
Parallel MATLAB at FSU:
PARFOR and SPMD

John Burkardt
Department of Scientific Computing

Florida State University
..........

1:30 - 2:30
Thursday, 31 March 2011
499 Dirac Science Library

..........
http://people.sc.fsu.edu/∼jburkardt/presentations/. . .

matlab parallel 2011 fsu.pdf

1 / 75

MATLAB Parallel Computing

Introduction

PARFOR: a Parallel FOR Loop

QUAD Example (PARFOR)

ODE Example (PARFOR)

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example (SPMD)

Conclusion

2 / 75

INTRO: Why Parallel Programming?

Why are we talking about parallel programming in the first place?

Many people have no need for parallel programming.
However, that assumes that they are:

satisfied with the speed of their programs (forever!);

not interested in solving problems with larger data sets (ever!);

not interested in rewriting their programs.

At one time, I might also have added:

not willing to buy special parallel hardware,

but most new desktops and laptops contain dual or quadcore
processors, it’s not hard to find 12 cores systems, and the number
of cores will increase in the future.

3 / 75

INTRO: MultiCore Requires Parallel Programming

At one time, researchers needing faster execution for bigger
problems simply bought the latest, fastest (sequential) processor.

Supercomputers of the past, such as the legendary series of Cray
computers, were simply enormously expensive machines for feeding
and cleaning up after a single really fast and powerful processor.

But the speed of a single processor has reached a permanent
ceiling of 4 GigaHertz and will never get faster.

4 / 75

INTRO: MultiCore Requires Parallel Programming

To ensure a future for High Performance Computing:

processor manufacturers have developed multicore systems;

network companies created fast interprocessor connections;

research universities have assembled computer clusters
capable of running a single program;

language committees have developed OpenMP and MPI for C
and FORTRAN applications;

researchers have developed new parallel algorithms;

the MathWorks has developed parallel options in MATLAB.

5 / 75

INTRO: Parallel MATLAB

MATLAB’s Parallel Computing Toolbox or PCT runs on a user’s
desktop, and can take advantage of up to 8 cores there.

MATLAB’s Distributed Computing Server controls parallel
execution of a program on a cluster with tens or hundreds of cores.

The FSU HPC facility has a cluster of 526 compute nodes or
”processors” controlling 2688 cores; the current license for
MATLAB allows a program to run on up to 16 cores simultaneously
there. (This limit could be increased if demand justified it.)

6 / 75

INTRO: Who Can Access Parallel MATLAB?

Anyone can do simple experiments with parallel MATLAB on
their own desktop machine (if they have the Parallel Computing
Toolbox);

They can do similar experiments on the Scientific Computing
Department’s hallway machines, although these only have two
cores.

Any FSU researcher can request an account on the FSU HPC
system, and hence run parallel MATLAB on 16 cores.

7 / 75

INTRO: How Does One Run Parallel MATLAB?

To run parallel MATLAB on your desktop involves:

setting up the run;

supplying a program which includes parallel commands.

and in some cases, both these steps are very simple.

As you can imagine, running on the cluster is a little more involved.

You set up the run by calling a command that submits your job to
a queue. For short jobs, you might wait for the results, but for
longer jobs, you actually log out and come back later to get your
results.

This is one reason why it’s helpful to do initial small experiments
on a desktop machine.

8 / 75

INTRO: PARFOR and SPMD

In this talk, I will outline:

two ways to create a parallel program in MATLAB

the process of running a parallel program on desktop machine;

how to run the same program on the FSU HPC cluster.

what kinds of speedup (or slowdowns!) you can expect.

9 / 75

INTRO: PARFOR and SPMD

We will look at two ways to write a parallel MATLAB program:

suitable for loops can be made into parfor loops;

the spmd statement can define cooperating synchronized
processing;

parfor approach is a simple way of making FOR loops run in
parallel, and is similar to OpenMP.

spmd allows you to design almost any kind of parallel
computation; it is powerful, but requires rethinking the program
and data. It is similar to MPI.

10 / 75

MATLAB Parallel Computing

Introduction

PARFOR: a Parallel FOR Loop

QUAD Example (PARFOR)

ODE Example (PARFOR)

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example (SPMD)

Conclusion

11 / 75

PARFOR: a Parallel FOR Command

parfor is MATLAB’s simplest parallel programming command.

parfor replaces the for command in cases where a loop can be
parallelized - (and what does that mean?)

The loop iterations are divided up among different “workers”,
executed in an unknown order, and the results gathered back to
the main copy of MATLAB.

We think of a for loop as a small item of a program. It could,
however, be one of the outermost statements, as in some kind of
Monte Carlo calculation.

12 / 75

PARFOR: Computational Limitations

Because parallel loop iterations are carried out in an unknown
order, all required data must exist before the loop begins.

An iteration cannot rely on results from a previous iteration.

x(1) = 0.0;
for i = 2 : n
x(i) = x(i-1) + dt * f (x(i), t);

end

13 / 75

PARFOR: Data Limitations

If any arrays are referenced by the loop iteration index, then this
must be done in such a way that the array can be “sliced”, that is,
each reference array entry can be assigned to a unique loop
iteration.

Such arrays are divided up among the workers, operated on, and
put together afterwards.

parfor i = 2 : n
a(i,2) = b(i+1) + a(i,2) * func (c(i-3)) + d(j);

end

So iteration 17, for example, gets A(17,2), B(18), C(14), and
nobody else has that data during the loop.

14 / 75

PARFOR: Data Limitations

MATLAB’s slicing requirement for parfor loops makes some
computations impossible or awkward.

The loop may be logically parallelizable; it’s just that MATLAB’s
parallel feature cannot divide the data in the way it wants.

The following loop wants to approximate the second derivative
while invoking parfor to do the computation in parallel:

parfor i = 2 : n - 1
d2(i) = (a(i-1) - 2 * a(i) + a(i+1)) / (2 * dx);

end

Because the array a() is indexed by i-1, i, and i+1, the array a
cannot be sliced, and the parfor becomes illegal!

15 / 75

PARFOR: Desktop Execution

Let’s assume that we have a MATLAB code that uses parfor in
a legal way.

Let’s also assume that the code is written as a MATLAB function,
of the form

function [y, z] = calculator (n, x)

and stored as the file calculator.m.

How can we execute these commands in parallel?

16 / 75

PARFOR: Interactive Execution

We have to start up an interactive MATLAB session, of course.

If we are interested in parallel execution, we must now request
workers, using the matlabpool command. A typical form of this
command is

matlabpool open local 4
or
matlabpool (’open’, ’local’, 4)

The word local indicates that we are planning to run on the local
machine, using the cores on this machine as the workers.

The value ”4” is the number of workers you are asking for. It can
be up to 8 on a local machine (but your “local” configuration may
need to be adjusted from its default limit.)

17 / 75

PARFOR: Interactive Execution

A MATLAB session in which parallel programming is involved
looks the same as a regular session. But whenever a parfor
command is encountered, the parallel workers are called upon.

n = 10000;
x = 2.5;

matlabpool open local 4 <-- Only needed once
[y, z] = calculator (n, x);
...any further MATLAB commands you like ...

matlabpool close <-- How to release the workers.

You only need to close the matlabpool if you want to issue another
open command with more workers.

18 / 75

MATLAB Parallel Computing

Introduction

PARFOR: a Parallel FOR Loop

QUAD Example (PARFOR)

ODE Example (PARFOR)

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example (SPMD)

Conclusion

19 / 75

QUAD: Estimating an Integral

20 / 75

QUAD: The QUAD FUN Function

function q = quad_fun (n, a, b)

q = 0.0;
dx = (b - a) / (n - 1);

for i = 1 : n
x = a + (i - 1) * dx;
fx = x^3 + sin (x);
q = q + fx;

end

q = q * (b - a) / n;

return
end

21 / 75

QUAD: Comments

The function quad fun estimates the integral of a particular
function over the interval [a, b].

It does this by evaluating the function at n evenly spaced points,
multiplying each value by the weight (b − a)/n.

These quantities can be regarded as the areas of little rectangles
that lie under the curve, and their sum is an estimate for the total
area under the curve from a to b.

We could compute these subareas in any order we want.

We could even compute the subareas at the same time, assuming
there is some method to save the partial results and add them
together in an organized way.

22 / 75

QUAD: The Parallel QUAD FUN Function

function q = quad_fun (n, a, b)

q = 0.0;
dx = (b - a) / (n - 1);

parfor i = 1 : n
x = a + (i - 1) * dx;
fx = x^3 + sin (x);
q = q + fx;

end

q = q * (b - a) / n;

return
end

23 / 75

QUAD: Comments

The function begins as one thread of execution, the client.

At the parfor, the client pauses, and the workers start up.

Each worker is assigned some iterations of the loop, and given any
necessary input data. It computes its results which are returned to
the client.

Once the loop is completed, the client resumes control of the
execution.

MATLAB ensures that the results are the same whether the
program is executed sequentially, or with the help of workers.

The user can wait until execution time to specify how many
workers are actually available.

24 / 75

QUAD: Reduction Operations

I stated that a loop cannot be parallelized if the results of one
iteration are needed in order for the next iteration to carry on.

But this seems to be violated by the statement q = q + fx.

To compute the value of q on the 10th iteration, don’t we need
the value from the 9th iteration?

MATLAB can see that q is not used in the loop except to
accumulate a sum. It recognizes this as a reduction operation, and
automatically parallelizes that calculation.

Such admissible reduction operations include iterated sums,
products, logical sums and products, maximum and minimum
calculations.

25 / 75

MATLAB Parallel Computing

Introduction

PARFOR: a Parallel FOR Loop

QUAD Example (PARFOR)

ODE Example (PARFOR)

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example (SPMD)

Conclusion

26 / 75

ODE: A Parameterized Problem

Consider a favorite ordinary differential equation, which describes
the motion of a spring-mass system:

m
d2x

dt2
+ b

dx

dt
+ k x = f (t)

27 / 75

ODE: A Parameterized Problem

Solutions of this equation describe oscillatory behavior; x(t)
swings back and forth, in a pattern determined by the parameters
m, b, k , f and the initial conditions.

Each choice of parameters defines a solution, and let us suppose
that the quantity of interest is the maximum deflection xmax that
occurs for each solution.

We may wish to investigate the influence of b and k on this
quantity, leaving m fixed and f zero.

So our computation might involve creating a plot of xmax(b, k),
and we could express this as a parallelizable loop over a list of pairs
of b and k values.

28 / 75

ODE: Each Solution has a Maximum Value

29 / 75

ODE: A Parameterized Problem

Evaluating the implicit function xmax(b, k) requires selecting a
pair of values for the parameters b and k , solving the ODE over a
fixed time range, and determining the maximum value of x that is
observed. Each point in our graph will cost us a significant amount
of work.

On the other hand, it is clear that each evaluation is completely
independent, and can be carried out in parallel. Moreover, if we
use a few shortcuts in MATLAB, the whole operation becomes
quite straightforward!

30 / 75

ODE: ODE FUN Computes the Peak Values

function peakVals = ode_fun (bVals, kVals)

[kGrid, bGrid] = meshgrid (bVals, kVals);
peakVals = nan (size (kGrid));
m = 5.0;

parfor ij = 1 : numel(kGrid)

[T, Y] = ode45 (@(t,y) ode_system (t, y, m, ...
bGrid(ij), kGrid(ij)), [0, 25], [0, 1]);

peakVals(ij) = max (Y(:,1));

end
return

end 31 / 75

ODE: ODE DISPLAY Plots the Results

The function ode display.m calls surf for a 3D plot, where
bVals and kVals are X and Y, and peakVals plays the role of Z.

function ode_display (bVals, kVals, peakVals)

figure (1);

surf (bVals, kVals, peakVals, ...
’EdgeColor’, ’Interp’, ’FaceColor’, ’Interp’);

title (’Results of ODE Parameter Sweep’)
xlabel (’Damping B’);
ylabel (’Stiffness K’);
zlabel (’Peak Displacement’);
view (50, 30)

32 / 75

ODE: Interactive Execution

To run the program on our desktop, we set up the input, get the
workers, and call the functions:

bVals = 0.1 : 0.05 : 5;
kVals = 1.5 : 0.05 : 5;

matlabpool open local 4

peakVals = ode_fun (bVals, kVals); <-- parallel

ode_display (bVals, kVals, peakVals);

33 / 75

ODE: A Parameterized Problem

34 / 75

ODE: FSU HPC Cluster Execution

Now we will discuss the issue of running a parallel MATLAB
program on the FSU HPC cluster, using the ODE program as our
example.

It should be clear that we need to run ode fun on the cluster, in
order to get parallelism, but that we almost certainly don’t want to
run the ode display program that way. We want to look at the
results, zoom in on them, interactively explore, and so on.

And that means that somehow we have to get the ode fun
program and its input into the cluster, and then retrieve the results
for interactive viewing on the cluster front-ends, or on our desktop.

35 / 75

ODE: fsuClusterMatlab

On the HPC cluster, we invoke the fsuClusterMatlab command:

bVals = 0.1 : 0.05 : 5;
kVals = 1.5 : 0.05 : 5;
results = fsuClusterMatlab([],[],’p’,’w’,4,...
@ode_fun, { bVals, kVals })

[] allows us to specify an output directory;

[] allows us to specify queue arguments;

’p’ means this is a pool or parfor job;

’w’ means our MATLAB session waits til the job has run;

4 is the number of workers we request;

@ode fun names the function to evaluate;

bVals, kVals are the input to ode fun.

36 / 75

ODE: The RESULTS of fsuClusterMatlab

fsuClusterMatlab is a function, and it returns the output from
ode fun as a cell array which we have called results.

You need to copy items out of results in order to process them.

The first output argument is retrieved by copying results{1} .

For our ode fun function, that’s all we will need:

peakVals = results{1}; <-- Notice the curly brackets!

37 / 75

ODE: fsuClusterMatlab

For an interactive session, we’d log in to the HPC front end, and
move to the directory containing ode fun and ode system.

matlab

bVals = 0.1 : 0.05 : 5;
kVals = 1.5 : 0.05 : 5;
results = fsuClusterMatlab([],[],’p’,’w’,4,...

@ode_fun, { bVals, kVals })

Wait while program is queued, then executes on cluster.

peakvals = results{1};
ode_display (bVals, kVals, peakVals);

exit

38 / 75

ODE: fsuClusterMatlab with NOWAIT option

But you don’t have to wait. You can send your job, log out, and
return to your directory later. The details of this are a little gory!

1 Jobs are numbered. My last job is called Job8.

2 cat Job8.state.mat prints finished if the job is complete;

3 Now start MATLAB:

matlab
cd Job8
load (’Task1.out.mat’)
peakvals = argsout{1}; <-- what we called “results”
bVals = 0.1 : 0.05 : 5;
kVals = 1.5 : 0.05 : 5;
ode_display (bVals, kVals, peakVals);

exit

39 / 75

MATLAB Parallel Computing

Introduction

PARFOR: a Parallel FOR Loop

QUAD Example (PARFOR)

ODE Example (PARFOR)

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example (SPMD)

Conclusion

40 / 75

SPMD: Single Program, Multiple Data

The SPMD command is like a very simplified version of MPI.
There is one client process, supervising workers who cooperate on
a single program. Each worker (sometimes also called a “lab”) has
an identifier, knows how many workers there are total, and can
determine its behavior based on that ID.

each worker runs on a separate core (ideally);

each worker uses separate workspace;

a common program is used;

workers meet at synchronization points;

the client program can examine or modify data on any worker;

any two workers can communicate directly via messages.

41 / 75

SPMD: The SPMD Environment

MATLAB sets up one special worker called the client.

MATLAB sets up the requested number of workers, each with a
copy of the program. Each worker “knows” it’s a worker, and has
access to two special functions:

numlabs(), the number of workers;

labindex(), a unique identifier between 1 and numlabs().

The empty parentheses are usually dropped, but remember, these
are functions, not variables!

If the client calls these functions, they both return the value 1!
That’s because when the client is running, the workers are not.
The client could determine the number of workers available by

n = matlabpool (’size’)

42 / 75

SPMD: The SPMD Command

The client and the workers share a single program in which some
commands are delimited within blocks opening with spmd and
closing with end.

The client executes commands up to the first spmd block, when it
pauses. The workers execute the code in the block. Once they
finish, the client resumes execution.

The client and each worker have separate workspaces, but it is
possible for them to communicate and trade information.

The value of variables defined in the “client program” can be
referenced by the workers, but not changed.

Variables defined by the workers can be referenced or changed by
the client, but a special syntax is used to do this.

43 / 75

SPMD: How SPMD Workspaces Are Handled

Client Worker 1 Worker 2
a b e | c d f | c d f

a = 3; 3 - - | - - - | - - -
b = 4; 3 4 - | - - - | - - -
spmd | |
c = labindex(); 3 4 - | 1 - - | 2 - -
d = c + a; 3 4 - | 1 4 - | 2 5 -

end | |
e = a + d{1}; 3 4 7 | 1 4 - | 2 5 -
c{2} = 5; 3 4 7 | 1 4 - | 5 6 -
spmd | |
f = c * b; 3 4 7 | 1 4 4 | 5 6 20

end

44 / 75

SPMD: When is Workspace Preserved?

A program can contain several spmd blocks. When execution of
one block is completed, the workers pause, but they do not
disappear and their workspace remains intact. A variable set in one
spmd block will still have that value if another spmd block is
encountered.

You can imagine the client and workers simply alternate execution.

In MATLAB, variables defined in a function “disappear” once the
function is exited. The same thing is true, in the same way, for a
MATLAB program that calls a function containing spmd blocks.
While inside the function, worker data is preserved from one block
to another, but when the function is completed, the worker data
defined there disappears, just as the regular MATLAB data does.

45 / 75

MATLAB Parallel Computing

Introduction

PARFOR: a Parallel FOR Loop

QUAD Example (PARFOR)

ODE Example (PARFOR)

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example (SPMD)

Conclusion

46 / 75

QUAD: The Trapezoid Rule

Area of one trapezoid = average height * base.

47 / 75

QUAD: The Trapezoid Rule

To estimate the area under a curve using one trapezoid, we write∫ b

a
f (x) dx ≈ (

1

2
f (a) +

1

2
f (b)) ∗ (b − a)

We can improve this estimate by using n − 1 trapezoids defined by
equally spaced points x1 through xn:∫ b

a
f (x) dx ≈ (

1

2
f (x1) + f (x2) + ... + f (xn−1) +

1

2
f (xn)) ∗ b − a

n − 1

If we have several workers available, then each one can get a part
of the interval to work on, and compute a trapezoid estimate
there. By adding the estimates, we get an approximate to the
integral of the function over the whole interval.

48 / 75

QUAD: Use the ID to assign work

To simplify things, we’ll assume our original interval is [0,1], and
we’ll let each worker define a and b to mean the ends of its
subinterval. If we have 4 workers, then worker number 3 will be
assigned [1

2 , 3
4].

To start our program, each worker figures out its interval:

fprintf (1, ’ Set up the integration limits:\n’);

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;

end

49 / 75

QUAD: One Name Must Reference Several Values

Each worker is a program with its own workspace. It can “see” the
variables on the client, but it usually doesn’t know or care what is
going on on the other workers.

Each worker defines a and b but stores different values there.

The client can “see” the workspace of any worker by specifying the
worker index. Thus a{1} is how the client refers to the variable a
on worker 1. The client can read or write this value.

MATLAB’s name for this kind of variable, indexed using curly
brackets, is a composite variable. It is very similar to a cell array.

The workers can “see” but not change the client’s variables.

50 / 75

QUAD: Dealing with Composite Variables

So in QUAD, each worker could print its own a and b:

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;
fprintf (1, ’ A = %f, B = %f\n’, a, b);

end
------------ or the client could print them all ------------
spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;

end
for i = 1 : 4 <-- "numlabs" wouldn’t work here!
fprintf (1, ’ A = %f, B = %f\n’, a{i}, b{i});

end

51 / 75

QUAD: The Solution in 4 Parts

Each worker can now carry out its trapezoid computation:

spmd
x = linspace (a, b, n);
fx = f (x); (Assume f can handle vector input.)
quad_part = (b - a) / (n - 1) *

* (0.5 * fx(1) + sum(fx(2:n-1)) + 0.5 * fx(n));
fprintf (1, ’ Partial approx %f\n’, quad_part);

end

with result:

2 Partial approx 0.874676
4 Partial approx 0.567588
1 Partial approx 0.979915
3 Partial approx 0.719414

52 / 75

QUAD: Combining Partial Results

Having each worker print out its piece of the answer is not the
right thing to do. (Imagine if we use 100 workers!)

The client should gather the values together into a sum:

quad = sum (quad_part{1:4});
fprintf (1, ’ Approximation %f\n’, quad);

with result:

Approximation 3.14159265

53 / 75

QUAD: Source Code for QUAD FUN

f u n c t i o n v a l u e = quad fun (n)

f p r i n t f (1 , ’ Compute l i m i t s \n ’) ;
spmd

a = (l a b i n d e x − 1) / numlabs ;
b = l a b i n d e x / numlabs ;
f p r i n t f (1 , ’ Lab %d works on [%f ,% f] .\ n ’ , l a b i nd e x , a , b) ;

end

f p r i n t f (1 , ’ Each l a b e s t ima t e s pa r t o f the i n t e g r a l .\n ’) ;

spmd
x = l i n s p a c e (a , b , n) ;
f x = f (x) ;
quad pa r t = (b − a) ∗ (f x (1) + 2 ∗ sum (f x (2 : n−1)) + f x (n)) . . .

/ 2 . 0 / (n − 1) ;
f p r i n t f (1 , ’ Approx %f\n ’ , quad pa r t) ;

end

quad = sum (quad pa r t {:}) ;
f p r i n t f (1 , ’ Approx imat ion = %f\n ’ , quad)

r e t u r n
end

54 / 75

QUAD: Local Interactive Execution

SPMD programs execute locally just like PARFOR programs.

matlabpool open local 4

n = 10000;
value = quad_fun (n);

matlabpool close

55 / 75

MATLAB Parallel Computing

Introduction

PARFOR: a Parallel FOR Loop

QUAD Example (PARFOR)

ODE Example (PARFOR)

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example (SPMD)

Conclusion

56 / 75

DISTANCE: A Classic Problem

Consider the problem of determining the shortest path from a
fixed city to all other cities on a road map, or more generally, from
a fixed node to any other node on an abstract graph whose links
have been assigned lengths.

Suppose the network of roads is described using a one-hop distance
matrix; the value ohd(i,j) records the length of the direct road
from city i to city j, or ∞ if no such road exists.

Our goal is, starting from the array ohd, to determine a new vector
distance, which records the length of the shortest possible route
from the fixed node to all others.

57 / 75

DISTANCE: An Intercity Map

Recall our example map with the intercity highway distances:

58 / 75

DISTANCE: An Intercity One-Hop Distance Matrix

Here is the “one-hop distance” matrix ohd(i,j):

A B C D E F

A 0 40 15 ∞ ∞ ∞
B 40 0 20 10 25 6
C 15 20 0 100 ∞ ∞
D ∞ 10 100 0 ∞ ∞
E ∞ 25 ∞ ∞ 0 8
F ∞ 6 ∞ ∞ 8 0

An entry of ∞ means no direct route between the cities.

59 / 75

DISTANCE: Dijkstra’s algorithm

Dijkstra’s algorithm for the minimal distances:

Use two arrays, connected and distance.
Initialize connected to false except for A.
Initialize distance to the one-hop distance from A to each city.
Do N-1 iterations, to connect one more city at a time:

1 Find I, the unconnected city with minimum distance[I];

2 Connect I;

3 For each unconnected city J, see if the trip from A to I to J is
shorter than the current distance[J].

The check we make in step 3 is:
distance[J] = min (distance[J], distance[I] + ohd[I][J])

60 / 75

DISTANCE: A Sequential Code

connected(1) = 1;
connected(2:n) = 0;

distance(1:n) = ohd(1,1:n);

for step = 2 : n

[md, mv] = find_nearest (n, distance, connected);

connected(mv) = 1;

distance = update_distance (nv, mv, connected, ...
ohd, distance);

end
61 / 75

DISTANCE: Parallelization Concerns

Although the program includes a loop, it is not a parallelizable
loop! Each iteration relies on the results of the previous one.

However, let us assume we have a very large number of cities to
deal with. Two operations are expensive and parallelizable:

find nearest searches for the nearest unconnected node;

update distance checks the distance of each unconnected
node to see if it can be reduced.

These operations can be parallelized by using SPMD statements in
which each worker carries out the operation for a subset of the
nodes. The client will need to be careful to properly combine the
results from these operations!

62 / 75

DISTANCE: Startup

We assign to each worker the node subset S through E.
We will try to preface worker data by “my ”.

spmd
nth = numlabs ();
my_s = floor (((labindex() - 1) * nv) / nth) + 1;
my_e = floor ((labindex() * nv) / nth);

end

63 / 75

DISTANCE: FIND NEAREST

Each worker uses find nearest to search its range of cities for
the nearest unconnected one.

But now each worker returns an answer. The answer we want is the
node that corresponds to the smallest distance returned by all the
workers, and that means the client must make this determination.

64 / 75

DISTANCE: FIND NEAREST

lab count = nth{1};

for step = 2 : n
spmd

[my_md, my_mv] = find_nearest (my_s, my_e, n, ...
distance, connected);

end
md = Inf;
mv = -1;
for i = 1 : lab_count
if (my_md{i} < md)
md = my_md{i};
mv = my_mv{i};

end
end
distance(mv) = md;

65 / 75

DISTANCE: UPDATE DISTANCE

We have found the nearest unconnected city.

We need to connect it.

Now that we know the minimum distance to this city, we need to
check whether this decreases our estimated minimum distances to
other cities.

66 / 75

DISTANCE: UPDATE DISTANCE

connected(mv) = 1;

spmd
my_distance = update_distance (my_s, my_e, n, mv, ...

connected, ohd, distance);
end

distance = [];
for i = 1 : lab_count
distance = [distance, my_distance{:}];

end

end

67 / 75

DISTANCE: Desktop Run

To run the code on a desktop:

matlabpool open local 4

nv = 6;
ohd = initial_distance ();

mind = dijkstra_fun (nv, ohd);

disp (mind);

matlabpool close

68 / 75

DISTANCE: fsuClusterMatlab

On the FSU HPC cluster, invoke fsuClusterMatlab:

nv = 6;
ohd = initial_distance ();

results = fsuClusterMatlab([],[],’m’,’w’,4,...
@dijkstra_fun, { nv, ohd });

mind = results{1};
disp (mind);

Here, the ’m’ argument indicates that this is an ”MPI-like” job,
that is, it invokes the spmd command.

69 / 75

DISTANCE: Comments

This example shows SPMD workers interacting with the client.

It’s easy to divide up the work here. The difficulties come when
the workers return their partial results, and the client must
assemble them into the desired answer.

In one case, the client must find the minimum from a small
number of suggested values.

In the second, the client must rebuild the distance array from the
individual pieces updated by the workers.

Workers are not allowed to modify client data. This keeps the
client data from being corrupted, at the cost of requiring the client
to manage all such changes.

70 / 75

MATLAB Parallel Computing

Introduction

PARFOR: a Parallel FOR Loop

QUAD Example (PARFOR)

ODE Example (PARFOR)

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example (SPMD)

Conclusion

71 / 75

Conclusion: A Parallel Version of MATLAB

Parallel MATLAB allows programmers to advance in the new
world of parallel programming.

They can benefit from many of the same new algorithms, multicore
chips and multi-node clusters that define parallel computing.

When you use the parfor command, MATLAB automatically
determines from the form of your loop which variables are to be
shared, or private, or are reduction variables; in OpenMP you must
recognize and declare all these facts yourself.

When you use the spmd command, MATLAB takes care of all the
data transfers that an MPI programmer must carry out explicitly.

72 / 75

Conclusion: Desktop Experiments

If you are interested in parallel MATLAB, the first thing to do is
get access to the Parallel Computing Toolbox on your multicore
desktop machine, so that you can do experimentation and practice
runs.

You can begin with some of the sample programs we have
discussed today.

You should then see whether the parfor or spmd approaches would
help you in your own programming needs.

73 / 75

Conclusion: FSU HPC Cluster

If you are interested in serious parallel MATLAB computing, you
should consider requesting an account on the FSU HPC cluster,
which offers MATLAB on up to 16 cores.

To get an account, go to www.hpc.fsu.edu and look at the
information under Apply for an Account.

Accounts on the general access cluster are available to any FSU
faculty member, or to persons they sponsor.

74 / 75

CONCLUSION: Where is it?

MATLAB Parallel Computing Toolbox User’s Guide 5.0
www.mathworks.com/access/helpdesk/help/pdf doc/distcomp/...
distcomp.pdf

http://people.sc.fsu.edu/∼jburkardt/presentations/. . .
fsu 2011 matlab parallel.pdf these slides;

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

http://people.sc.fsu.edu/∼jburkardt/m src/m src.html

quad parfor
ode sweep parfor
quad spmd
dijkstra spmd

75 / 75

