
Jacobi Iterative Solution of Poisson’s Equation in 1D

John Burkardt
Department of Scientific Computing

Florida State University
.....

http://people.sc.fsu.edu/∼jburkardt/presentations/jacobi poisson 1d.pdf

November 8, 2011

Abstract

This document investigates the use of a Jacobi iterative solver to compute approximate solutions
to a discretization of Poisson’s equation in 1D. The document is intended as a record and guide for a
particular investigation into this problem. Therefore, we specify a particular set of data that represents
an instance of the Poisson equation; we discuss the form of a discretization of the equation which results
in a linear system; we consider a specific implementation of the Jacobi iterative method that was used
to solve the linear system; we then consider the convergence behavior of the iterative method as the size
of the grid increases and look for an alternative solution procedure that will give us the answer more
efficiently. The expectation is that the multigrid method will enable us to solve the 1D problem more
quickly, and to proceed to the 2D problems that are of greater interest.

1 The Poisson Equation in 1D

We consider a 1D domain, in particular, a closed interval [a, b], over which some forcing function f(x) ∈ C[a, b]
has been specified. Now consider the following differential equation, which is the 1D form of Poisson’s
equation:

−d2u

dx2
= f(x)

We say that the function u ∈ C2[a, b] is a solution if it satisfies Poisson’s equation for every value x in (a, b).
(The behavior of u(x) at the endpoints a and b will be regarded momentarily.)

If u(x) is such a solution, then so is any function of the form u(x) + c+ d ∗ x where c and d are arbitrary
constants. But mathematically, it is desirable that a problem have a unique solution, so generally, Poisson’s
equation is posed with additional constraints. The most common constraint is to impose Dirichlet boundary
conditions at the left and right endpoints, so that the solution u(x) is also required to satisfy:

u(a) =ua

u(b) =ub

for some given values ua and ub. It is also possible to replace one of the Dirichlet conditions by a Neumann
condition involving the value of the first derivative, such as, perhaps

du

dx
(a) = pa

although, again for uniqueness reasons, it is generally not possible to replace both Dirichlet boundary con-
ditions by Neumann conditions.

1

Figure 1: The Exact Solution to the Sample Poisson Equation.

In the interest of brevity, from this point in the discussion, the term “Poisson equation” should be
understood to refer exclusively to the Poisson equation over a 1D domain with a pair of Dirichlet boundary
conditions.

2 Data for the Poisson Equation in 1D

We now wish to consider a specific example of the Poisson equation, in which we specify the remaining data.
As our discussion continues into the questions of discretization and solution methods, this is the problem we
will refer to when we wish to have a specific example.

The problem data for the example includes:

• the interval: [a, b] = [0, 1];

• boundary conditions: u(0) = u(1) = 0;

• forcing term: f(x) = −x ∗ (x + 3) ∗ ex;

• exact solution: u(x) = x ∗ (x− 1) ∗ ex;

3 Discretizing the Poisson Geometry

A discretization of the Poisson equation begins by choosing a discretization of the geometry. In the 1D case,
we select a grid of N points or nodes in the interval [A,B]. While it can be advantageous to vary the spacing
of these points, we will choose them uniformly. While it is common to omit the endpoints, since the Dirichlet
boundary conditions supply the solution value there, we will nonetheless always include the endpoints, and
when we set up the linear system, we will include equations associated with the endpoints, as though the
solution was unknown there as well.

It is necessary to keep the multigrid method in mind while designing the grid. In fact, we will want to
be able to make a nested sequence of grids, with the k-th grid having nk nodes, so that

nk = 2k + 1, for k = 0, ...

2

Since we assume the nodes are equally spaced between A and B, inclusively, and since we know the
number of nodes in each grid, we can display a formula for the location of the j-th node in the k-th grid:

xj =
((nk − j) ∗A + (j − 1) ∗B)

nk − 1
, for j = 1, ..., nk;

In the k-th grid, there will be nk subintervals [xj , xj+1]. We assume the nodes are evenly spaced. The
uniform length of the intervals is known as the mesh spacing or mesh size. Using the given rule for the
number of nodes in each grid, the k-th grid will have a mesh spacing

hk =
b− a

2k
, for k = 0, ...

The discrete analog to the solution function u(x) is a solution vector uj , with a value given at each
node xj of the mesh. A pair of discrete nodes and values associated in this way is sometimes called a mesh
function. We can plot this solution vector, and as an aid to visualization, connect successive points (xj , uj)
to suggest a continuous curve, but our solution procedure will really only be producing finitely many points.

4 Discretizing the Poisson Operator

In order to complete our discretization of the Poisson equation, we must replace the negative second derivative
or “Poisson operator” by some function that can be applied to a mesh function.

For convenience, we will designate our mesh function by (xj , uj). Let us suppose that the values uj are
actually derived from a function u(x) defined over the entire interval, so that uj = u(xj). Moreover, let us

assume that u(x) ∈ C2[a, b]. If the nodes are equally spaced by h, then the difference quotient
uj+1−uj

h is

an estimate for the derivative u′(x) at the midpoint
xj+1+xj

2 to the right of xj , while the difference quotient
uj−uj−1

h is an estimate for the derivative u′(x) at the midpoint
xj+xj−1

2 to the left of xj .

We can regard the second derivative as the derivative of the first derivative, and so it makes sense to
approximate the second derivative as a difference of the approximations to the first derivative. Indeed, if
we compute the difference of the two first differences, to the left and right of xj , it turns out we get a good
approximation to the second derivative at xj :

−d2u

dx2
(xj) ≈−

uj+1−uj

h − uj−uj−1

h

h

=
−uj−1 + 2uj − uj+1

h2

This difference quotient is our discrete approximation to the Poisson operator.

5 The Discretized Poisson System

We now write down a system of equations associated with our nodes xj and involving the values of uj , a
vector of data that we regard as a pointwise approximation to the solution of the original Poisson equation.
Our first and last equations are simply the boundary conditions. The remaining equations express the
discretized version of the Poisson equation at each of the nodes. The typical equation at node xj will be

−uj−1 + 2uj − uj+1

h2
= f(xj)

3

If we multiply all but the first and last equation by h2, we have:

u1 =ua

−u1 + 2u2 − u3 =h2f(x2)

−u2 + 2u3 − u4 =h2f(x3)

...

−un−2 + 2un−1 − un =h2f(xn−1)

un =ub

and it is easy to see that this constitutes an n by n linear system for the unknowns uj .

This scaling reveals a simple structure to the matrix for any grid index k. However, we will find that we
should not use this scaling when solving a sequence of problems for different grid indices. Were we to use
the scaling, then as the grid index k rises, we are scaling the residuals for later grids by a factor h2

k that is
going to zero. This would have the unfortunate effect that a fixed convergence tolerance tol could not be
used for the sequence of linear systems. Therefore, if convenient, we will temporarily suppress the h2

k divisor
when discussing the linear system matrix, but in those cases, we will identify the matrix as h2 ∗A.

6 Properties of the Linear System

The linear system defined above can be represented as A ∗ u = f where u is the n-vector of solution values
at the nodes, f contains the boundary conditions in its first and last entries, and otherwise the values of the
forcing function at the nodes. The interesting object is the scaled matrix h2 ∗A, which has the form

1 0 0 0 ... 0 0 0
-1 2 -1 0 ... 0 0 0
0 -1 2 -1 ... 0 0 0

...
0 0 0 0 ... -1 2 -1
0 0 0 0 ... 0 0 1

By inspection, it is clear that h2 ∗ A is banded and symmetric. The matrix has another important property
that is not immediately obvious: it is positive definite. Note that the matrix retains these properties whether
or not we scale it by h2. The fact that our system matrix is symmetric and positive definite has important
implications when we look at our options for solving the linear system.

7 Direct or Iterative Solution

Once we have chosen a grid size n, we can define the linear system A ∗ u = f , and we have only to solve this
linear system in order to obtain the vector u. The natural approach to the linear system would be a direct
linear solver, based on Gauss elimination. However, direct linear solvers have some disadvantages in terms
of data storage and the cost of computing the solution. Moreover, these disadvantages can become extreme
as the problem size n grows. For this reason, it is worth considering alternatives to a direct solver; linear
systems arising from the discretized Poisson problem, in particular, are well known to be amenable to other
solution techniques.

An alternative approach is to try an iterative solver. An iterative solver produces a sequence of approxi-
mations to the solution of a linear system. Each iterate is very cheap to compute, and it is often the case that
approximations improve quickly enough that the total iteration cost incurred while getting an acceptable
approximate solution is still significantly less than that for a direct solver.

4

One of the simplest iterative solvers for linear systems is known as the Jacobi iteration. The satisfactory
use of an iterative solver generally requires that the linear system satisfy some conditions; in the case of the
Jacobi iteration, it is enough that the matrix A is positive definite and symmetric. The Jacobi iteration is an
easy iteration to implement and study; we will be able to solve small problems with it, but when we begin
to explore larger linear systems, we will see that we will need a more powerful iterative solver.

8 The Jacobi Iteration

Let us assume that we start with a linear system A ∗ x = f and an initial approximate solution x0. We
can also let x0 be the zero vector if no better first approximation comes to mind. The Jacobi iteration can
be thought of as a procedure which makes a simple correction to each entry of an approximate solution to
produce a somewhat better approximate solution.

To compute the i-th element of the new approximate solution x1, we “solve” the i-th equation for the
corrected value of the i-th variable:

x1
i =

fi −
∑n

j=1;j 6=i Ai,j ∗ x0
j

Ai,i

If x0 was an exact solution, this process would not change any entries.

The update of each element of the new approximate solution is independent of the others. If we decompose
the matrix as A = L+D+U , with L, D and U representing the lower triangle, diagonal and upper triangular
submatrices, we can also write

x1 = D−1 ∗ (f − (L + U) ∗ x0)

a concise vectorized format that is very suitable for rapid calculation in a programming language such as
MATLAB.

The Jacobi iteration, obviously, consists of starting with an initial approximation x0, and repeatedly
applying the Jacobi update, creating a sequence x0, x1, x2, ... which converges to the exact solution.

9 Convergence Test for the Jacobi Iteration

Although we can expect our sequence of Jacobi iterates to converge to the exact solution, we don’t know
what that solution is, so we cannot measure the solution error directly. There are several things we can
measure, however, in order to control the iteration.

The weakest control is simply to impose a maximum iteration limit. While it may be a good idea to
forbid the iteration to exceed some huge number of iterations, it is important that such a control only be
used to catch an error condition. It is possible, as we will see, for a Jacobi iteration to be carried out a
million times without achieving convergence. Therefore, an iteration that is terminated by the iteration limit
should be regarded as having failed.

A control that pays more attention to the behavior of the approximations to the solution checks the
change between successive iterates. Thus, as soon as x1 is computed, one computes ||x1 − x0||. In order to
make this measure comparable across different mesh counts, it is preferable to use the RMS version of this

measure, that is ||x
1−x0||√

n
. However, as we will see, when a Jacobi iteration is converging very slowly, it is

easily possible for the RMS norm of the iterate difference to go to zero long before the iterates themselves
are good approximations to the true solution.

5

The control that makes sense to apply to the iteration checks the residual, that is, having computed the
j-th iterate xj , we define the residual rj by: defined by

rj = A ∗ xj − f

and control error using the RMS norm ||rj ||√
n

.

The advantage of looking at the residual error is that you guarantee that if your residual norm is small,
then your approximate solution satisfies the equations, on average, to the given tolerance. Notice that this
does not say that our approximate solution is actually that close to the true solution, or even that it is close
at all to the true solution. However, as long as we don’t actually know the true solution, monitoring the
residual is the proper way to control and terminate an iteration.

10 A Sample Calculation

We can examine the results of our discretization and interative approximations for the sample problem with
a grid index k = 5, resulting in nk=33 points. Our Jacobi iteration will use an RMS residual tolerance of
0.000001. We compare the exact solution to the continuous problem against the solution to the discretized
problem computed directly and with the Jacobi iteration.

The closeness of the results suggest that the spatial discretization is fine enough that we are getting good
approximations to the exact solution of the continuous problem. Moreover, the approximations produced
by the Jacobi iteration are very close to those computed directly. On the other hand, this iteration required
3,088 steps, which might seem a surprisingly high cost. We will consider this question in more detail shortly.

I X U_Exact U_Direct U_Jacobi

1 0.0000 -0 -1.402e-15 0

2 0.0312 -0.03123 -0.03121 -0.03121

3 0.0625 -0.06237 -0.06233 -0.06233

4 0.0938 -0.09331 -0.09325 -0.09325

5 0.1250 -0.1239 -0.1239 -0.1239

6 0.1562 -0.1541 -0.154 -0.154

7 0.1875 -0.1838 -0.1837 -0.1837

8 0.2188 -0.2127 -0.2126 -0.2126

9 0.2500 -0.2408 -0.2406 -0.2406

10 0.2812 -0.2678 -0.2677 -0.2677

11 0.3125 -0.2937 -0.2935 -0.2935

12 0.3438 -0.3181 -0.318 -0.318

13 0.3750 -0.341 -0.3408 -0.3408

14 0.4062 -0.3621 -0.3619 -0.3619

15 0.4375 -0.3812 -0.381 -0.381

16 0.4688 -0.3979 -0.3977 -0.3977

17 0.5000 -0.4122 -0.412 -0.412

18 0.5312 -0.4236 -0.4234 -0.4234

19 0.5625 -0.4319 -0.4317 -0.4317

20 0.5938 -0.4368 -0.4366 -0.4366

21 0.6250 -0.4379 -0.4377 -0.4377

22 0.6562 -0.4348 -0.4346 -0.4346

23 0.6875 -0.4273 -0.4271 -0.4271

24 0.7188 -0.4148 -0.4146 -0.4146

25 0.7500 -0.3969 -0.3968 -0.3968

6

26 0.7812 -0.3733 -0.3731 -0.3731

27 0.8125 -0.3433 -0.3432 -0.3432

28 0.8438 -0.3065 -0.3064 -0.3064

29 0.8750 -0.2624 -0.2623 -0.2623

30 0.9062 -0.2103 -0.2102 -0.2102

31 0.9375 -0.1496 -0.1496 -0.1496

32 0.9688 -0.07976 -0.07973 -0.07973

33 1.0000 0 0 0

11 Jacobi Convergence With Increasing N

A fundamental technique of computational science is to look at the discretization process as involving a
discretization scale h, which might represent the maximum size of an interval. In that case, we can imagine
that we have the option of choosing a sequence of scaled sizes hk, such that limk→∞ hk = 0, or, equivalently,
an increasing sequence of mesh counts nk such that limk→∞ nk =∞, which we expect will produce a sequence
of increasingly better approximations to the continuous solution u(x).

While we will not address that fundamental convergence issue yet, we do note that it is a natural procedure
to seek to improve an approximation at mesh count nk by comparing with the solution at the next larger
mesh count nk+1, and to note various statistics and properties of the corresponding solutions.

Because we are producing our solution of the linear system using the Jacobi iteration with a fixed
tolerance, one natural statistic to consider is the number mk of such iterations required to meet the specified
tolerance at mesh count nk. Roughly speaking, the cost of computing the approximate solution uk will be
of the order of ck = o(mk ∗ nk), that is, the number of iterations times the cost, during one iteration, of
updating each of nk solution entries. It is clear that the computational cost must grow at least linearly. To
make a stronger statement, we must understand what to expect for the behavior of mk with increasing nk.

We can easily create a table for our example problem, using a tolerance of 1.0E-10 that is applied to the
RMS residual norm:

k nk mk

0 2 1
1 3 1
2 5 43
3 9 188
4 17 768
5 33 3,088
6 65 12,373
7 129 49,520
8 257 198,122
9 513 792,553

10 1025 3,170,329

It is easy to see from this table that as nk doubles, mk tends to increase by about a factor of 4, which in
turn, means that we can expect the computational cost ck to increase by a factor of 8. This suggests that
the computational cost depends on the grid size by a relationship of the form

ck ∼ o(n3
k)

For such a cost growth rate, the algorithm will quickly become infeasible with increasing n. What is
worse, we are so far only considering a 1D problem, which we expect might have more tractable cost growth

7

rates than the higher dimensional cases we are also interested in. We clearly need to reconsider the use of
an iterative solution of the linear system by Jacobi’s method, if we hope to solve problems on a fine grid, or
extend this approach to higher-dimensional geometries, or cases in which a nonlinearity means that we need
to solve many linear systems efficiently.

12 Sample Program

We include here a sample MATLAB program which was used to carry out the convergence study for the
example problem. The program takes as input the value k, which is the grid index, defines a problem of the
corresponding size, and runs the Jacobi iteration until the convergence tolerance is achieved.

A copy of the program is available at
http://people.sc.fsu.edu/∼jburkardt/m src/jacobi poisson 1d/jacobi poisson 1d.m

function jacobi_poisson_1d (k)

%***80

%

%% JACOBI_POISSON_1D uses Jacobi iteration for the 1D Poisson equation.

%

% Parameters:

%

% Commandline input, integer K, the grid index.

% K specifies the number of nodes, by the formula NK = 2^K + 1.

%

}}

fprintf (1, ’\n’);

fprintf (1, ’JACOBI_POISSON_1D:\n’);

fprintf (1, ’ Use Jacobi iteration for the 1D Poisson equation.\n’);

%

% Set boundaries.

%

a = 0.0;

b = 1.0;

%

% Set boundary conditions.

%

ua = 0.0;

ub = 0.0;

%

% Get NK.

%

nk = 2^k + 1;

%

% Set XK.

%

xk = (linspace (a, b, nk))’;

%

% Get HK.

%

hk = (b - a) / (nk - 1);

8

%

% Set FK.

%

fk = force (xk);

fk(1) = ua;

fk(nk) = ub;

%

% Set the -1/2/-1 entries of A.

%

% In order that the operator A approximation the Poisson operator,

% and in order that we can compare linear systems for successive grids,

% we should NOT multiply through by hk^2.

%

% Though it is tempting to try to "normalize" the matrix A, the

% unintended result is to scale our right hand side a multiplicative

% factor of hk^2, which means that we make it easier and easier to

% satisfy the RMS residual tolerance, as NK increases, with solution

% vectors that are actually worse and worse.

%

sup = sparse (2:nk-1, 3:nk, -1.0, nk, nk);

diag = sparse (2:nk-1, 2:nk-1, 2.0, nk, nk);

sub = sparse (2:nk-1, 1:nk-2, -1.0, nk, nk);

A = (sup + diag + sub) / hk^2;

A(1,1) = 1.0;

A(nk,nk) = 1.0;

%

% Just because we can, ask MATLAB to get the exact solution of the linear system

% directly.

%

udk = A \ fk;

%

% Sample the solution to the continuous problem.

%

uek = exact (xk);

%

% Use Jacobi iteration to solve the linear system to the given tolerance.

%

ujk = zeros (nk, 1);

tol = 0.000001;

[ujk, it_num] = jacobi (nk, A, fk, ujk, tol);

%

% Examine errors:

%

fprintf (1, ’\n’);

fprintf (1, ’ Using grid index K = %d\n’, k);

fprintf (1, ’ System size NK was %d\n’, nk);

fprintf (1, ’ Tolerance for linear residual %g\n’, tol);

fprintf (1, ’ Number of Jacobi iterations required was %d\n’, it_num);

fprintf (1, ’ RMS Jacobi error in solution of linear system = %g\n’, ...

norm (udk - ujk) / sqrt (nk));

9

fprintf (1, ’ RMS discretization error in Poisson solution = %g\n’, ...

norm (uek - ujk) / sqrt (nk));

fprintf (1, ’\n’);

fprintf (1, ’ I X U_Exact U_Direct U_Jacobi\n’);

fprintf (1, ’\n’);

for i = 1 : nk

fprintf (1, ’ %4d %10.4f %10.4g %10.4g %10.4g\n’, ...

i, xk(i), uek(i), udk(i), ujk(i));

end

%

% Terminate.

%

fprintf (1, ’\n’);

fprintf (1, ’JACOBI_POISSON_1D:\n’);

fprintf (1, ’ Normal end of execution.\n’);

return

end

function uex = exact (x)

%***80

%

%% UEX evaluates the solution of the continuous problem.

%

uex = x .* (x - 1) .* exp (x);

return

end

function f = force (x)

%***80

%

%% FORCE evaluates the forcing term.

%

f = - x .* (x + 3) .* exp (x);

return

end

function [u, it] = jacobi (n, A, f, u, tol)

%***80

%

%% JACOBI carries out the Jacobi iteration.

%

fprintf (1, ’\n’);

fprintf (1, ’ Step Residual Change\n’);

fprintf (1, ’\n’);

it = 0;

10

while (1)

u_old = u;

u = (f - A * u_old + (diag (A) .* u_old)) ./ diag (A);

r = A * u - f;

it = it + 1;

fprintf (1, ’ %6d %10.4g %10.4g\n’, ...

it, norm (r) / sqrt (n), norm (u - u_old) / sqrt (n));

if (norm (r) / sqrt (n) <= tol)

break;

end

end

return

end

References

[1] Richard Barrett, Michael Berry, Tony Chan, James Demmel, June Donato, Jack Don-
garra, Victor Eijkhout, Roidan Pozo, Charles Romine, Henk van der Vorst, Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994.

[2] William Briggs, Van Emden Henson, Steve McCormick, A Multigrid Tutorial, SIAM,
2000.

[3] Howard Elman, Alison Ramage, David Silvester, Finite Elements and Fast Iterative
Solvers with Applications in Incompressible Fluid Dynamics, Oxford, 2005.

11

