function [ n_data, order ] = frobenius_number_order_values ( n_data )
%*****************************************************************************80
%
%% frobenius_number_order_values() returns orders of the Frobenius problem.
%
% Discussion:
%
% This routine returns the order or size of a Frobenius problem.
% To get the corresponding data, call FROBENIUS_NUMBER_DATA_VALUES.
%
% The Frobenius number of order N and data C is the solution of a Frobenius
% coin sum problem for N coin denominations C(1) through C(N).
%
% The Frobenius coin sum problem assumes the existence of
% N coin denominations, and asks for the largest value that cannot
% be formed by any combination of coins of these denominations.
%
% The coin denominations are assumed to be distinct positive integers.
%
% For general order N, this problem is fairly difficult to handle.
%
% For order N = 2, it is known that:
%
% * if C1 and C2 are not relatively prime, then
% there are infinitely large values that cannot be formed.
%
% * otherwise, the largest value that cannot be formed is
% C1 * C2 - C1 - C2, and that exactly half the values between
% 1 and C1 * C2 - C1 - C2 + 1 cannot be represented.
%
% As a simple example, if C1 = 2 and C2 = 7, then the largest
% unrepresentable value is 5, and there are (5+1)/2 = 3
% unrepresentable values, namely 1, 3, and 5.
%
% For a general N, and a set of coin denominations C1, C2, ..., CN,
% the Frobenius number F(N, C(1:N) ) is defined as the largest value
% B for which the equation
%
% C1*X1 + C2*X2 + ... + CN*XN = B
%
% has no nonnegative integer solution X(1:N).
%
% In Mathematica, the Frobenius number can be determined by
%
% FrobeniusNumber[ {C1,...,CN} ]
%
% Licensing:
%
% This code is distributed under the MIT license.
%
% Modified:
%
% 28 November 2007
%
% Author:
%
% John Burkardt
%
% Reference:
%
% Gerard Cornuejols, Regina Urbaniak, Robert Weismantel, Laurence Wolsey,
% Decomposition of Integer Programs and of Generating Sets,
% in Algorithms - ESA '97,
% Lecture Notes in Computer Science 1284,
% edited by R Burkard, G Woeginger,
% Springer, 1997, pages 92-103,
% LC: QA76.9.A43.E83.
%
% Robert Owens,
% An Algorithm to Solve the Frobenius Problem,
% Mathematics Magazine,
% Volume 76, Number 4, October 2003, 264-275.
%
% James Sylvester,
% Question 7382,
% Mathematical Questions with their Solutions,
% Educational Times,
% Volume 41, page 21, 1884.
%
% Stephen Wolfram,
% The Mathematica Book,
% Fourth Edition,
% Cambridge University Press, 1999,
% ISBN: 0-521-64314-7,
% LC: QA76.95.W65.
%
% Input:
%
% integer N_DATA. The user sets N_DATA to 0 before the first call.
% Thereafter, it should simply be the value returned by the previous call.
%
% Output:
%
% integer N_DATA. On each call, the routine increments N_DATA by 1, and
% returns the corresponding data; when there is no more data, the
% output value of N_DATA will be 0 again.
%
% integer ORDER, the order of a Frobenius problem.
%
n_max = 19;
order_vec = [ ...
2, ...
2, ...
2, ...
2, ...
2, ...
2, ...
3, ...
3, ...
3, ...
4, ...
4, ...
5, ...
5, ...
5, ...
6, ...
6, ...
6, ...
7, ...
8 ...
];
if ( n_data < 0 )
n_data = 0;
end
n_data = n_data + 1;
if ( n_max < n_data )
n_data = 0;
order = 0;
else
order = order_vec(n_data);
end
return
end