
Parallel Programming with MATLAB

John Burkardt
Department of Scientific Computing

Florida State University
..........

Hosted by Professor Eunjung Lee,
Department of Computational Science and Engineering,

Yonsei University, Seoul, Korea
..........

http://people.sc.fsu.edu/∼jburkardt/presentations/. . .
matlab parallel 2011 yonsei.pdf

28 September 2011

1 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

2 / 111

INTRO: Parallel MATLAB

Parallel MATLAB is an extension of MATLAB that takes
advantage of multicore desktop machines and clusters.

The Parallel Computing Toolbox or PCT runs on a desktop, and
can take advantage of up to 8 cores there.

The user can:

type in commands that will be executed in parallel, OR

call an M-file that will run in parallel, OR

submit an M-file to be executed in “batch” (not interactively).

3 / 111

INTRO: Local MATLAB Workers

4 / 111

INTRO: Parallel MATLAB

The Distributed Computing Server controls parallel execution of
MATLAB on a cluster with tens or hundreds of cores.

With a cluster running parallel MATLAB, a user can:

1 submit an M-file from a desktop, to run on the cluster, OR

2 log into the “front end” of the cluster, run interactively; OR

3 log into the “front end” of the cluster, and submit an M-file
to be executed in “batch”.

Options 1 and 3 allow the user to log out of the desktop or cluster,
and come back later to check to see whether the computation has
been completed.

For example, Virginia Tech’s Ithaca cluster allows parallel
MATLAB to run on up to 96 cores simultaneously.

5 / 111

INTRO: Local and Remote MATLAB Workers

6 / 111

INTRO: PARFOR and SPMD (and TASK)

We will look at several ways to write a parallel MATLAB program:

suitable for loops can be made into parfor loops;

the spmd statement synchronizes cooperating processors;

the task statement submits a program many times with
different input, as in a Monte Carlo calculation; all the
outputs can be analyzed together at the end.

parfor is a simple way of making FOR loops run in parallel, and is
similar to OpenMP.

spmd allows you to design almost any kind of parallel
computation; it is powerful, but requires rethinking the program
and data. It is similar to MPI.

We won’t have time to talk about the task statement.

7 / 111

INTRO: Execution

There are several ways to execute a parallel MATLAB program:

interactive local (matlabpool), suitable for the desktop;

indirect local, (batch or createTask);

indirect remote, (batch or createTask), requires setup.

A cluster can accept parallel MATLAB jobs submitted from a user’s
desktop, and will return the results when the job is completed.

Making this possible requires a one-time setup of the user’s
machine, so that it “knows” how to interact with the cluster, and
how to “talk” to the copy of MATLAB on the cluster.

8 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

9 / 111

QUAD: Estimating an Integral

10 / 111

QUAD: The QUAD FUN Function

function q = quad_fun (n, a, b)

q = 0.0;
w = (b - a) / n;

for i = 1 : n
x = ((n - i) * a + (i - 1) * b) / (n - 1);
fx = bessely (4.5, x);
q = q + w * fx;

end

return
end

11 / 111

QUAD: Comments

The function quad fun estimates the integral of a particular
function over the interval [a, b].

It does this by evaluating the function at n evenly spaced points,
multiplying each value by the weight (b − a)/n.

These quantities can be regarded as the areas of little rectangles
that lie under the curve, and their sum is an estimate for the total
area under the curve from a to b.

We could compute these subareas in any order we want.

We could even compute the subareas at the same time, assuming
there is some method to save the partial results and add them
together in an organized way.

12 / 111

QUAD: The Parallel QUAD FUN Function

function q = quad_fun (n, a, b)

q = 0.0;
w = (b - a) / n;

parfor i = 1 : n
x = ((n - i) * a + (i - 1) * b) / (n - 1);
fx = bessely (4.5, x);
q = q + w * fx;

end

return
end

13 / 111

QUAD: Comments

The parallel version of quad fun does the same calculations.

The parfor statement changes how this program does the
calculations. It asserts that all the iterations of the loop are
independent, and can be done in any order, or in parallel.

Execution begins with a single processor, the client. When a parfor
loop is encountered, the client is helped by a “pool” of workers.

Each worker is assigned some iterations of the loop. Once the loop
is completed, the client resumes control of the execution.

MATLAB ensures that the results are the same whether the
program is executed sequentially, or with the help of workers.

The user can wait until execution time to specify how many
workers are actually available.

14 / 111

QUAD: What Do You Need For Parallel MATLAB?

1 Your machine should have multiple processors or cores:

On a PC: Start :: Settings :: Control Panel :: System
On a Mac: Apple Menu :: About this Mac :: More Info...

2 Your MATLAB must be version 2008a or later:

Go to the HELP menu, and choose About Matlab.

3 You must have the Parallel Computing Toolbox:

To list all your toolboxes, type the MATLAB command ver.

15 / 111

QUAD: Interactive Execution with MATLABPOOL

Workers are gathered using the matlabpool command.

To run quad fun.m in parallel on your desktop, type:

n = 10000; a = 0; b = 1;
matlabpool open local 4
q = quad_fun (n, a, b);
matlabpool close

The word local is choosing the local configuration, that is, the
cores assigned to be workers will be on the local machine.

The value ”4” is the number of workers you are asking for. It can
be up to 8 on a local machine. It does not have to match the
number of cores you have.

16 / 111

QUAD: Indirect Local Execution with BATCH

Indirect execution requires a script file, say quad script.m:

n = 10000; a = 0; b = 1;
q = quad_fun (n, a, b);

Now we define the information needed to run the script:

job = batch (’quad_script’,
’matlabpool’, 4, ...
’Configuration’, ’local’, ...
’FileDependencies’, { ’quad_fun’ })

17 / 111

QUAD: Indirect Remote Execution with BATCH

The batch command can send your job anywhere, and get the
results back, if you have set up an account on the remote machine,
and have defined a configuration on your desktop that describes
how to access the remote machine.

For example, at Virginia Tech, a desktop computer can send a
batch job to the cluster, requesting 32 cores:

job = batch (’quad_script’, ...
’matlabpool’, 32, ...
’Configuration’, ’ithaca_2010b’, ...
’FileDependencies’, { ’quad_fun’ })

18 / 111

QUAD: Submitting a Job and Waiting

How do the results come back to you?

Whether run locally or remotely, the following commands send the
job for execution, wait for it to finish, and then load the results
into MATLAB’s workspace:

job = batch (...information defining the job...)
submit (job);
wait (job);
load (job);

Doing this requires that you stay logged in so that the value of job
can be used to identify output to the load() command.

19 / 111

QUAD: Submitting a Job and Coming Back Later

If you don’t want to wait for a remote job to finish, you can exit
after the submit(), turn off your computer, and go home.

However, when you think your job has run, you now have to try to
retrieve the job identifier before you can load the results.

job = batch (...information defining the job...)
submit (job);

Exit MATLAB, turn off machine, go home.

Come back, restart machine, start MATLAB:
sched = findResource ();
jobs = findJob (sched)

findJob() returns a cell array of all your jobs.
You pick out the one you want, say “k”.

load (jobs{k});

20 / 111

QUAD: Reference

The QUAD example is available at:

http://people.sc.fsu.edu/∼jburkardt/...
m src/quad parfor/quad parfor.html

This includes MATLAB source codes, script files, and the output.

21 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

22 / 111

MD: A Molecular Dynamics Simulation

Compute positions and velocities of N particles over time.
The particles exert a weak attractive force on each other.

23 / 111

MD: The Molecular Dynamics Example

How do you prepare a program to run in parallel?

The MD program runs a simple molecular dynamics simulation.

There are N molecules being simulated.

The program runs a long time; a parallel version would run faster.

There are many for loops in the program that we might replace by
parfor, but it is a mistake to try to parallelize everything!

MATLAB has a profile command that can report where the CPU
time was spent - which is where we should try to parallelize.

24 / 111

MD: Profile the Sequential Code

>> profile on
>> md
>> profile viewer

Step Potential Kinetic (P+K-E0)/E0
Energy Energy Energy Error

1 498108.113974 0.000000 0.000000e+00
2 498108.113974 0.000009 1.794265e-11

...
9 498108.111972 0.002011 1.794078e-11
10 498108.111400 0.002583 1.793996e-11

CPU time = 415.740000 seconds.
Wall time = 378.828021 seconds.

25 / 111

MD: Where is Execution Time Spent?
This is a static copy of a profile report

Home

Profile Summary
Generated 27-Apr-2009 15:37:30 using cpu time.

Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)

md 1 415.847 s 0.096 s

compute 11 415.459 s 410.703 s

repmat 11000 4.755 s 4.755 s

timestamp 2 0.267 s 0.108 s

datestr 2 0.130 s 0.040 s

timefun/private/formatdate 2 0.084 s 0.084 s

update 10 0.019 s 0.019 s

datevec 2 0.017 s 0.017 s

now 2 0.013 s 0.001 s

datenum 4 0.012 s 0.012 s

datestr>getdateform 2 0.005 s 0.005 s

initialize 1 0.005 s 0.005 s

etime 2 0.002 s 0.002 s

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from

the process of profiling.

Profile Summary file://localhost/Users/burkardt/public_html/m_src/md/md_profile.txt/file0.html

1 of 1 4/27/09 3:39 PM

26 / 111

MD: The COMPUTE Function

f u n c t i o n [f , pot , k i n] = compute (np , nd , pos , v e l , mass)

f = z e r o s (nd , np) ;
pot = 0 . 0 ;

f o r i = 1 : np
f o r j = 1 : np

i f (i ˜= j)
r i j (1 : nd) = pos (1 : d , i) − pos (1 : nd , j) ;
d = s q r t (sum (r i j (1 : nd) . ˆ 2)) ;
d2 = min (d , p i / 2 .0) ;
pot = pot + 0 .5 ∗ s i n (d2) ∗ s i n (d2) ;
f (1 : nd , i) = f (1 : nd , i) − r i j (1 : nd) ∗ s i n (2 . 0 ∗ d2) / d ;

end
end

end

k i n = 0 .5 ∗ mass ∗ sum (v e l (1 : nd , 1 : np) . ˆ 2) ;

r e t u r n
end

27 / 111

MD: Can We Use PARFOR?

The compute function fills the force vector f(i) using a for loop.

Iteration i computes the force on particle i, determining the
distance to each particle j, squaring, truncating, taking the sine.

The computation for each particle is “independent”; nothing
computed in one iteration is needed by, nor affects, the
computation in another iteration. We could compute each value on
a separate worker, at the same time.

The MATLAB command parfor will distribute the iterations of this
loop across the available workers.

Tricky question: Could we parallelize the j loop instead?

Tricky question: Could we parallelize both loops?

28 / 111

MD: Speedup

Replacing “for i” by “parfor i”, here is our speedup:

29 / 111

MD: Speedup

Parallel execution gives a huge improvement in this example.

There is some overhead in starting up the parallel process, and in
transferring data to and from the workers each time a parfor loop
is encountered. So we should not simply try to replace every for
loop with parfor.

That’s why we first searched for the function that was using most
of the execution time.

The parfor command is the simplest way to make a parallel
program, but in other lectures we will see some alternatives.

30 / 111

MD: PARFOR is Particular

We were only able to parallelize the loop because the iterations
were independent, that is, the results did not depend on the order
in which the iterations were carried out.

In fact, to use MATLAB’s parfor in this case requires some extra
conditions, which are discussed in the PCT User’s Guide. Briefly,
parfor is usable when vectors and arrays that are modified in the
calculation can be divided up into distinct slices, so that each slice
is only needed for one iteration.

This is a stronger requirement than independence of order!

Trick question: Why was the scalar value POT acceptable?

31 / 111

MD: Reference

The MD example is available at:

http://people.sc.fsu.edu/∼jburkardt/...
m src/md parfor/md parfor.html

This includes MATLAB source codes, script files, and the output.

32 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

33 / 111

PRIME: The Prime Number Example

For our next example, we want a simple computation involving a
loop which we can set up to run for a long time.

We’ll choose a program that determines how many prime numbers
there are between 1 and N.

If we want the program to run longer, we increase the variable N.
Doubling N multiplies the run time roughly by 4.

34 / 111

PRIME: The Sieve of Erastosthenes

35 / 111

PRIME: Program Text

f u n c t i o n t o t a l = pr ime (n)

%% PRIME r e t u r n s the number o f p r imes between 1 and N.

t o t a l = 0 ;

f o r i = 2 : n

pr ime = 1 ;

f o r j = 2 : i − 1
i f (mod (i , j) == 0)

pr ime = 0 ;
end

end

t o t a l = t o t a l + pr ime ;

end

r e t u r n
end

36 / 111

PRIME: We can run this in parallel

We can parallelize the loop whose index is i, replacing for by
parfor. The computations for different values of i are independent.

There is one variable that is not independent of the loops, namely
total. This is simply computing a running sum (a reduction
variable), and we only care about the final result. MATLAB is
smart enough to be able to handle this summation in parallel.

To make the program parallel, we replace for by parfor. That’s all!

37 / 111

PRIME: Local Execution With MATLABPOOL

matlabpool (’open’, ’local’, 4)

n = 50;

while (n <= 500000)
primes = prime_fun (n);
fprintf (1, ’ %8d %8d\n’, n, primes);
n = n * 10;

end

matlabpool (’close’)

38 / 111

PRIME: Timing

PRIME_PARFOR_RUN
Run PRIME_PARFOR with 0, 1, 2, and 4 workers.
Time is measured in seconds.

N 1+0 1+1 1+2 1+4

50 0.067 0.179 0.176 0.278
500 0.008 0.023 0.027 0.032
5000 0.100 0.142 0.097 0.061
50000 7.694 9.811 5.351 2.719

500000 609.764 826.534 432.233 222.284

39 / 111

PRIME: Timing Comments

There are many thoughts that come to mind from these results!

Why does 500 take less time than 50? (It doesn’t, really).

How can ”1+1” take longer than ”1+0”?
(It does, but it’s probably not as bad as it looks!)

This data suggests two conclusions:

Parallelism doesn’t pay until your problem is big enough;

AND

Parallelism doesn’t pay until you have a decent number of workers.

40 / 111

PRIME: Reference

The PRIME example is available at:

http://people.sc.fsu.edu/∼jburkardt/...
m src/prime parfor/prime parfor.html

This includes MATLAB source codes, script files, and the output.

41 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

42 / 111

ODE: A Parameterized Problem

Consider a favorite ordinary differential equation, which describes
the motion of a spring-mass system:

m
d2x

dt2
+ b

dx

dt
+ k x = f (t)

43 / 111

ODE: A Parameterized Problem

Solutions of this equation describe oscillatory behavior; x(t) swings
back and forth, in a pattern determined by the parameters m, b, k ,
f and the initial conditions.

Each choice of parameters defines a solution, and let us suppose
that the quantity of interest is the maximum deflection xmax that
occurs for each solution.

We may wish to investigate the influence of b and k on this
quantity, leaving m fixed and f zero.

So our computation might involve creating a plot of xmax(b, k).

44 / 111

ODE: Each Solution has a Maximum Value

45 / 111

ODE: A Parameterized Problem

Evaluating the implicit function xmax(b, k) requires selecting a
pair of values for the parameters b and k , solving the ODE over a
fixed time range, and determining the maximum value of x that is
observed. Each point in our graph will cost us a significant amount
of work.

On the other hand, it is clear that each evaluation is completely
independent, and can be carried out in parallel. Moreover, if we
use a few shortcuts in MATLAB, the whole operation becomes
quite straightforward!

46 / 111

ODE: The Function

function peakVals = ode_fun_parfor (bVals, kVals)

[kGrid, bGrid] = meshgrid (bVals, kVals);
peakVals = nan (size (kGrid));
m = 5.0;

parfor ij = 1 : numel(kGrid)

[T, Y] = ode45 (@(t,y) ode_system (t, y, m, ...
bGrid(ij), kGrid(ij)), [0, 25], [0, 1]);

peakVals(ij) = max (Y(:,1));

end
return

end 47 / 111

ODE: The Script

If we want to use the batch (indirect or remote execution) option,
then we need to call the function using a script. We’ll call this
“ode script batch.m”

bVals = 0.1 : 0.05 : 5;
kVals = 1.5 : 0.05 : 5;

peakVals = ode_fun_parfor (bVals, kVals);

48 / 111

ODE: Plot the Results

The script ode display.m calls surf for a 3D plot.

Our parameter arrays bVals and kVals are X and Y, while the
computed array peakVals plays the role of Z.

figure;

surf (bVals, kVals, peakVals, ...
’EdgeColor’, ’Interp’, ’FaceColor’, ’Interp’);

title (’Results of ODE Parameter Sweep’)
xlabel (’Damping B’);
ylabel (’Stiffness K’);
zlabel (’Peak Displacement’);
view (50, 30)

49 / 111

ODE: Interactive Execution

Using the interactive option, we set up the input, get the
workers, and call the function:

bVals = 0.1 : 0.05 : 5;
kVals = 1.5 : 0.05 : 5;

matlabpool open local 4

peakVals = ode_fun_parfor (bVals, kVals);

matlabpool close

ode_display <-- Don’t need parallel option here.

50 / 111

ODE: BATCH Execution

Using batch execution, our script computes the data on a
cluster, (here, Virginia Tech’s Ithaca cluster), but we plot that
data back on the desktop:

job = batch (...
’ode_sweep_script’, ...
’matlabpool’, 64, ...
’Configuration’, ’ithaca_2011b’, ...
’FileDependencies’, {’ode_fun_parfor’, ’ode_system’});

wait (job);
load (job); <-- Load data from cluster
ode_display <-- The desktop plots the data that

was computed on the cluster

51 / 111

ODE: A Parameterized Problem

52 / 111

ODE: Reference

The ODE example is available at:

http://people.sc.fsu.edu/∼jburkardt/...
m src/ode sweep parfor/ode sweep parfor.html

This includes MATLAB source codes, script files, and the output.

53 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

54 / 111

SPMD: Single Program, Multiple Data

The SPMD command is like a very simplified version of MPI.
There is one client process, supervising workers who cooperate on
a single program. Each worker (sometimes also called a “lab”) has
an identifier, knows how many workers there are total, and can
determine its behavior based on that ID.

each worker runs on a separate core (ideally);

each worker uses separate workspace;

a common program is used;

workers meet at synchronization points;

the client program can examine or modify data on any worker;

any two workers can communicate directly via messages.

55 / 111

SPMD: Getting Workers

Interactively, we get workers with matlabpool:

matlabpool open local 4
results = myfunc (args);

or use batch to run in the background on your desktop:

job = batch (’myscript’, ...
’matlabpool’, 4, ...
’Configuration’, ’local’)

or send the batch command to a cluster such as Virginia Tech’s
Ithaca:

job = batch (’myscript’,
’matlabpool’, 31, ...
’Configuration’, ’ithaca_2011b’)

56 / 111

SPMD: The SPMD Environment

MATLAB sets up one special worker called the client.

MATLAB sets up the requested number of workers, each with a
copy of the program. Each worker “knows” it’s a worker, and has
access to two special functions:

numlabs(), the number of workers;

labindex(), a unique identifier between 1 and numlabs().

The empty parentheses are usually dropped, but remember, these
are functions, not variables!

If the client calls these functions, they both return the value 1!
That’s because when the client is running, the workers are not.
The client could determine the number of workers available by

n = matlabpool (’size’)

57 / 111

SPMD: The SPMD Command

The client and the workers share a single program in which some
commands are delimited within blocks opening with spmd and
closing with end.

The client executes commands up to the first spmd block, when it
pauses. The workers execute the code in the block. Once they
finish, the client resumes execution.

The client and each worker have separate workspaces, but it is
possible for them to communicate and trade information.

The value of variables defined in the “client program” can be
referenced by the workers, but not changed.

Variables defined by the workers can be referenced or changed
by the client, but a special syntax is used to do this.

58 / 111

SPMD: How SPMD Workspaces Are Handled

Client Worker 1 Worker 2
a b e | c d f | c d f

a = 3; 3 - - | - - - | - - -
b = 4; 3 4 - | - - - | - - -
spmd | |

c = labindex(); 3 4 - | 1 - - | 2 - -
d = c + a; 3 4 - | 1 4 - | 2 5 -

end | |
e = a + d{1}; 3 4 7 | 1 4 - | 2 5 -
c{2} = 5; 3 4 7 | 1 4 - | 5 6 -
spmd | |
f = c * b; 3 4 7 | 1 4 4 | 5 6 20

end

59 / 111

SPMD: When is Workspace Preserved?

A program can contain several spmd blocks. When execution of
one block is completed, the workers pause, but they do not
disappear and their workspace remains intact. A variable set in one
spmd block will still have that value if another spmd block is
encountered.

You can imagine the client and workers simply alternate execution.

In MATLAB, variables defined in a function “disappear” once the
function is exited. The same thing is true, in the same way, for a
MATLAB program that calls a function containing spmd blocks.
While inside the function, worker data is preserved from one block
to another, but when the function is completed, the worker data
defined there disappears, just as regular MATLAB data does.

60 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

61 / 111

QUAD SPMD: The Trapezoid Rule

Area of one trapezoid = average height * base.

62 / 111

QUAD SPMD: The Trapezoid Rule

To estimate the area under a curve using one trapezoid, we write∫ b

a
f (x) dx ≈ (

1

2
f (a) +

1

2
f (b)) ∗ (b − a)

We can improve this estimate by using n − 1 trapezoids defined by
equally spaced points x1 through xn:∫ b

a
f (x) dx ≈ (

1

2
f (x1) + f (x2) + ... + f (xn−1) +

1

2
f (xn)) ∗ b − a

n − 1

If we have several workers available, then each one can get a part
of the interval to work on, and compute a trapezoid estimate
there. By adding the estimates, we get an approximate to the
integral of the function over the whole interval.

63 / 111

QUAD SPMD: Use the ID to assign work

To simplify things, we’ll assume our original interval is [0,1], and
we’ll let each worker define a and b to mean the ends of its
subinterval. If we have 4 workers, then worker number 3 will be
assigned [1

2 , 3
4].

To start our program, each worker figures out its interval:

fprintf (1, ’ Set up the integration limits:\n’);

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;

end

64 / 111

QUAD SPMD: One Name References Several Values

Each worker is a program with its own workspace. It can “see” the
variables on the client, but it usually doesn’t know or care what is
going on on the other workers.

Each worker defines a and b but stores different values there.

The client can “see” the workspace of all the workers. Since there
are multiple values using the same name, the client must specify
the index of the worker whose value it is interested in. Thus a{1}
is how the client refers to the variable a on worker 1. The client
can read or write this value.

MATLAB’s name for this kind of variable, indexed using curly
brackets, is a composite variable. It is very similar to a cell array.

The workers “see” the client’s variables and inherit a copy
of their values, but cannot change the client’s data.

65 / 111

QUAD SPMD: Dealing with Composite Variables

So in QUAD, each worker could print a and b:

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;
fprintf (1, ’ A = %f, B = %f\n’, a, b);

end

———— or the client could print them all ————

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;

end
for i = 1 : 4 <-- "numlabs" wouldn’t work here!
fprintf (1, ’ A = %f, B = %f\n’, a{i}, b{i});

end

66 / 111

QUAD SPMD: The Solution in 4 Parts

Each worker can now carry out its trapezoid computation:

spmd
x = linspace (a, b, n);
fx = f (x); <-- Assume f handles vector input.
quad_part = (b - a) / (n - 1) *

* (0.5 * fx(1) + sum(fx(2:n-1)) + 0.5 * fx(n));
fprintf (1, ’ Partial approx %f\n’, quad_part);

end

with result:

2 Partial approx 0.874676
4 Partial approx 0.567588
1 Partial approx 0.979915
3 Partial approx 0.719414

67 / 111

QUAD SPMD: Combining Partial Results

We really want one answer, the sum of all these approximations.

One way has the client gather the answers, and sum them:

quad = sum (quad_part{1:4});
fprintf (1, ’ Approximation %f\n’, quad);

with result:

Approximation 3.14159265

68 / 111

QUAD SPMD: Source Code for QUAD FUN

f u n c t i o n v a l u e = quad fun (n)

f p r i n t f (1 , ’ Compute l i m i t s \n ’) ;
spmd

a = (l a b i n d e x − 1) / numlabs ;
b = l a b i n d e x / numlabs ;
f p r i n t f (1 , ’ Lab %d works on [%f ,% f] .\ n ’ , l a b i nd e x , a , b) ;

end

f p r i n t f (1 , ’ Each l a b e s t ima t e s pa r t o f the i n t e g r a l .\n ’) ;

spmd
x = l i n s p a c e (a , b , n) ;
f x = f (x) ;
quad pa r t = (b − a) ∗ (f x (1) + 2 ∗ sum (f x (2 : n−1)) + f x (n)) . . .

/ 2 . 0 / (n − 1) ;
f p r i n t f (1 , ’ Approx %f\n ’ , quad pa r t) ;

end

quad = sum (quad pa r t {:}) ;
f p r i n t f (1 , ’ Approx imat ion = %f\n ’ , quad)

r e t u r n
end

69 / 111

QUAD SPMD: Reference

The QUAD SPMD example is available at:

http://people.sc.fsu.edu/∼jburkardt/...
m src/quad spmd/quad spmd.html

This includes MATLAB source codes, script files, and the output.

70 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

71 / 111

DISTANCE: A Classic Problem

Anyone doing highway traveling is familiar with the difficulty of
determining the shortest route between points A and B. From a
map, it’s easy to see the distance between neighboring cities, but
often the best route takes a lot of searching.

A graph is the abstract version of a network of cities. Some cities
are connected, and we know the length of the roads between them.
The cities are often called nodes or vertices and the roads are links
or edges. Whereas cities are described by maps, we will describe
our abstract graphs using a one-hop distance matrix, which is
simply the length of the direct road between two cities, if it exists.

72 / 111

DISTANCE: An Intercity Map

Here is an example map with the intercity highway distances:

73 / 111

DISTANCE: An Intercity One-Hop Distance Matrix

Supposing we live in city A, our question is, “What is the shortest
possible distance from A to each city on the map?”

Instead of a map, we use a “one-hop distance” matrix OHD[I][J]:

A B C D E F

A 0 40 15 ∞ ∞ ∞
B 40 0 20 10 25 6
C 15 20 0 100 ∞ ∞
D ∞ 10 100 0 ∞ ∞
E ∞ 25 ∞ ∞ 0 8
F ∞ 6 ∞ ∞ 8 0

where ∞ means there’s no direct route between the two cities.

74 / 111

DISTANCE: The Shortest Distance

The map makes it clear that it’s possible to reach every city from
city A; we just have to take trips that are longer than “one hop”.
In fact, in this crazy world, it might also be possible to reach a city
faster by taking two hops rather than the direct route. (Look at
how to get from city A to city B, for instance!)

We want to use the information in the map or the matrix to come
up with a distance vector, that is, a record of the shortest possible
distance from city A to all other cities.

A method for doing this is known as Dijkstra’s algorithm.

75 / 111

DISTANCE: Dijkstra’s algorithm

Use two arrays, connected and distance.
Initialize connected to false except for A.
Initialize distance to the one-hop distance from A to each city.
Do N-1 iterations, to connect one more city at a time:

1 Find I, the unconnected city with minimum distance[I];

2 Connect I;

3 For each unconnected city J, see if the trip from A to I to J is
shorter than the current distance[J].

The check we make in step 3 is:
distance[J] = min (distance[J], distance[I] + ohd[I][J])

76 / 111

DISTANCE: A Sequential Code

connected(1) = 1;
connected(2:n) = 0;

distance(1:n) = ohd(1,1:n);

for step = 2 : n

[md, mv] = find_nearest (n, distance, connected);

connected(mv) = 1;

distance = update_distance (nv, mv, connected, ...
ohd, distance);

end
77 / 111

DISTANCE: Parallelization Concerns

Although the program includes a loop, it is not a parallelizable
loop! Each iteration relies on the results of the previous one.

However, let us assume we have a very large number of cities to
deal with. Two operations are expensive and parallelizable:

find nearest searches all nodes for the nearest unconnected
one;

update distance checks the distance of each unconnected
node to see if it can be reduced.

These operations can be parallelized by using SPMD statements in
which each worker carries out the operation for a subset of the
nodes. The client will need to be careful to properly combine the
results from these operations!

78 / 111

DISTANCE: Startup

We assign to each worker the node subset S through E.
We will try to preface worker data by “my ”.

spmd
nth = numlabs ();
my_s = floor ((labindex () * n) / nth);
my_e = floor (((labindex () + 1) * n) / nth) - 1;

end

79 / 111

DISTANCE: FIND NEAREST

Each worker uses find nearest to search its range of cities for
the nearest unconnected one.

But now each worker returns an answer. The answer we want is the
node that corresponds to the smallest distance returned by all the
workers, and that means the client must make this determination.

80 / 111

DISTANCE: FIND NEAREST

lab count = nth{1};

for step = 2 : n
spmd

[my_md, my_mv] = find_nearest (my_s, my_e, n, ...
distance, connected);

end
md = Inf;
mv = -1;
for i = 1 : lab_count
if (my_md{i} < md)
md = my_md{i};
mv = my_mv{i};

end
end
distance(mv) = md;

81 / 111

DISTANCE: UPDATE DISTANCE

We have found the nearest unconnected city.

We need to connect it.

Now that we know the minimum distance to this city, we need to
check whether this decreases our estimated minimum distances to
other cities.

82 / 111

DISTANCE: UPDATE DISTANCE

connected(mv) = 1;

spmd
my_distance = update_distance (my_s, my_e, n, mv, ...

connected, ohd, distance);
end

distance = [];
for i = 1 : lab_count
distance = [distance, my_distance{:}];

end

end

83 / 111

DISTANCE: Comments

This example shows SPMD workers interacting with the client.

It’s easy to divide up the work here. The difficulties come when
the workers return their partial results, and the client must
assemble them into the desired answer.

In one case, the client must find the minimum from a small
number of suggested values.

In the second, the client must rebuild the distance array from the
individual pieces updated by the workers.

Workers are not allowed to modify client data. This keeps the
client data from being corrupted, at the cost of requiring the client
to manage all such changes.

84 / 111

DISTANCE: Reference

The DISTANCE example is available at:

http://people.sc.fsu.edu/∼jburkardt/...
m src/dijkstra spmd/dijkstra spmd.html

This includes MATLAB source codes, script files, and the output.

85 / 111

MATLAB Parallel Computing

Introduction

QUAD Example

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

86 / 111

CONTRAST: Image → Contrast Enhancement → Image2

%
% Get 4 SPMD worke r s .
%

mat labpoo l open l o c a l 4
%
% Read an image .
%

x = imread (’ s u r f s u p . t i f ’) ;
%
% Since the image i s b l a c k and white , i t w i l l be d i s t r i b u t e d by columns .
%

xd = d i s t r i b u t e d (x) ;
%
% Have each worker enhance the c o n t r a s t i n i t s p o r t i o n o f the p i c t u r e .
%

spmd
x l = ge tLo c a lPa r t (xd) ;
x l = n l f i l t e r (x l , [3 , 3] , @ad j u s tCon t r a s t) ;
x l = u i n t 8 (x l) ;

end
%
% We are work ing wi th a b l a c k and wh i t e image , so we can s imp l y
% conca t ena t e the s ubma t r i c e s to ge t the whole o b j e c t .
%

xf spmd = [x l {:}] ;

mat l abpoo l c l o s e

87 / 111

CONTRAST: Image → Contrast Enhancement → Image2

When a filtering operation is done on the client, we get picture 2.
The same operation, divided among 4 workers, gives us picture 3.
What went wrong?

88 / 111

CONTRAST: Image → Contrast Enhancement → Image2

Each pixel has had its contrast enhanced. That is, we compute
the average over a 3x3 neighborhood, and then increase the
difference between the center pixel and this average. Doing this for
each pixel sharpens the contrast.

+-----+-----+-----+
| P11 | P12 | P13 |
+-----+-----+-----+
| P21 | P22 | P23 |
+-----+-----+-----+
| P31 | P32 | P33 |
+-----+-----+-----+

P22 <- C * P22 + (1 - C) * Average

89 / 111

CONTRAST: Image → Contrast Enhancement → Image2

When the image is divided by columns among the workers,
artificial internal boundaries are created. The algorithm turns any
pixel lying along the boundary to white. (The same thing
happened on the client, but we didn’t notice!)

Worker 1 Worker 2
+-----+-----+-----+ +-----+-----+-----+ +----
| P11 | P12 | P13 | | P14 | P15 | P16 | | P17
+-----+-----+-----+ +-----+-----+-----+ +----
| P21 | P22 | P23 | | P24 | P25 | P26 | | P27
+-----+-----+-----+ +-----+-----+-----+ +----
| P31 | P32 | P33 | | P34 | P35 | P36 | | P37
+-----+-----+-----+ +-----+-----+-----+ +----
| P41 | P42 | P43 | | P44 | P45 | P46 | | P47
+-----+-----+-----+ +-----+-----+-----+ +----

Dividing up the data has created undesirable artifacts!
90 / 111

CONTRAST: Image → Contrast Enhancement → Image2

The result is spurious lines on the processed image.

91 / 111

CONTRAST: Reference

The CONTRAST example is available at:

http://people.sc.fsu.edu/∼jburkardt/...
m src/contrast spmd/contrast spmd.html

This includes MATLAB source codes, script files, and the output.

92 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

93 / 111

CONTRAST2: Workers Need to Communicate

The spurious lines would disappear if each worker could just be
allowed to peek at the last column of data from the previous
worker, and the first column of data from the next worker.

Just as in MPI, MATLAB includes commands that allow workers
to exchange data.

The command we would like to use is labSendReceive() which
controls the simultaneous transmission of data from all the workers.

data_received = labSendReceive (to, from, data_sent);

94 / 111

CONTRAST2: Who Do I Want to Communicate With?

spmd

xl = getLocalPart (xd);

if (labindex ~= 1)
previous = labindex - 1;

else
previous = numlabs;

end

if (labindex ~= numlabs)
next = labindex + 1;

else
next = 1;

end
95 / 111

CONTRAST2: First Column Left, Last Column Right

column = labSendReceive (previous, next, xl(:,1));

if (labindex < numlabs)
xl = [xl, column];

end

column = labSendReceive (next, previous, xl(:,end));

if (1 < labindex)
xl = [column, xl];

end

96 / 111

CONTRAST2: Filter, then Discard Extra Columns

xl = nlfilter (xl, [3,3], @enhance_contrast);

if (labindex < numlabs)
xl = xl(:,1:end-1);

end

if (1 < labindex)
xl = xl(:,2:end);

end

xl = uint8 (xl);

end

97 / 111

CONTRAST2: Image → Enhancement → Image2

Four SPMD workers operated on columns of this image.
Communication was allowed using labSendReceive.

98 / 111

CONTRAST2: The Heat Equation

Image processing was used to illustrate this example, but consider
that the contrast enhancement operation updates values by
comparing them to their neighbors.

The same operation applies in the heat equation, except that
high contrasts (hot spots) tend to average out (cool off)!

In a simple explicit method for a time dependent 2D heat
equation, we repeatedly update each value by combining it with its
north, south, east and west neighbors.

So we could do the same kind of parallel computation, dividing the
geometry into strip, and avoiding artificial boundary effects by
having neighboring SPMD workers exchange “boundary” data.

99 / 111

CONTRAST2: The Heat Equation

The ”east” neighbor lies in the neighboring processor, so its value
must be received by message in order for the computation to
proceed.

100 / 111

CONTRAST2: The Heat Equation

So now it’s time to modify the image processing code to solve the
heat equation.

But just for fun, let’s use our black and white image as the initial
condition! Black is cold, white is hot.

In contrast to the contrast example, the heat equation tends to
smooth out differences. So let’s watch our happy beach memories
fade away ... in parallel ... and with no artificial boundary seams.

101 / 111

CONTRAST2: The Heat Equation, Step 0

102 / 111

CONTRAST2: The Heat Equation, Step 10

103 / 111

CONTRAST2: The Heat Equation, Step 20

104 / 111

CONTRAST2: The Heat Equation, Step 40

105 / 111

CONTRAST2: The Heat Equation, Step 80

106 / 111

CONTRAST2: Reference

The CONTRAST2 example is available at:

http://people.sc.fsu.edu/∼jburkardt/...
m src/contrast2 spmd/contrast2 spmd.html

This includes MATLAB source codes, script files, and the output.

107 / 111

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

108 / 111

Conclusion: A Parallel Version of MATLAB

MATLAB’s Parallel Computing Toolbox allows programmers to
take advantage of parallel architecture (multiple cores, cluster
computers) and parallel programming techniques, to solve big
problems efficiently.

MATLAB controls the programming environment; that makes it
possible to send jobs to a remote computer system without the
pain of logging in, transferring files, running the program and
bringing back the results. MATLAB automates all this for you.

Moreover, when you use the parfor command, MATLAB
automatically determines from the form of your loop which
variables are to be shared, or private, or are reduction variables; in
OpenMP you must recognize and declare all these facts yourself.

109 / 111

CONCLUSION: Thanks to my Host!

110 / 111

CONCLUSION: Where is it?

MATLAB Parallel Computing Toolbox User’s Guide 5.2,
available on the MathWorks website;

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

http://people.sc.fsu.edu/∼jburkardt/...
presentations/yonsei matlab 2011.pdf (these slides)
http://people.sc.fsu.edu/∼jburkardt/m src/m src.html

quad parfor
md parfor
prime parfor
ode sweep parfor
quad spmd
dijkstra spmd
contrast spmd
contrast2 spmd

111 / 111

