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What is a PDE?

Answer: A system of unknown functions involving

Two or more independent variables

Derivatives with respect to the independent variables

Typically used to model a physical phenomenon

Systems may include initial and/or boundary conditions
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Laplace’s Equation

Find u such that:

∆u = 0, x in Ω

u(x) = g , x on ∂Ω

Used in steady state fluid flow, heat flow, or electrostatics (models diffusion).

Notation:

Ω ⊂ Rd , for d ∈ {1, 2, 3}
∂Ω = Γ = Boundary of Ω

∇ =
[

∂
∂x

∂
∂y

∂
∂z

]T

∆ = ∇ · ∇
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Convection-Diffusion Problem

Find u such that:

−∆u + b · ∇u + cu = f , x ∈ Ω

u = g , x on ∂Ω.

Added a convection term with a velocity field b

Two source/sink terms: cu and f

u models the concentration of a particle/substance over Ω

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Partial Differential Equations :: Some Example PDEs 7 / 53

Convection-Diffusion Problem

Find u such that:

−∆u + b · ∇u + cu = f , x ∈ Ω

u = g , x on ∂Ω.

Added a convection term with a velocity field b

Two source/sink terms: cu and f

u models the concentration of a particle/substance over Ω

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Partial Differential Equations :: Some Example PDEs 7 / 53

Convection-Diffusion Problem

Find u such that:

−∆u + b · ∇u + cu = f , x ∈ Ω

u = g , x on ∂Ω.

Added a convection term with a velocity field b

Two source/sink terms: cu and f

u models the concentration of a particle/substance over Ω

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Partial Differential Equations :: Some Example PDEs 8 / 53

Stokes Problem

Find u and p such that:

−∆u +∇p = f, x ∈ Ω

∇ · u = 0, x ∈ Ω

u = g , x on ∂Ω

Models the steady state flow of viscous fluid

u denotes fluid velocity

p denotes pressure

Conservation of mass: ∇ · u (“incompressibility condition”)
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Navier-Stokes Equations

Find u, and p such that

Re

(
∂u

∂t
+ u · ∇u

)
−∆u +∇p = f, x ∈ Ω

∇ · u = 0, x ∈ Ω

u = g , x on ∂Ω

Models the flow of a viscous, incompressible, Newtonian fluid

Problem is time-dependent

The u · ∇u advection (transport) term makes the problem nonlinear
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Notation

Funciton Spaces:

L2(Ω) =

{
v ∈ Ω :

∫
Ω

v2 dΩ < ∞
}

(1)

H1(Ω) =
{
v ∈ L2(Ω) : ∇u ∈ L2(Ω)

}
(2)

V = H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
(3)

Respective inner products and norms:

L2(Ω) : ‖f ‖0 = (f , f )1/2

where (f , g) =

∫
Ω

fg dΩ

H1(Ω) : ‖f ‖1 = ((f , f ) + (∇f ,∇f ))1/2

with (∇f ,∇g) =

∫
Ω

∇f · ∇g dΩ
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The Poisson Problem

Find u such that:

−∆u = f , x ∈ Ω ⊂ R2

u = 0, on ∂Ω.

How do we go about finding u?
• Start by considering a variational formulation:

After Integrating by parts:

Find u ∈ V = H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
such that

∫
Ω

∇u · ∇v dΩ =

∫
Ω

fv dΩ, ∀ v ∈ V .

• Note u and v are both in V
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Approximating Spaces

How can an approximation to u be found?

Idea:

Determine an approximation space for u (trial space)

Determine an approximation space for v (test space)

Form the approximating system of algebraic equations

Solve the system
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Triangulate Ω

Working with the problem domain Ω:
Let Th be a triangulation of Ω

Ω = ∪K , K ∈ Th.

Notation:

hK is the diameter of triangle K

Pk(K ) = polynomials on K of
degree ≤ k

C (Ω) = continuous functions
on Ω

V h =

{
v ∈ V ∩ C (Ω) :

v

∣∣∣∣
K

∈ Pk(K ),∀ K ∈ Th

}
Chrispell and Howell
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Discrete Variational Formulation

Recall the variational formulation:

Find u ∈ V = H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
such that

∫
Ω

∇u · ∇v dΩ =

∫
Ω

fv dΩ, ∀ v ∈ V .

Approximate with discrete variational formulation:

Finduh ∈ V h =

{
v ∈ V ∩ C (Ω) : v

∣∣∣∣
K

∈ Pk(K ),∀ K ∈ Th

}
such that

∫
Ω

∇uh · ∇vh dΩ =

∫
Ω

fvh dΩ, ∀ vh ∈ V h.

Here we choose the trial space (for uh), and the test space (for vh) to be V h
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Find a Basis for V h

In one dimension on each element

V h = span{φj} , j = 1, . . . ,N

Linears:

φi =



x−xi−1

xi−xi−1
x ∈ [xi−1, xi ]

xi+1−x
xi+1−xi

x ∈ [xi , xi+1]

0 otherwise.

X         X          X          X           X           X
                                       i−1                i                    i+1

1

Linear Basis (1-D)

or

V h = span{φj} , j = 1, . . . ,N

Quadratics:

φ1(η) = 2(η − 1/2)(η − 1)

φ2(η) = 4η(1− η)

φ3(η) = 2η(η − 1/2)

0                    1

Quadratic Basis (1-D)
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Find a Basis for V h

In two dimensions we use “Tent Functions.” For example defined by

φi (x , y) = continuous piecewise linears on each triangle

such that
φi (xi ) = 1 and φi (xj) = 0 if j 6= i

Xi

Note: All defined basis functions have local support
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Assemble the Approximating System

Approximate

u(x) ≈ uh(x) =
N∑

j=1

cjφj(x).

The approximating system with vh = φi (x) becomes:

∫
Ω

∇
N∑

j=1

cjφj(x) · ∇φi (x) dΩ =

∫
Ω

f φi (x) dΩ

=⇒
N∑

j=1

[∫
Ω

∇φj(x) · ∇φi (x) dΩ

]
cj =

∫
Ω

f φi (x) dΩ

=⇒
N∑

j=1

aijcj = bi
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The Approximating System

Using all the test elements φi ∈ V h corresponding to “interior nodes” in Th

we have:

Ac = b

where

aij =

∫
Ω

∇φj(x) · ∇φi (x) dΩ

bi =

∫
Ω

f φi (x) dΩ

Due to the local support of the basis functions aij = 0 unless there is a
triangle that has both nodes i and j .

Systems are sparse

Refining the approximation yields larger systems
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What is FreeFem++?

A free, open-source software package for 2-D finite element computations

Authors: F. Hecht, O. Pironneau, A. Le Hyaric (Université Pierre et
Marie Curie, Laboratoire Jacques-Louis Lions)

Platforms: Linux, Windows, MacOS X

Written in C++, and much of the syntax is similar to that of C++

Includes:

Mesh generation and input
A wide range of finite elements and the ability to add new elements
A number of integrated linear solvers, including CG, GMRES, UMFPACK
Visualization tools
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What is FreeFem++?

A free, open-source software package for 2-D finite element computations

Authors: F. Hecht, O. Pironneau, A. Le Hyaric (Université Pierre et
Marie Curie, Laboratoire Jacques-Louis Lions)

Platforms: Linux, Windows, MacOS X

Written in C++, and much of the syntax is similar to that of C++

Includes:

Mesh generation and input
A wide range of finite elements and the ability to add new elements
A number of integrated linear solvers, including CG, GMRES, UMFPACK
Visualization tools
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Why use FreeFem++?

It’s free!

Easy to install and use

Eliminates complicated overhead involved in programming the FEM
(geometry, assembly, elements, interpolation, quadrature, etc.)

Problems can be coded directly as variational forms

Decent documentation and lots of examples

Allows the user to easily test new ideas and algorithms without having to
write tons of code!
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Outline

1 Partial Differential Equations
Introduction
Some Example PDEs

2 How can we go about approximating PDEs?
Example: Poisson Problem
Discrete Formulation

3 About FreeFem++
FreeFem++ Description
General Program Structure

4 Sample FreeFem++ Programs
Poisson Problem
Stokes Problem

5 Advanced Topics

6 Concluding Remarks
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The structure of a simple FreeFem++ program

1 Build a mesh

2 Declare the finite element space and test and trial functions from that
space

3 Write the variational forms/inner products involved in the problem and
construct the problem statement

4 Solve the problem

5 Analyze results (plots, error calculations, etc.)
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FreeFem++ for the Poisson Problem

Recall the variational problem and its finite element approximation: Find
uh ∈ V h such that

a(uh, vh) =

∫
Ω

(∇uh) · (∇vh) dΩ =

∫
Ω

f · vh dΩ = (f , vh) ∀ vh ∈ V h

Let Ω = [0, 1]× [0, 1] and f is chosen such that

u(x , y) = sin(5πx(1− x)) sin(4πy(1− y))
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Build the mesh

To build a square mesh on
Ω = [0, 1]× [0, 1], we can simply use:

int n=10;
mesh Th=square(n,n);

or, more flexible code can be written:

int n=10, m=10;
real x0=0.0, x1=1.0;
real y0=0.0, y1=0.0;
mesh Th=square(n,m,
[x0+(x1-x0)*x,y0+(y1-y0)*y]);
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Declare the FE Space and Functions

We will use P1 elements for uh and vh:

fespace Vh(Th,P1);

Declaring functions in V h is easy:

Vh uh, vh;

We specify the right-hand side and boundary functions:

func f=-1.0*(-sin(5*pi*x*(1-x))*pow(5*pi*(1-x)-5*pi*x,2)*sin(4*pi*y*(1-y))

-10*cos(5*pi*x*(1-x))*pi*sin(4*pi*y*(1-y))

-sin(5*pi*x*(1-x))*sin(4*pi*y*(1-y))*pow(4*pi*(1-y)-4*pi*y,2)

-8*sin(5*pi*x*(1-x))*cos(4*pi*y*(1-y))*pi);

func g=0;
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Write the Variational Forms and Problem Statement

We can code

a(uh, vh) =

∫
Ω

(∇uh) · (∇vh) dΩ =

∫
Ω

(uxvx + uyvy ) dΩ

with

int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))

and (f , vh) as

int2d(Th)(f*vh)

Then by adding the boundary conditions, we can write our problem statement:

problem poisson(uh,vh) = int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
-int2d(Th)(f*vh)
+ on(1,2,3,4,uh=g) ;
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Solving the Problem and Viewing the Solution

The problem is solved by
simply executing the problem
statement:

poisson;

Then we can plot the solution:

plot(uh,fill=1,value=1);
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Error Calculations

As this problem has an analytic solution, we can compute the L2 and H1

errors associated with our approximation. First define the true solution and its
derivatives:

func utrue=sin(5*pi*x*(1-x))*sin(4*pi*y*(1-y));

func utruex=cos(5*pi*x*(1-x))*(5*pi*(1-x)-5*pi*x)*sin(4*pi*y*(1-y));

func utruey=sin(5*pi*x*(1-x))*cos(4*pi*y*(1-y))*(4*pi*(1-y)-4*pi*y);

Then we can compute the quantities

‖u − uh‖0 and ‖u − uh‖1

and print the errors:

real ul2 = sqrt(int2d(Th)((utrue-uh)^2));

real uh1 = sqrt(int2d(Th)(ul2^2 + (utruex-dx(uh))^2+(utruey-dy(uh))^2));

cout << "u L^2 error: " << ul2 << endl;

cout << "u H^1 error: " << uh1 << endl;
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The Entire Program

int n=10;

mesh Th=square(n,n);

fespace Vh(Th,P1);

Vh uh, vh;

func f=-1.0*(-sin(5*pi*x*(1-x))*pow(5*pi*(1-x)-5*pi*x,2)*sin(4*pi*y*(1-y))

-10*cos(5*pi*x*(1-x))*pi*sin(4*pi*y*(1-y))

-sin(5*pi*x*(1-x))*sin(4*pi*y*(1-y))*pow(4*pi*(1-y)-4*pi*y,2)

-8*sin(5*pi*x*(1-x))*cos(4*pi*y*(1-y))*pi);

func g=0;

problem poisson(uh,vh) = int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))

-int2d(Th)(f*vh)

+ on(1,2,3,4,uh=g) ;

poisson;

plot(uh,fill=1,value=1);
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Convergence to the Exact Solution

As theory predicts, we have

‖u − uh‖0 ≤ Ch2 and ‖u − uh‖1 ≤ Ch

n ‖u − uh‖0 rate ‖u − uh‖1 rate
10 0.087719 2.43762
20 0.024366 1.85 1.27541 0.93
40 0.006278 1.96 0.64626 0.98
80 0.001582 1.99 0.32425 1.00

160 0.000396 2.00 0.16227 1.00
320 0.000099 2.00 0.08115 1.00
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Plot of Solution on Finest Mesh

IsoValue

-0.796914

-0.662152

-0.57231

-0.482468

-0.392626

-0.302784

-0.212943

-0.123101

-0.0332591

0.0565827

0.146424

0.236266

0.326108

0.41595

0.505792

0.595633

0.685475

0.775317

0.865159

1.08976
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Description of the Stokes Problem

Recall the discrete Stokes problem: Find (uh, ph) where

a(uh, vh) + b(ph, vh) = (f, vh) ∀ vh ∈ Vh ,

b(qh,uh) = 0 ∀ qh ∈ Qh .

Here

a(uh, vh) =

∫
Ω

∇uh : ∇vh dΩ =

∫
Ω

(
uh

1,xv
h
1,x + uh

2,xv
h
2,x + uh

1,yv
h
1,y + uh

2,yv
h
2,y

)
dΩ

and

b(qh,uh) =

∫
Ω

qh div uh dΩ =

∫
Ω

qh
(
uh

1,x + uh
2,y

)
dΩ
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The Driven Cavity

A square cavity is
filled with fluid

The horizontal
velocity at the top of
the cavity is set to 1

f = 0

Ω

uΓtop = [1, 0]T

uΓ\Γtop = [0, 0]T

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Sample FreeFem++ Programs :: Stokes Problem 38 / 53

The Driven Cavity

A square cavity is
filled with fluid

The horizontal
velocity at the top of
the cavity is set to 1

f = 0

Ω

uΓtop = [1, 0]T

uΓ\Γtop = [0, 0]T

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Sample FreeFem++ Programs :: Stokes Problem 38 / 53

The Driven Cavity

A square cavity is
filled with fluid

The horizontal
velocity at the top of
the cavity is set to 1

f = 0

Ω

uΓtop = [1, 0]T

uΓ\Γtop = [0, 0]T

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Sample FreeFem++ Programs :: Stokes Problem 38 / 53

The Driven Cavity

A square cavity is
filled with fluid

The horizontal
velocity at the top of
the cavity is set to 1

f = 0

Ω

uΓtop = [1, 0]T

uΓ\Γtop = [0, 0]T

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Sample FreeFem++ Programs :: Stokes Problem 38 / 53

The Driven Cavity

A square cavity is
filled with fluid

The horizontal
velocity at the top of
the cavity is set to 1

f = 0

Ω

uΓtop = [1, 0]T

uΓ\Γtop = [0, 0]T

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Sample FreeFem++ Programs :: Stokes Problem 38 / 53

The Driven Cavity

A square cavity is
filled with fluid

The horizontal
velocity at the top of
the cavity is set to 1

f = 0

Ω

uΓtop = [1, 0]T

uΓ\Γtop = [0, 0]T

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Sample FreeFem++ Programs :: Stokes Problem 39 / 53

FreeFem++ code for Stokes Driven Cavity Problem

int n=3;
mesh Th=square(10*n,10*n);

fespace Vh(Th,P1b);
fespace Qh(Th,P1);

Vh u1,u2,v1,v2;
Qh p,q;

solve stokes([u1,u2,p],[v1,v2,q]) =
int2d(Th)(dx(u1)*dx(v1)+dy(u1)*dy(v1)
+ dx(u2)*dx(v2)+ dy(u2)*dy(v2)
+ dx(p)*v1 + dy(p)*v2 + q*(dx(u1)+dy(u2)))
+ on(1,2,4,u1=0,u2=0) + on(3,u1=1,u2=0);

plot(p,[u1,u2],fill=1);
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Driven Cavity Problem Results
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Mixed Finite Elements used for Stokes

The spaces Vh and Qh have to be chosen so that they satisfy the inf-sup
condition:

inf
0 6=qh∈Qh

sup
0 6=vh∈Vh

(qh,∇ · vh)

‖vh‖1‖qh‖0
≥ C

One choice of Vh and Qh that satisfies the condition is:

fespace Vh(Th,P1b);
fespace Qh(Th,P1);

i.e., Vh =
{
v ∈ V : v |K = (P1

b (K ))2
}

and Qh =
{
q ∈ Q : q|K = P1(K )

}
.

Warning: using elements that do not satisfy the mathematical framework can
produce disastrous results!
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An Example of Incompatible Elements

One choice of Vh and Qh

that does NOT satisfy the
compatibility condition is:

fespace Vh(Th,P1);
fespace Qh(Th,P1);
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Some Advanced Topics

Nonlinear Problems

Input/Output

Adaptive Mesh Refinement

Scripting/GNUplot

Advanced Meshing

Skip Advanced Topics
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Nonlinear Problems

For nonlinear PDEs, the discrete problem results in a nonlinear system of
equations

To solve this system of nonlinear equations, an iterative method is
required, such as Newton’s Method

You can use the Fréchet Derivative to linearize a nonlinear system about
a known solution

Then construct a linear approximation to the original problem using the
derivative
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The Steady Navier-Stokes Equations

The original steady-state Navier-Stokes discrete problem: Find (uh, ph) where

a(uh, vh) + b(ph, vh) + (uh · ∇uh, vh) + b(qh,uh)

= (f, vh) ∀ (vh, qh) ∈ Vh × Qh .

Linearization of the problem for use in a Newton Iteration: Given (uh
0, p

h
0), for

i = 1, 2, . . ., find (uh
i , p

h
i ) where

a(uh
i , v

h) + b(ph
i , vh) + (uh

i · ∇uh
i−1, v

h) + (uh
i · ∇uh

i−1, v
h) + b(qh,uh

i )

= (f, vh) + (uh
i−1 · ∇uh

i−1, v
h) ∀ (vh, qh) ∈ Vh × Qh .
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i , vh) + (uh

i · ∇uh
i−1, v

h) + (uh
i · ∇uh

i−1, v
h) + b(qh,uh

i )

= (f, vh) + (uh
i−1 · ∇uh

i−1, v
h) ∀ (vh, qh) ∈ Vh × Qh .
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FreeFem++ code for Navier-Stokes Nonlinear Iteration

Vh u1,u2,v1,v2,u1o,u2o;

Qh p,q;

problem navierstokes([u1,u2,p],[v1,v2,q]) =

int2d(Th)( dx(u1)*dx(v1)+dy(u1)*dy(v1)+ dx(u2)*dx(v2)+ dy(u2)*dy(v2)

+ dx(p)*v1 + dy(p)*v2 + q*(dx(u1)+dy(u2))

+ (u1*dx(u1o)+u2*dy(u1o))*v1 + (u1*dx(u2o)+u2*dy(u2o))*v2

+ (u1o*dx(u1)+u2o*dy(u1))*v1 + (u1o*dx(u2)+u2o*dy(u2))*v2

- (u1o*dx(u1o)+u2o*dy(u1o))*v1 - (u1o*dx(u2o)+u2o*dy(u2o))*v2

- (f1*v1 + f2*v2) )

+ on(1,2,3,4,u1=0,u2=0);

u1 = 0;

u2 = 0;

for(i=0;i<=10;i++) {

u1o = u1;

u2o = u2;

navierstokes;

}
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Input/Output

Sample file manipulation:

ofstream uout("./data/u2.6.out");

uout << u[];

ifstream uin("./data/u2.6.out");

uin >> u[];

Sample command-line input and output:

int i, j, n, m;

real d=2.0, xx=0.0, yy=0.0;

cout << "Enter the number of x and y data points desired: " << endl;

cin >> n >> m;

func f=sin(d*pi*x)*cos((d+1)*pi*y);

for (j=0;j<m;j++) {

yy = 1.0*j/(m-1);

for (i=0;i<n;i++) {

xx = 1.0*i/(n-1);

cout << f(xx,yy) << " ";

}

cout << endl;

}

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Advanced Topics 47 / 53

Input/Output

Sample file manipulation:

ofstream uout("./data/u2.6.out");

uout << u[];

ifstream uin("./data/u2.6.out");

uin >> u[];

Sample command-line input and output:

int i, j, n, m;

real d=2.0, xx=0.0, yy=0.0;

cout << "Enter the number of x and y data points desired: " << endl;

cin >> n >> m;

func f=sin(d*pi*x)*cos((d+1)*pi*y);

for (j=0;j<m;j++) {

yy = 1.0*j/(m-1);

for (i=0;i<n;i++) {

xx = 1.0*i/(n-1);

cout << f(xx,yy) << " ";

}

cout << endl;

}

Chrispell and Howell


C L E M S O N

M A T H E M A T I C A L

S C I E N C E S


Finite Element Approximation of Partial Differential Equations Using FreeFem++



Advanced Topics 48 / 53

Adaptive Mesh Refinement

FreeFem++ has built-in mesh
adaptivity routines.

func f = 10.0*x^3+y^3

+atan2(0.0001,sin(5.0*y)-2.0*x);

mesh Th=square(5,5,[-1+2*x,-1+2*y]);

fespace Vh(Th,P1);

Vh fh=f;

plot(fh);

for (int i=0;i<2;i++) {

Th=adaptmesh(Th,fh);

fh=f;

plot(Th,fh);

}
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Scripting

FreeFem++ will allow for command
line scripting:

string plotdata = "poisson" + n + ".sol";

{ofstream PlotFile(plotdata);

for (int i=0; i <=n ; i++){

for (int j=0; j<=n ; j++){

PlotFile << (0.0+i*(1.0/n))

<< " " << (0.0+j*(1.0/n))

<< " " << uh( (0.0+i*(1.0/n))

, (0.0+j*(1.0/n)))

<< endl;

}

PlotFile << endl;

}

}

exec("echo ’ set parametric \n" +

" set term postscript eps

enhanced color solid \n" +

" set hidden \n" +

" set contour base \n" +

" set data style lines \n " +

" set output \"" + plotdata + ".eps\" \n" +

" splot \"" + plotdata + "\" \n" +

" ’|gnuplot ");

Adding this code to the Poisson
example produces:

"poisson30.sol"
     0.5
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 0
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 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

Useful for:

3D plotting

LATEXerror reports

Calling C or other code.
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Advanced Meshing

Meshes can be created by parametrizations of the boundary:

border a0(t=0,1){x=2*t; y=0; label=1;}

border a1(t=0,1){x=2+1.5*t; y=0; label=1;}

border a2(t=0,1){x=3.5+t; y=0; label=1;}

border a3(t=0,1){x=4.5+3.5*t; y=0; label=1;}

border a4(t=0,1){x=8; y=0.125*t; label=2;}

border a5(t=0,1){x=8; y=0.125+0.125*t;label=2;}

border a6(t=0,1){x=8-3.5*t; y=0.25; label=3;}

border a7(t=0,1){x=4.5-0.5*t; y=0.25; label=3;}

border a8(t=0,1){x=4; y=0.25+0.125*t; label=4;}

border a9(t=0,1){x=4; y=0.375+0.25*t; label=4;}

border a10(t=0,1){x=4; y=0.625+0.375*t;label=4;}

border a11(t=0,1){x=4-0.5*t; y=1; label=5;}

border a12(t=0,1){x=3.5-1.5*t; y=1; label=5;}

border a13(t=0,1){x=2-2*t; y=1; label=5;}

border a14(t=0,1){x=0; y=1-0.375*t; label=6;}

border a15(t=0,1){x=0; y=0.625-0.25*t; label=6;}

border a16(t=0,1){x=0; y=0.375-0.25*t; label=6;}

border a17(t=0,1){x=0; y=0.125-0.125*t;label=6;}

n=3;

Th= buildmesh(a0(4*n)+a1(4*n)+a2(8*n)+a3(4*n)//bottom edge

+a4(2*n)+a5(4*n)//outflow edge

+a6(4*n)+a7(4*n)//top of contraction channel

+a8(4*n)+a9(4*n)+a10(4*n)//contraction wall

+a11(4*n)+a12(4*n)+a13(4*n)//top of inflow channel

+a14(4*n)+a15(4*n)+a16(8*n)+a17(2*n));//inflow wall*/
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Contraction Flow Mesh

The top half of a 4:1 contraction flow for fluids:
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Advanced Meshing, part 2

You can even create really cool meshes:
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Concluding Remarks

The Finite Element Method provides a very nice mathematical framework
for the numerical approximation of partial differential equations.

Implementing the FEM in code requires substantial programming effort
and complexity - although everyone who uses the FEM should know
“how” to implement it!

FreeFem++ provides a way to use the FEM without a substantial
investment of time in programming.

FreeFem++ is highly flexible and allows easy implementation of new
algorithms or ideas in the numerical approximation of PDEs.
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