
6: Using OpenMP

http://people.sc.fsu.edu/∼jburkardt/presentations/
fdi 2008 lecture6.pdf

..........
John Burkardt

Information Technology Department
Virginia Tech

..........
FDI Summer Track V:
Parallel Programming

10-12 June 2008

Burkardt Using OpenMP

Using OpenMP

It’s time to take a closer look at how OpenMP works.

OpenMP Environment Variables and Functions

Parallel Control Structures

SATISFY: Parallel Computing Without Loops

Data Classification (Shared/Private)

Data Dependency

Burkardt Using OpenMP

OpenMP Environment

OpenMP uses internal data which can be of use or interest.

In a few cases, the user can set some of these values by means of a
Unix environmental variable.

There are also functions the user may call to get or set this
information.

Burkardt Using OpenMP

OpenMP Environment

You can set:

maximum number of threads - most useful!

details of how to handle loops, nesting, and so on

You can get:

number of “processors” (=cores) are available

individual thread id’s

maximum number of threads

wall clock time

Burkardt Using OpenMP

OpenMP Environment: Variables

If you are working on a UNIX system, you can “talk” to OpenMP
by setting certain environment variables.

The syntax for setting such variables varies slightly, depending on
the shell you are using.

Many people use this method in order to specify the number of
threads to be used. If you don’t set this variable, your program
runs on one thread.

Burkardt Using OpenMP

OpenMP Environment: Variables

There are just 4 OpenMP environment variables:

OMP NUM THREADS, maximum number of threads

OMP DYNAMIC, allows dynamic thread adjustment

OMP NESTED, allows nested parallelism, default 0/FALSE

OMP SCHEDULE, determines how loop work is divided up

Burkardt Using OpenMP

OpenMP Environment: Variables

Determine your shell by:

echo $SHELL

Set the number of threads in the Bourne, Korn and Bash shells:

export OMP NUM THREADS=4

In the C or T shells, use a command like

setenv OMP NUM THREADS 4

To verify:

echo $OMP NUM THREADS

Burkardt Using OpenMP

OpenMP Environment: Functions

OpenMP environment functions include:

omp set num threads (t num)

t num = omp get num threads ()

p num = omp get num procs ()

t id = omp get thread num ()

wtime = omp get wtime()

Burkardt Using OpenMP

OpenMP Environment: How Many Threads May I Use?

A thread is one of the “workers” that OpenMP assigns to help do
your work.

There is a limit of

1 thread in the sequential sections.

T NUM threads in the parallel sections.

Burkardt Using OpenMP

OpenMP Environment: How Many Threads May I Use?

T NUM

has a default for your computer.

can be initialized by setting OMP NUM THREADS before
execution

can be reset by calling omp set num threads(t num)

can be checked by calling t num=omp get num threads()

Burkardt Using OpenMP

OpenMP Environment: How Many Threads Should I Use?

If T NUM is 1, then you get no parallel speed up at all, and
probably actually slow down.

You can set T NUM much higher than the number of processors;
some threads will then “share” a processor.

Reasonable: one thread per processor.

p_num = omp_get_num_procs ();

t_num = p_num;

omp_set_num_threads (t_num);

These three commands can be compressed into one.

Burkardt Using OpenMP

OpenMP Environment: Which Thread Am I Using?

In any parallel section, you can ask each thread to identify itself,
and assign it tasks based on its index.

!$omp parallel

t_id = omp_get_thread_num ()

write (*, *) ’Thread ’, t_id, ’ is running.’

!$omp end parallel

Burkardt Using OpenMP

OpenMP Environment: How Much Time Has Passed?

You can take “readings” of the wall clock time before and after a
parallel computation.

wtime = omp_get_wtime ();

#pragma omp parallel for

for (i = 0; i < n; i++)

{

Do a lot of work in parallel;

}

wtime = omp_get_wtime () - wtime;

cout << "Work took " << wtime << " seconds.\n";

Burkardt Using OpenMP

OpenMP Environment: How Much Time Has Passed?

You can take “readings” of the wall clock time before and after a
parallel computation.

wtime = omp_get_wtime ();

#pragma omp parallel for

for (i = 0; i < n; i++)

{

Do a lot of work in parallel;

}

wtime = omp_get_wtime () - wtime;

cout << "Work took " << wtime << " seconds.\n";

Burkardt Using OpenMP

”Hiding” Parallel Code

OpenMP tries to make it possible for you to have your sequential
code and parallelize it too. In other words, a single program file
should be able to be run sequentially or in parallel, simply by
turning on the directives.

This isn’t going to work so well if we have these calls to
omp get wtime or omp get proc num running around. They
will cause an error when the program is compiled and loaded
sequentially, because the OpenMP library will not be available.

Fortunately, you can “comment out” all such calls, just as you do
the directives, or, in C and C++, check whether the symbol
OPENMP is defined.

Burkardt Using OpenMP

Hiding Parallel Code in C++

ifdef _OPENMP

include <omp.h>

endif

ifdef _OPENMP

wtime = omp_get_wtime ();

endif

#pragma omp parallel for

for (i = 0; i < n; i++){

Do a lot of work in parallel; }

ifdef _OPENMP

wtime = omp_get_wtime () - wtime;

cout << "Work took " << wtime << " seconds.\n";

else

cout << "Elapsed time not measured.\n";

endif

Burkardt Using OpenMP

Hiding Parallel Code in FORTRAN90

!$omp use omp_lib

!$omp wtime = omp_get_wtime ()

!$omp parallel do

do i = 1, n

Do a lot of work in parallel;

end do

!$omp end parallel do

!$omp wtime = omp_get_wtime () - wtime

!$omp write (*, *) ’Work took’, wtime, ’ seconds.’

Burkardt Using OpenMP

Parallel Control Structures, Loops

#pragma omp parallel for

for (i = ilo; i <= ihi; i++)

{

C/C++ code to be performed in parallel

}

!$omp parallel do

do i = ilo, ihi

FORTRAN code to be performed in parallel

end do

!$omp end parallel do

Burkardt Using OpenMP

Parallel Control Structure, Loops

FORTRAN Loop Restrictions:

The loop must be a do loop of the form;

do i = low, high (, increment)

The limits low, high (and increment if used), cannot change
during the iteration.

The program cannot jump out of the loop, using an exit or goto.

The loop cannot be a do while, and it cannot be a do with no
iteration limits.

Burkardt Using OpenMP

Parallel Control Structure, Loops

C Loop Restrictions:

The loop must be a for loop of the form:

for (i = low; i < high; increment)

The limits low and high cannot change during the iteration;

The increment (or decrement) must be by a fixed amount.

The program cannot break from the loop.

Burkardt Using OpenMP

Parallel Control Structures, No Loop

It is possible to set up parallel work without a loop.

In this case, the user can assign work based on the ID of each
thread.

For instance, if the computation models a crystallization process
over time, then at each time step, half the threads might work on
updating the solid part, half the liquid.

If the size of the solid region increases greatly, the proportion of
threads assigned to it could be increased.

Burkardt Using OpenMP

Parallel Control Stuctures, No Loop, C/C++

#pragma omp parallel

{

t_id = omp_get_thread_num ();

if (t_id % 2 == 0)

{

solid_update ();

}

else

{

liquid_update ();

}

}

Burkardt Using OpenMP

Parallel Control Stuctures, No Loop, FORTRAN

!$omp parallel

t_id = omp_get_thread_num ()

if (mod (t_id, 2) == 0) then

call solid_update ()

else if (mod (t_id, 4) == 1) then

call liquid_update ()

else if (mod (t_id, 4) == 3) then

call gas_update ()

end if

!$omp end parallel

(Now we’ve added a gas update task as well.)

Burkardt Using OpenMP

Parallel Control Structures, WORKSHARE

FORTRAN90 expresses implicit vector operations using colon
notation.

OpenMP includes the WORKSHARE directive, which says that
the marked code is to be performed in parallel.

The directive can also be used to parallelize the FORTRAN90
WHERE and the FORTRAN95 FORALL statements.

Burkardt Using OpenMP

Parallel Control Stuctures, FORTRAN90

!$omp workshare

y(1:n) = a * x(1:n) + y(1:n)

!$omp end workshare

!$omp workshare

where (x(1:n) /= 0.0)

y(1:n) = log (x(1:n))

elsewhere

y(1:n) = 0.0

end where

!$omp end workshare

Burkardt Using OpenMP

Parallel Control Stuctures, FORTRAN95

!$omp workshare

forall (i = k+1:n,j = k+1:n)

a(i,j) = a(i,j) - a(i,k) * a(k,j)

end forall

!$omp end workshare

(This calculation corresponds to one of the steps of Gauss
elimination or LU factorization)

Burkardt Using OpenMP

SATISFY: Parallel Computing Without Loops

OpenMP is easiest to use with loops.

Here is an example where we get parallel execution without using
loops.

Doing the problem this way will make OpenMP seem like a small
scale version of MPI.

Burkardt Using OpenMP

SATISFY: Problem specification

What sets of 16 logical input values X will cause the following
function to have the value TRUE?

f(x) = (x(1) || x(2)) && (!x(2) || !x(4)) &&

(x(3) || x(4)) && (!x(4) || !x(5)) &&

(x(5) || !x(6)) && (x(6) || !x(7)) &&

(x(6) || x(7)) && (x(7) || !x(16)) &&

(x(8) || !x(9)) && (!x(8) || !x(14)) &&

(x(9) || x(10)) && (x(9) || !x(10)) &&

(!x(10) || !x(11)) && (x(10) || x(12)) &&

(x(11) || x(12)) && (x(13) || x(14)) &&

(x(14) || !x(15)) && (x(15) || x(16))

Burkardt Using OpenMP

SATISFY: Problem specification

Sadly, there is no clever way to solve a problem like this in general.
You simply try every possible input.

How do we generate all the inputs?

Can we divide the work among multiple processors?

Burkardt Using OpenMP

SATISFY: Algorithm Design

There are 216 = 65, 536 distinct input vectors.

There is a natural correspondence between the input vectors and
the integers from 0 to 65535.

We can divide the range [0,65536] into T NUM distinct (probably
unequal) subranges.

Each thread can generate its input vectors one at a time, evaluate
the function, and print any successes.

Burkardt Using OpenMP

SATISFY: Program Design

#pragma omp parallel

{

T_NUM = omp_get_num_threads ();

T_ID = omp_get_thread_num ();

ILO = (T_ID) * 65535 / T_NUM;

IHI = (T_ID + 1) * 65535 / T_NUM;

for (I = ILO; I < IHI; I++)

{

X[0:15] <= I (set binary input)

VALUE = F (X) (evaluate function)

if (VALUE) print X

end

}

Burkardt Using OpenMP

SATISFY: FORTRAN90 Implementation

thread num = omp get num threads ()
s o l u t i on num = 0

! $omp p a r a l l e l p r i v a t e (i , i l o , i h i , j , va lue , x) &
! $omp sha r ed (n , thread num) &
! $omp r e d u c t i o n (+ : so l u t i on num)

i d = omp get thread num ()
i l o = i d ∗ 65536 / thread num
i h i = (i d + 1) ∗ 65536 / thread num

j = i l o
do i = n , 1 , −1

x (i) = mod (j , 2)
j = j / 2

end do

do i = i l o , i h i − 1
va l u e = c i r c u i t v a l u e (n , x)
i f (v a l u e == 1) then

s o l u t i on num = so lu t i on num + 1
wr i t e (∗ , ’ (2 x , i2 , 2 x , i10 , 3 x , 16 i 2) ’) so lu t i on num , i − 1 , x (1 : n)

end i f
c a l l bve c ne x t (n , x)

end do
! $omp end p a r a l l e l

Burkardt Using OpenMP

SATISFY: Observations

I wanted an example where parallelism didn’t require a for or do
loop. The loop you see is carried out entirely by one (each) thread.

The “implicit loop” occurs when when we begin the parallel
section and we generate all the threads.

The idea to take from this example is that the environment
functions allow you to set up your own parallel structures in cases
where loops aren’t appropriate.

Burkardt Using OpenMP

Data Classification (Private/Shared)

The very name “shared memory” suggests that the threads share
one set of data that they can all “touch”.

By default, OpenMP assumes that all variables are to be shared –
with the exception of the loop index in the do or for statement.

It’s obvious why each thread will need its own copy of the loop
index. Even a compiler can see that!

However, some other variables may need to be treated specially
when running in parallel. In that case, you must explicitly tell the
compiler to set these aside as private variables.

It’s a good practice to explicitly declare all variables in a loop.

Burkardt Using OpenMP

Data Classification (Private/Shared)

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do

end do

end do

Burkardt Using OpenMP

Data Classification (Private/Shared)

I’ve had to cut this example down a bit. So let me point out that
coord and f are big arrays of spatial coordinates and forces.

The variable n is counting particles, and where you see a 3, that’s
because we’re in 3-dimensional space.

The mysterious pfun is a function that evaluates a factor that will
modify the force.

You should list all the variables that show up in this loop, and try
to determine if they are shared or private.

Burkardt Using OpenMP

Data Classification (Private/Shared)

!$omp parallel do private (i, j, k, d, dif) &

!$omp shared (n, coord, f)

do i = 1, n

do j = 1, n

d = 0.0

do k = 1, 3

dif(k) = coord(k,i) - coord(k,j)

d = d + dif(k) * dif(k)

end do

do k = 1, 3

f(k,i) = f(k,i) - dif(k) * pfun (d) / d

end do

end do

end do

!$omp end parallel do
Burkardt Using OpenMP

Data Classification (Private/Shared/Reduction)

We have already seen examples where a variable was used to collect
a sum. We had to use the reduction clause to handle this case.

If a variable is declared in a reduction clause, it does not also get
declared as private or shared!

(A “reduction” variable has some features of both shared and
private variables.)

Burkardt Using OpenMP

Data Classification (Private/Shared/Reduction)

Suppose in FORTRAN90 we need the maximum of a vector.

x_max = - huge (x_max) ---+

do i = 1, n |

x_max = max (x_max, x(i)) | Loop #1

end do ---+

x_max = maxval (x(1:n)) ---> Loop #2

In loop #2, we give the compiler freedom to do the calculation the
best it can. Is this always the solution? In an actual computation,
we might only compute the vector X one element at a time, so we
would never have an actual array to process.

Please suggest how we would parallelize loop #1 or loop #2!

Burkardt Using OpenMP

Data Classification (Private/Shared/Reduction)

!$omp parallel do private (i) shared (n, x) &

!$omp reduction (max : x_max)

do i = 1, n

x_max = max (x_max, x(i))

end do

!$omp end parallel do

!$omp parallel workshare

x_max = maxval (x(1:n))

!$omp end parallel workshare

Burkardt Using OpenMP

Data Classification (Private/Shared/Reduction)

In Loop #1, could we also do this?

!$omp parallel do private (i) shared (n, x) &

!$omp reduction (max : big)

do i = 1, n

if (big < x(i)) then

big = x(i)

end if

end do

!$omp end parallel do

(Yes, but we should initialize big or the sequential code will be
incorrect.)

Burkardt Using OpenMP

Random Numbers and OpenMP

Random numbers are a vital part of many algorithms. But you
must be sure that your random number generator behaves properly.

It is acceptable (but hard to check) that your parallel random
numbers are at least “similarly distributed.”

It would be ideal if you could generate the same stream of random
numbers whether in sequential or parallel mode.

Burkardt Using OpenMP

Random Numbers and OpenMP

Most random number generators work by repeatedly ”scrambling”
an integer value called the seed. One kind of scrambling is the
linear congruential generator:

SEED = (A * SEED + B) modulo C

If you want a real number returned, this is computed indirectly, by
an operation such as

R = (double) SEED / 2147483647.0

Most random number generators hide the seed internal in static
memory, initialized to a default value, which you can see or change
only by calling the appropriate routine.

Burkardt Using OpenMP

Random Numbers and OpenMP

Some system random number generators will work properly under
OpenMP, but it’s very important to test them. Initialize the seed
to 123456789 (for example), and compute 20 random values
sequentially. Repeat the process in parallel and compare.

SEED = (A * SEED + B) modulo C

If you want a real number returned, this is computed indirectly, by
an operation such as

R = (double) SEED / 2147483647.0

Most random number generators hide the seed internal in static
memory, initialized to a default value, which you can see or change
only by calling the appropriate routine.

Burkardt Using OpenMP

Random Numbers and OpenMP

include ...stuff...

int main (void)

{

int i;

unsigned int seed = 123456789;

double y[20];

srand (seed);

for (i = 0; i < 20; i++)

{

y[i] = (double) rand () / (double) RAND_MAX;

}

return 0;

}

Burkardt Using OpenMP

Random Numbers and OpenMP

Make a parallel version of this program and compare the results.
But even if you happen to get the same results, I still am not
comfortable with this!

If you can, you should seek a random number function whose seed
is an explicit argument.

Secondly, it seems to me you can’t in general, hope to set up a
random number generator that allows you to compute the ”50th”
random number immediately, because of the way they are set up.

So perhaps a compromise is this: use a parallel section, set a seed
based on the thread index, and then start a loop.

Burkardt Using OpenMP

Random Numbers and OpenMP

#omp pragma parallel private (i, id, r, seed)

id = omp_get_thread_num ();

seed = 123456789 * id

for (i = 0; i < 1000; i++)

{

r = my_random (seed);

(do stuff with random number r)

}

#omp pragma end parallel

Burkardt Using OpenMP

Random Numbers and OpenMP

Do you see why I have made my choices this way?

Do you see why I am still unhappy with this setup? (we’re not
really emulating a sequential version.) (when you pick several seed
arbitrary, it’s actually possible for one sequence to overlap another)

After setting SEED, could I call srand (seed) and then use the
system rand() function?

Note that, for MPI, there is at least one package, called SPRNG,
which can generate random numbers that are guaranteed to be
well distributed.

Burkardt Using OpenMP

Data Dependency - Adding Digits Base B

Suppose vectors X and Y contain digits base B, and that Z is to
hold the base B representation of their sum. (Let’s assume for
discussion that base B is 10).

Adding is easy. But then we have to carry. Every entry of Z that is
B or greater has to have the excess subtracted off and carried to
the next higher digit. This works in one pass of the loop only if we
start at the lowest digit.

And adding 1 to 9,999,999,999 shows that a single carry operation
could end up changing every digit we have.

Burkardt Using OpenMP

Data Dependency

do i = 1, n

z(i) = x(i) + y(i)

end do

overflow = .false.

do i = 1, n

carry = z(i) / b

z(i) = z(i) - carry * b

if (i < n) then

z(i+1) = z(i+1) + carry

else

overflow = .true.

end if

end do

Burkardt Using OpenMP

Data Dependency - Adding Digits Base B

In the carry loop, notice that on the I-th iteration, we might write
(modify) both z[i] and z[i+1].

In parallel execution, the value of z[i] used by iteration I might be
read as 17, then iteration I-1, which is also executing, might
change the 17 to 18 because of a carry, but then iteration I, still
working with its temporary copy, might carry the 10, and return
the 7, meaning that the carry from iteration I-1 was lost!

99% of carries in base 10 only affect at most two higher digits. So
if we were desperate to use parallel processing, we could use
repeated carrying in a loop, plus a temporary array z2.

Burkardt Using OpenMP

Data Dependency - Adding Digits Base B

do

!$omp workshare

z2(1) = mod (z(1) , b)

z2(2:n) = mod (z(2:n), b) + z(1:n-1) / b

z(1:n) = z2(1:n)

done = all (z(1:n-1) / b == 0)

!$omp end workshare

if (done)

exit

end if

end do

Burkardt Using OpenMP

Of Things Not Said

Although OpenMP is a relatively simple programming system,
there is a lot we have not covered.

Here is an example of a simple problem that OpenMP can handle
using ideas I haven’t discussed.

In Gauss elimination, you need to find the maximum entry in an
array. Well, we know how to do that. But actually, you need the
index of the maximum entry in the array. This is like a reduction
variable, but the reduction clause doesn’t include this category.

OpenMP can solve this problem by having a shared variable that
has an associated ”lock”. The lock implies that, if a thread wants
to modify the value, it has to request that it be given temporary
access to the variable, during which other threads cannot change it.

Burkardt Using OpenMP

Of Things Not Said

OpenMP can also mark a section of the loop as ”critical” which
means that only one thread at a time can be executing those
instructions.

There are also ways to override the default rules for how the work
in a loop is divided, to force threads to wait for an event, and
other items to orchestrate your program’s execution.

Debugging a parallel programming can be quite difficult. If you are
familiar with the Berkeley dbx or Gnu gdb debuggers, these have
been extended to deal with multithreaded programs. There is also
a program called TotalView with an intuitive graphical interface.

Burkardt Using OpenMP

Of Things Not Said

Good references include:

1 Chandra, Parallel Programming in OpenMP

2 Chapman, Using OpenMP

3 Petersen, Arbenz, Introduction to Parallel Programming

4 Quinn, Parallel Programming in C with MPI and OpenMP

Burkardt Using OpenMP

