
of wings and calling the result a “gerrymander”, a name which has been applied to this practice ever since.

Now to make this into a computational problem, suppose we have a graph of “wards”, which are the
“atomic units” of our voting system. We are required to create 5 voting districts, each of which is constructed
by conglomerating adjacent wards. Each district should have roughly the same population. How would you
go about solving such a problem? Here is some artificial data, suggested by the Iowa example, that you
might try to work with. We assume there are 96 wards, arranged in an 8 by 12 checkerboard:

10 10 25 50 10 50 10 50 50 25 25 10
100 50 50 10 10 10 5 100 50 50 10 10
25 50 50 10 25 25 15 10 25 25 10 10
75 15 20 10 75 50 40 10 100 25 25 80
20 30 40 10 75 100 100 30 25 25 90 30
25 30 20 10 40 175 50 40 10 30 60 40
25 30 10 25 30 40 30 20 10 20 30 40
10 20 10 10 20 10 30 10 10 10 10 50

This problem is small enough that we could probably come up with some sort of solution by hand. But
the point is, we want to use a computer to solve much bigger problems, so we start with the small problem
and try to think of how we could “explain” to the computer a procedure that would produce a reasonable
answer.

There probably isn’t a formula that we can use to instantly assign every ward to a district. In that case,
a typical procedure is to propose some solution, practically any solution, and then repeatedly try to make
small improvements to it. So, how can we come up with an initial solution, no matter how bad it might be?

The only requirements are that every ward must be assigned to one of the districts, and the wards
belonging to a district must be connected. One way to achieve this is to pick five wards randomly as the
“seeds” for each district, and then to add neighboring wards one by one.

Specifically, here is a procedure that should work:

• 1: Pick 5 distinct wards at random, and assign them to districts 1 through 5, respectively.
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• 2: If all wards have been assigned a district, we are done.

• 3: Select a random ward W that has not been assigned a district.

• 4: Select a random “side” S (east, north, west, south) of the ward.

• 5: If there is no neighboring ward on side S, return to step 3.

• 6: Let the neighboring ward on side S be called N. If N has not already been assigned a district, return
to step 3.

• 7: Assign ward W to the same district as we previously assigned ward N.

• 8: Go to step 3.

This seems like a slow and indirect process, but it has the advantage that it will work properly no matter
how many wards there are, and no matter how they are arranged geometrically, as long as we have at least
as many wards as districts, and the wards form a connected set. In step 4, we assumed the ward was a
rectangle with four sides, but it’s clear that really we just need to be able to select one of the neighboring
wards at random, no matter how many there actually are.

This procedure produces a division of the state into 5 voting districts. But we will almost surely not like
the result - that’s because we prefer each voting district to have roughly the same population, something our
procedure didn’t worry about at all. But now that we have a kind of solution, and an idea of what is wrong
with it, it is obvious that we can try to make small adjustments to the solution to improve the population
distribution.

Again, we want to suggest a procedure that is simple-minded enough for a computer to handle, and
which does not rely on any special facts that might only occur in very special instances. An obvious idea is
to consider “trading” a ward from one district to another. So we could pick a ward at random, ask if one
of its neighbors belongs to a different district, and if so, ask whether, by transferring this ward to the other
district, (or, the other ward to this district!) we improve the population distribution.

Now at this point, we will need to be more precise about this measurement of population distribution.

If we wished to make the problem more realistic, we could now suppose that for each ward we are given
not just the populuation, but also the numbers D of Democrats and R of Republicans. This is going to
change the problem in a way similar to how the “Knapsack Problem” problem changed when we added
values to the objects. Although there may be many approximate solutions to the problem of grouping the
wards into districts, we may prefer those arrangements that result in an advantage to a particular party.

If we are given the extra information of party affiliations, how might you try to create the voting districts
so that:

• as many districts as possible have a Democratic majority;

• as nearly as possible, each district has the same ratio of Republicans and Democrats;

• the ratio of Republican and Democratic majority districts corresponds to the ratio of Republican and
Democratic voters overall.

You might notice that the Gerrymander problem has some similarities to the problem of the Jealous
Heirs. In both cases, we have many items, of fixed value, and we want to arrange them into groups of equal
or roughly equal value. However, in the Gerrymander case, we have the additional severe restriction that
the items in a group must form a connected geographical region.
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Figure 18: A numeric door lock
How many 3 digit codes are possible?
How many don’t use any digit twice?

How many are in ascending order?

14 Breaking the Code

Some homes and cars use a keyless system involving a pad with the ten digits 0 through 9. To open the
lock, you need to push a certain number of digits (typically three or four) in the correct sequence.

How safe is such a system? Well, that depends in part on how hard it is to guess the code. A 1 digit
code is worthless, since an intruder could guess it in no more than 10 tries. For a 2 digit code, the intruder
has to guess the first digit, and then the second, but really, this just amounts to trying all the numbers from
00 up to 99, so the code can be guessed in no more than 100 tries. Not very secure!

By now, you should be able to guess that a 3 digit code allows for just 1,000 distinct choices, while a 4
digit code offers 10,000 choices. Even then, a very patient and careful intruder could eventually break in,
simply by going through the codes in order.

An interesting twist occurs for certain kinds of locks. As you press the buttons, they stay depressed,
until you have entered the complete code and tried the handle. This means that the code cannot use any
digit more than once. Suppose we have a lock that uses a 3 digit code and does not allow repeats. Instead
of 1,000 possible codes, how many do we have?

Let’s think about how you might have gone about selecting your code. You have 10 choices for the first
digit. No matter what you chose, that means that when you choose the second digit, there are only 9 choices
remaining, and the third digit must be selected from 8. The number of choices for codes can be counted by
multiplying the number of choices at each step: 10× 9× 8 = 720.

Now suppose you want to generate every possible 3 digit code for which we don’t allow digits to be
reused. Isn’t it time to call in a computer? A procedure to do this might look like this:

1. The first possible code is 012, so print it;

2. Add 1 to the current code;

3. If the code doesn’t repeat any digits, print it;

4. If the code is 987, that’s the highest possible code, so stop;

5. Otherwise, go back to step 2.

Note that we are treating the three digits of the code as though they represented a number. Instead of
writing (0,1,2) we write 012. We do this because it makes it easy to move through all possible codes simply
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by adding 1. The rules of arithmetic take care of the fact that when the last digit of the code was 9, we reset
it to zero and increase the next higher digit.

The other thing to note about this problem is that we can immediately tell how many possible codes we
have to check. In our case, there are 1,000 codes to consider when we search for those that don’t repeat any
digits. There are two different ways to see that there are 1000 codes to check:

• our possible codes are every number from 000 to 999;

• there are 10 possibilities for each digit, and we have three digits to choose, making 10×10×10 = 1000
codes

As far as computer calculations go, checking 1,000 cases like this does not represent a significant amount
of work.

Suppose now that we want to choose a 3 digit code with the property that the digits are distinct, and
increasing. It’s probably not so easy to figure out that there are 120 such codes that are, but here’s a hint
as to why this happens:

120 =(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) 0** codes
+(1 + 2 + 3 + 4 + 5 + 6 + 7) 1** codes
+(1 + 2 + 3 + 4 + 5 + 6) 2** codes
+(1 + 2 + 3 + 4 + 5) 3** codes
+(1 + 2 + 3 + 4) 4** codes
+(1 + 2 + 3) 5** codes
+(1 + 2) 6** codes
+(1) 7** codes
+(0) 8** codes
+(0) 9** codes

You can see that there is only one possible three digit “7**” code beginning with a 7 and using ascending
digits. Now look at the “6**” and “5**” cases, and look for the pattern.

Even if you can’t see the pattern, you could still come up with a computer procedure that would generate
all 100 possible codes, testing each one, and only printing out the ones with ascending digits.

It may seem like we have solved this problem without really understanding it - that is, we didn’t really
figure out a way to generate the ascending codes, but instead, figured out how to generate all the possibilities
and then recognize the ones that are actually solutions to our problem. But sometimes, this kind of approach
is the best we can do, or at least is easy to set up for small problems.

While there are other methods to deal with the numeric code problem, we will now look at the problem
of the “Unseen Queens”, where this ability to generate all configurations and then recognize the desirable
ones is exactly what we will need.

15 The Unseen Queens

How many queens can you place on a chessboard so that no two queens can “see” (that is, attack) each other?
Under the rules of chess, a queen can move any number of spaces horizontally, vertically, or diagonally. Thus,
it’s easy to see that, on a standard 8 × 8 chess board, if you try to place more than 8 queens, at least one
column would contain two queens, who would hence see each other. Thus, the maximum number of queens
that can coexist peacefully on a chessboard must be 8 or less. It turns out that you can reach that limit of
8, if you are careful. In fact, there are quite a number of ways that this can be done.
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Figure 19: Eight queens on a chessboard
This is not quite a solution, since two queens see each other!

If we wish to study this problem, how can we represent the important features of the problem in a useful
way? Given a representation of a chessboard with 8 queens, how can we determine whether any two queens
can see each other? Can we find every possible configuration of non-attacking queens? Can we count the
number of such configurations in advance? And if we don’t have a formula for how to find solutions, is there
a way to “stumble” towards a solution by starting with a random setup and then trying a series of reasonable
adjustments?

Even though these questions are phrased in terms of a chessboard, the very same kind of issues come up
all the time in mathematical and computational investigations. Considering this problem is like standing in
a room with many doors - we will open several of these doors and suggest what is beyond them, in the hope
that you may find yourself wanting to pursue one of these topics further.

15.1 Representing a Configuration

To begin with, we can consider the question of representing the configuration. An article about chess will
describe a position by displaying all 64 squares; occupied squares are indicated by a small picture of the
corresponding piece. This seems far too elaborate for our problem. Since the only chess piece we will use is
a queen, we could simply mark an 8× 8 array with 1’s for those positions containing a queen, like so:

10000000
00001000
01000000
00000100
00100000
00000010
00010000
00000001

Since we happen to know that a legal configuration will always use exactly 8 queens, and that each queen
must occupy a distinct column of the board, we can come up with an even more economical representating.
Our scheme would be to start in column 1, and note the occupied row, then do the same for column 2, and
so on. In that case, we can replace our matrix representation by a much simpler one, called the column
representation. For example, we might have:

(1,3,4,6,3,5,7,2).

This representation certainly takes less space to write down. Another thing it does is make it easy to detect
configurations that will not be acceptable. The example we have displayed can’t be a solution, since we can
easily see that there are two queens in row 3.
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This suggests an even better representation, in which we still use eight digits, but now require that each
digit be used exactly once. This will enforce the rule that each queen must occupy a distinct row of the
board. An example would be

(1,3,5,7,2,4,6,8).

This is called a permutation of the digits 1 to 8, and so we have a permutation representation for configura-
tions, which now automatically enforces two of the three requirements for non-attacking queens.

15.2 Checking for Attacking Queens

If we use the matrix representation for configurations, then a configuration is represented as a matrix A,
which contains in row i and column j a value Ai,j or A(i, j), which is 1 if there is a queen at that position,
and 0 otherwise. If we asked a computer to check that no two queens were in the same row or column, we
might write something like this:

matrix check:
for i = 1 to 8
for j = 1 to 8
if A(i,j) is 1 then
A(k,j) must be zero if k is not i and
A(i,k) must be zero if k is not j and
A(i+j-k,k) must be zero if k is not j and
A(i-j+k,k) must be zero if k is not j

Here, the number k is chosen to check all the possible rows, columns, diagonals (going down as we move
right) and antidiagonals (going up as we move right) in the board.

On the other hand, if we use the permutation representation, we don’t have to check rows and columns.
Our representation is a permutation, p, which is a reordering of the digits from 1 to 8. To check that there
are no attacking queens, we could write something like this:

permutation check:
for i1 = 1 to 8
for i2 = 1 to 8, skipping i1
p(i2) - p(i1) must not equal i2 - i1
p(i2) - p(i1) must not equal i1 - i2

We can see attacking queens immediately, but a computer can’t. In order to give the computer the ability
to take over the job of checking for attacks, we have to figure out a way to express the situation in terms of
arithmetic. Whether we use the matrix or permutation representations, I expect you would not find it easy
to come up with a quick way of checking for the diagonal attacks. Something that we can do at a glance can
turn out to be surprisingly difficult to define as a formula.

15.3 Exhaustion: Generating and Checking All Possible Configurations

In the combination lock problem, we were seeking all the combinations that had some property (no repeating,
or increasing digits). Since we didn’t know a formula that would magically produce, one by one, just the
desirable combinations, we took the simple approach of generating every possible combination, and rejecting
those that didn’t satisfy us.

The same approach can be adopted for the queens problem - generate every configuration, and keep the
good ones. However, it may be a shock to discover that, unless we think ahead, there can be a prohibitively
huge number of configurations to check.

For instance, we might choose the matrix representation for our problem, in which we have 64 squares, 8
of which contain a 1 representing a queen. If we can generate each of these configurations, then our computer
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procedure matrix check can alert us to the special cases where the queens are non-attacking. But the number
of configurations to check is

(
64
8

)
(because we have 64 choices for the first queen, 63 for the second, and so

on, and we have to divide by 8! to account for the fact that the same result can be gotten in several ways).
This number is about 4 billion (4,426,165,368 to be exact). Even for a computer, this starts to represent a
serious amount of work!

If we choose the column representation, where we assume that there is exactly one queen in each column,
then we automatically discard a huge number of configurations, without losing any of the ones of interest
to us, and since, for each slot in the representation, we have 8 possibilities, the number of configurations is
about 16 million: 88 = 8× 8× 8× 8× 8× 8× 8× 8 = 16, 777, 216.

But the 16 million configurations include many where a row is used twice. If we move to the permutation
representation, in which each digit from 1 to 8 appears exactly once, we drop down to about 40 thousand
possibilities, because 8! = 8×7×6×5×4×3×2×1 = 40, 320. So an efficient procedure might be to use the
permutation representation, generating every possible permutation, and calling the procedure permutation
check to determine whether the permutation represents a solution of the queens problem.

For the matrix and column representations, it is easy to see how to generate one representation after
another, because they are really very similar to counting. For instance, the list of all possible column
representations looks something like:

11111111
11111112
11111113
...
45327816
45327817
45327818
...
...
88888887
88888888

If we want to use the very efficient permutation representation, is there a way to generate the permutation
list efficiently. (Since we want an efficient computation, we do not want to generate the permutations by
generating the 16 million column representations first and then selecting those that are permutations!) The
shorter list we are talking about looks like this:

12345678
12345687
12345768
...
87654231
87654312
87654321

The answer to this question is yes. We will not go into the procedure here, but you might think about how
to do it. If you think about it, you should see that you can look at the digits of any permutation in the list,
and work out what the very next one will be!

15.4 Improving an Imperfect Configuration

Suppose that we don’t want every possible configuration - we just need one. Suppose we don’t have the time
or inclination to think deeply about the problem, and we don’t have a computer. Wouldn’t we simply use
trial and error? More specifically, we would slap down the pieces more or less at random, and then try to
make some simple changes that improve the situation a little. Eventually, we will improve ourselves right
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Figure 20: Backtracking
How backtracking works for queens on a 4x4 board.

into a solution or else reach a dead end, where we don’t have a solution, but there is no obvious improvement
to make. In that case, we have nothing to lose, since we can just start over with another more or less random
configuration.

The key to this approach is to have some way of examining the board and choosing an improvement.
For example, here is one approach that could be taken: If your current configuration is not a solution, find
a queen that is under attack. If under row attack, maintain the column but move to an unoccupied row. If
under column attack, maintain the row, but move to an unoccupied column. If under diagonal attack, pick
any third queen, and swap rows with her, while preserving columns.

A human could certainly come up with more sophisticated improvements, but we can take these as a
starting point. You might try to see whether you can quickly arrive at a solution to the problem by repeatedly
“improving” an arbitrary starting setup.

15.5 The Backtrack Method

Another way to try to handle the queens problem is similar to how we might try to solve a maze, or a
Sudoku, or other puzzles where the solution can be thought of as a series of choices. For a maze, we choose
whether to go left, straight, or right; for a Sudoku, we choose what digit to put in each empty box; for the
queens problem, we choose where to place the first queen, the second, and so on.

The backtrack method is useful for problems where we don’t have an overall solution strategy, but we can
often very quickly detected that a partial solution is a dead end. In situations where there are very many
possible configurations to check, the backtracking method can be very powerful if we are able to spot dead
ends quickly. This is because when we detect that a partial solution is actually a dead end, we are actually
skipping over all configurations which begin with the partial solution.

Let’s look at what this means for the queens problem. To simplify the discussion, we’ll cut back to a
problem where we are trying to place just 4 queens on a 4× 4 board.

1 2 3 4 (1,1) (1,2) (1,3) (1,4)
5 6 7 8 (2,1) (2,2) (2,3) (2,4)
9 10 11 12 (3,1) (3,2) (3,3) (3,4)

13 14 15 16 (4,1) (4,2) (4,3) (4,4)

We begin with an empty board. Now we have 16 positions in which we could place the first queen. We
place her in the first position, 1, the upper left corner with coordinates (1,1), and remember that we still
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have 15 untried possibilities for the first move, which we will have to come back to. Our partial solution is
now (1,?,?,?).

Now we must place the second queen, and we have 15 places available. We can quickly reject positions
2, 3, 4, 5, and 6, while 7 is a possibility. Our partial solution is now (1,7,?,?). We have eliminated all
configurations that start (1,2,?,?), (1,3,?,?), (1,4,?,?), (1,5,?,?), (1,6,?,?), and we must remember that we
haven’t yet checked using positions 8 through 16 for the second queen.

For the third queen, it seems we have 14 positions open, but we can quickly eliminate all of them except
position 14! So the only partial solution that begins with (1,7,?,?) must be (1,7,14,?).

But now when we want to place the fourth queen, we see that there are no unattacked squares left. So
there are no full solutions that begin with (1,7,14,?). Since 14 was our only choice for the third queen, we
know that there are no solutions that begin (1,7,?,?).

So, if the first queen is in position 1, the second queen can’t go in position 7. But we haven’t checked
putting her in positions 8 through 16. So we consider the partial solution (1,8,?,?), and move ahead to see
if we can place the third and fourth queens.

As it turns out, there are no full solutions if the first queen is placed in position 1. The backtracking
method then suggests we try placing the queen in position 2. After a few steps, we discover that (2,8,9,15)
is a solution.

1 Q 3 4
5 6 7 Q
Q 10 11 12

13 14 Q 16

If we just wanted one solution, then we can stop. But the backtracking method also allows us to continue
our search methodically, so that we can, if we wish, be sure that we discover every possible solution to the
problem.

16 Conclusion

When we say that we understand some phenomenon such as planetary motion, the formation of hurricanes,
the spread of disease, or the melting of a stick of butter, we generally mean that, in our minds, we have a
mental model, comprising a set of objects, and rules for how they interact and change.

When we encounter an unfamiliar situation that we wish to understand, such as the way an airplane
wing provides lift, we try out various new models in our heads, and see if their behavior conforms to the
facts that we see.

The simple problems we have discussed here are meant as modeling exercises. For instance, from the
description of a situation, we might need to identify the interesting objects and the rules that govern them,
form some typically numeric way of describing the various possible configurations of the objects, and then
work out a configuration that satisfies some desirable criterion.

The problems presented here are small, simple, and artificial, but they offer a fair introduction to the
kinds of thinking necessary for any kind of scientific work.
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