08-Oct-2025 20:03:05 test_con_test(): MATLAB/Octave version 6.4.0 Test test_con(). There are 20 test functions. p00_option_num_test(): List the number of options for each problem. Problem Options 1 6 2 3 3 4 4 1 5 3 6 5 7 1 8 1 9 13 10 2 11 2 12 6 13 6 14 1 15 1 16 1 17 2 18 1 19 1 20 1 p00_title_test(): List the problem titles Problem Options Title 1 1 Freudenstein-Roth function, (15,-2,0). 1 2 Freudenstein-Roth function, (15,-2,0), x1 limits. 1 3 Freudenstein-Roth function, (15,-2,0), x3 limits. 1 4 Freudenstein-Roth function, (4,3,0). 1 5 Freudenstein-Roth function, (4,3,0), x1 limits. 1 6 Freudenstein-Roth function, (4,3,0), x3 limits. 2 1 Boggs function, (1,0,0). 2 2 Boggs function, (1,-1,0). 2 3 Boggs function, (10,10,0). 3 1 Powell function, (3,6,0). 3 2 Powell function, (4,5,0). 3 3 Powell function, (6,3,0). 3 4 Powell function, (1,1,0). 4 1 Broyden function 5 1 Wacker function, A = 0.1. 5 2 Wacker function, A = 0.5. 5 3 Wacker function, A = 1.0. 6 1 Aircraft function, x(6) = - 0.050. 6 2 Aircraft function, x(6) = - 0.008. 6 3 Aircraft function, x(6) = 0.000. 6 4 Aircraft function, x(6) = + 0.050. 6 5 Aircraft function, x(6) = + 0.100. 7 1 Cell kinetics problem, seeking limit points. 8 1 Riks mechanical problem, seeking limit points. 9 1 Oden problem, VAL=0.00, Target X(1)=4.0, Limits in X(1). 9 2 Oden problem, VAL=0.25, Target X(1)=4.0, Limits in X(1). 9 3 Oden problem, VAL=0.50, Target X(1)=4.0, Limits in X(1). 9 4 Oden problem, VAL=1.00, Target X(1)=4.0, Limits in X(1). 9 5 Oden problem, VAL=0.00, Target X(1)=4.0, Limits in X(2). 9 6 Oden problem, VAL=0.25, Target X(1)=4.0, Limits in X(2). 9 7 Oden problem, VAL=0.50, Target X(1)=4.0, Limits in X(2). 9 8 Oden problem, VAL=1.00, Target X(1)=4.0, Limits in X(2). 9 9 Oden problem, VAL=0.00, Target X(1)=4.0, Limits in X(3). 9 10 Oden problem, VAL=0.25, Target X(1)=4.0, Limits in X(3). 9 11 Oden problem, VAL=0.50, Target X(1)=4.0, Limits in X(3). 9 12 Oden problem, VAL=1.00, Target X(1)=4.0, Limits in X(3). 9 13 Oden problem, VAL=0.00, no targets, no limits. 10 1 Torsion of a square rod, finite difference, PHI(S)=EXP(5*S). 10 2 Torsion of a square rod, finite difference, PHI(S)=two levels. 11 1 Torsion of a square rod, finite element solution. 11 2 Torsion of a square rod, finite element solution. 12 1 Materially nonlinear problem, NPOLYS = 2, NDERIV = 1. 12 2 Materially nonlinear problem, NPOLYS = 4, NDERIV = 1. 12 3 Materially nonlinear problem, NPOLYS = 4, NDERIV = 2. 12 4 Materially nonlinear problem, NPOLYS = 6, NDERIV = 1. 12 5 Materially nonlinear problem, NPOLYS = 6, NDERIV = 2. 12 6 Materially nonlinear problem, NPOLYS = 6, NDERIV = 3. 13 1 Simpson's BVP, F(U) = EXP(U), M = 8. 13 2 Simpson's BVP, F(U) = function 2, M = 8. 13 3 Simpson's BVP, F(U) = EXP(U), M = 12. 13 4 Simpson's BVP, F(U) = function 2, M = 12. 13 5 Simpson's BVP, F(U) = EXP(U), M = 16. 13 6 Simpson's BVP, F(U) = function 2, M = 16. 14 1 Keller's BVP. 15 1 The Trigger Circuit. 16 1 The Moore Spence Chemical Reaction Integral Equation. 17 1 Bremermann Propane Combustion System, fixed pressure. 17 2 Bremermann Propane Combustion System, fixed concentration. 18 1 The Semiconductor Problem. 19 1 Nitric Acid Absorption Flash. 20 1 The Buckling Spring, F(L,Theta,Lambda,Mu). p00_nvar_test(): List the problem size. Problem Option Size 1 1 3 1 2 3 1 3 3 1 4 3 1 5 3 1 6 3 2 1 3 2 2 3 2 3 3 3 1 3 3 2 3 3 3 3 3 4 3 4 1 3 5 1 4 5 2 4 5 3 4 6 1 8 6 2 8 6 3 8 6 4 8 6 5 8 7 1 6 8 1 6 9 1 4 9 2 4 9 3 4 9 4 4 9 5 4 9 6 4 9 7 4 9 8 4 9 9 4 9 10 4 9 11 4 9 12 4 9 13 4 10 1 37 10 2 37 11 1 26 11 2 26 12 1 26 12 2 42 12 3 49 12 4 58 12 5 65 12 6 72 13 1 65 13 2 65 13 3 145 13 4 145 13 5 257 13 6 257 14 1 13 15 1 7 16 1 17 17 1 12 17 2 12 18 1 12 19 1 13 20 1 4 p00_start_test(): Get norms of starting point X0 and F(X0) Problem Option |X0| |F(X0)| 1 1 15.132746 0.000000 1 2 15.132746 0.000000 1 3 15.132746 0.000000 1 4 5.000000 0.000000 1 5 5.000000 0.000000 1 6 5.000000 0.000000 2 1 1.000000 0.000000 2 2 1.414214 0.000000 2 3 14.142136 0.000000 3 1 6.708204 0.000000 3 2 6.403124 0.000000 3 3 6.708204 0.000000 3 4 1.414214 0.000000 4 1 3.026549 0.000000 5 1 0.000000 0.000000 5 2 0.000000 0.000000 5 3 0.000000 0.000000 6 1 0.093139 0.000000 6 2 0.014902 0.000000 6 3 0.000000 0.000000 6 4 0.093139 0.000000 6 5 0.186279 0.000000 7 1 0.000000 0.000000 8 1 0.000000 0.000000 9 1 0.000000 0.000000 9 2 0.250000 0.000000 9 3 0.500000 0.000000 9 4 1.000000 0.000000 9 5 0.000000 0.000000 9 6 0.250000 0.000000 9 7 0.500000 0.000000 9 8 1.000000 0.000000 9 9 0.000000 0.000000 9 10 0.250000 0.000000 9 11 0.500000 0.000000 9 12 1.000000 0.000000 9 13 0.000000 0.000000 10 1 0.000000 0.000000 10 2 0.000000 0.000000 11 1 0.000000 0.000000 11 2 0.000000 0.000000 12 1 0.000000 0.000000 12 2 0.000000 0.000000 12 3 0.000000 0.000000 12 4 0.000000 0.000000 12 5 0.000000 0.000000 12 6 0.000000 0.000000 13 1 0.000000 0.000000 13 2 0.000000 0.000000 13 3 0.000000 0.000000 13 4 0.000000 0.000000 13 5 0.000000 0.000000 13 6 0.000000 0.000000 14 1 1.463410 0.000000 15 1 0.000000 0.000000 16 1 4.000000 0.000000 17 1 11.885894 0.000001 17 2 11.885894 0.000001 18 1 0.000000 0.000000 19 1 208.298089 0.000006 20 1 0.975018 0.000000 p00_jac_test(): Find the maximum relative difference between the jacobian and a finite difference estimate. Problem Option Diff I J 1 1 1.480268e-08 2 2 1 2 1.469315e-08 2 2 1 3 1.482185e-08 2 2 1 4 1.631191e-07 1 2 1 5 1.743157e-07 1 2 1 6 1.732465e-07 1 2 2 1 4.135700e-09 2 2 2 2 1.635817e-08 2 2 2 3 4.981060e-07 2 2 3 1 8.173772e-08 2 2 3 2 6.006214e-08 2 1 3 3 8.172719e-08 2 1 3 4 6.716819e-09 2 2 4 1 4.273960e-08 2 1 5 1 1.698423e-09 3 1 5 2 1.680883e-09 1 2 5 3 1.700071e-09 1 2 6 1 2.498196e-11 2 1 6 2 4.145024e-11 2 5 6 3 7.546138e-12 2 1 6 4 6.099147e-11 2 5 6 5 2.238718e-11 2 5 7 1 3.548172e-10 4 4 8 1 3.586685e-08 3 3 9 1 5.095661e-09 2 2 9 2 5.032646e-09 2 2 9 3 5.083412e-09 2 2 9 4 6.680726e-09 2 4 9 5 5.164612e-09 2 2 9 6 5.090057e-09 2 2 9 7 5.070806e-09 2 2 9 8 6.703353e-09 1 4 9 9 5.144262e-09 2 2 9 10 5.168377e-09 2 2 9 11 5.130763e-09 2 2 9 12 6.706709e-09 2 4 9 13 5.135100e-09 2 2 10 1 3.947412e-06 5 4 10 2 1.243741e-12 35 37 11 1 9.576257e-07 8 9 11 2 4.862777e-14 13 14 12 1 8.317136e-09 9 9 12 2 8.308896e-09 1 1 12 3 1.689165e-08 12 49 12 4 1.682450e-08 30 58 12 5 4.742005e-08 48 65 12 6 7.668782e-08 16 72 13 1 9.250416e-13 15 65 13 2 9.987748e-13 63 65 13 3 2.483202e-12 38 145 13 4 2.021354e-12 7 145 13 5 3.870641e-12 191 257 13 6 3.535159e-12 106 257 14 1 1.202785e-07 3 3 15 1 2.188807e-03 6 3 16 1 1.918821e-07 1 11 17 1 1.441660e-09 10 1 17 2 1.486217e-09 10 1 18 1 4.893293e-05 5 12 19 1 2.448651e-03 9 5 20 1 1.042449e-08 2 2 p00_tan_test(): Compute the tangent vector TAN(X) at the starting point. Verify that JAC(X) * TAN(X) = 0. Verify that det ( JAC ) > 0 ( TAN ) Problem Option |Jac*Tan| det(Jac|Tan) 1 1 1.779823e-14 1.409113e+02 1 2 1.779823e-14 1.409113e+02 1 3 1.779823e-14 1.409113e+02 1 4 3.330669e-16 9.604166e+01 1 5 3.330669e-16 9.604166e+01 1 6 3.330669e-16 9.604166e+01 2 1 7.596836e-17 2.236068e+00 2 2 4.475452e-16 4.400938e+00 2 3 1.666780e-15 1.294720e+02 3 1 3.637979e-12 5.550137e+04 3 2 3.478817e-11 5.874554e+04 3 3 7.275958e-12 5.550137e+04 3 4 1.417755e-12 1.463733e+03 4 1 7.044344e-17 1.584821e+00 5 1 1.934027e-16 2.363598e+00 5 2 1.340446e-16 1.814134e+00 5 3 1.110534e-16 1.331048e+00 6 1 1.467301e-14 6.839861e+03 6 2 1.377022e-14 6.571612e+03 6 3 1.244733e-14 6.514078e+03 6 4 2.017705e-15 6.106593e+03 6 5 4.263510e-14 5.636897e+03 7 1 6.843874e-16 1.136721e+10 8 1 5.460164e-16 2.029327e-01 9 1 1.110223e-16 1.612452e+01 9 2 7.240984e-17 1.623800e+01 9 3 1.161432e-16 1.654663e+01 9 4 1.801483e-17 1.739208e+01 9 5 1.110223e-16 1.612452e+01 9 6 7.240984e-17 1.623800e+01 9 7 1.161432e-16 1.654663e+01 9 8 1.801483e-17 1.739208e+01 9 9 1.110223e-16 1.612452e+01 9 10 7.240984e-17 1.623800e+01 9 11 1.161432e-16 1.654663e+01 9 12 1.801483e-17 1.739208e+01 9 13 1.110223e-16 1.612452e+01 10 1 2.448112e-16 2.065715e+19 10 2 2.448112e-16 2.065715e+19 11 1 3.690691e-16 5.781339e+03 11 2 7.328486e-16 8.734052e+03 12 1 0.000000e+00 1.099512e+12 12 2 0.000000e+00 3.406666e+45 12 3 0.000000e+00 3.678275e+60 12 4 0.000000e+00 1.022006e+84 12 5 0.000000e+00 1.575656e+102 12 6 0.000000e+00 4.134043e+148 13 1 2.814979e-14 1.387521e+152 13 2 2.814979e-14 1.387521e+152 13 3 1.382246e-13 Inf 13 4 1.382246e-13 Inf 13 5 3.056923e-13 Inf 13 6 3.056923e-13 Inf 14 1 4.612538e-17 3.041679e-07 15 1 2.128520e-12 1.762369e+01 16 1 1.502715e-16 1.767766e+00 17 1 5.025674e-16 3.264941e-03 17 2 5.325541e-17 1.306797e-03 18 1 5.935850e-11 1.127574e+14 19 1 3.881783e-16 2.231141e+14 20 1 1.583832e-16 1.404702e+00 p00_newton_test(): Problem number = 1 Using option OPTION = 1 Freudenstein-Roth function, (15,-2,0). Number of variables is 3 Fixing variable X(1) = 15.488330 Convergence was achieved in 3 steps. X0 X1=X0+dX X2 15.000000 15.488330 15.488330 -2.000000 -2.118843 -2.074588 0.000000 0.007021 -0.090762 F(X0) F(X1=X0+dX) F(X2) 0.000000 4.924730 0.000000 0.000000 1.199297 -0.000000 p00_newton_test(): Problem number = 1 Using option OPTION = 2 Freudenstein-Roth function, (15,-2,0), x1 limits. Number of variables is 3 Fixing variable X(1) = 16.137787 Convergence was achieved in 3 steps. X0 X1=X0+dX X2 15.000000 16.137787 16.137787 -2.000000 -2.104192 -2.152050 0.000000 0.005595 -0.193098 F(X0) F(X1=X0+dX) F(X2) 0.000000 4.991093 0.000000 0.000000 1.763478 -0.000000 p00_newton_test(): Problem number = 1 Using option OPTION = 3 Freudenstein-Roth function, (15,-2,0), x3 limits. Number of variables is 3 Fixing variable X(1) = 16.371007 Convergence was achieved in 3 steps. X0 X1=X0+dX X2 15.000000 16.371007 16.371007 -2.000000 -2.157562 -2.176230 0.000000 0.006466 -0.226763 F(X0) F(X1=X0+dX) F(X2) 0.000000 7.224941 0.000000 0.000000 2.252997 -0.000000 p00_newton_test(): Problem number = 1 Using option OPTION = 4 Freudenstein-Roth function, (4,3,0). Number of variables is 3 Fixing variable X(1) = 4.043600 Convergence was achieved in 4 steps. X0 X1=X0+dX X2 4.000000 4.043600 4.043600 3.000000 3.156123 2.983446 0.000000 0.004382 -0.008651 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.111566 -0.000000 0.000000 3.121658 0.000000 p00_newton_test(): Problem number = 1 Using option OPTION = 5 Freudenstein-Roth function, (4,3,0), x1 limits. Number of variables is 3 Fixing variable X(2) = 3.307083 Convergence was achieved in 1 steps. X0 X1=X0+dX X2 4.000000 4.129127 3.489757 3.000000 3.307083 3.307083 0.000000 0.009171 0.203106 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.057565 0.000000 0.000000 6.651363 0.000000 p00_newton_test(): Problem number = 1 Using option OPTION = 6 Freudenstein-Roth function, (4,3,0), x3 limits. Number of variables is 3 Fixing variable X(1) = 4.112366 Convergence was achieved in 4 steps. X0 X1=X0+dX X2 4.000000 4.112366 4.112366 3.000000 3.107533 2.958411 0.000000 0.009013 -0.021310 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.199440 -0.000000 0.000000 1.992964 0.000000 p00_newton_test(): Problem number = 2 Using option OPTION = 1 Boggs function, (1,0,0). Number of variables is 3 Fixing variable X(2) = 0.005414 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 1.000000 1.026652 0.999964 0.000000 0.005414 0.005414 0.000000 0.009281 0.002743 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.067162 0.000000 0.000000 0.026688 0.000000 p00_newton_test(): Problem number = 2 Using option OPTION = 2 Boggs function, (1,-1,0). Number of variables is 3 Fixing variable X(1) = 1.046064 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 1.000000 1.046064 1.046064 -1.000000 -1.064287 -0.988162 0.000000 0.008615 -0.027471 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.184381 0.000000 0.000000 0.155489 0.000000 p00_newton_test(): Problem number = 2 Using option OPTION = 3 Boggs function, (10,10,0). Number of variables is 3 Fixing variable X(2) = 10.980233 Convergence was achieved in 4 steps. X0 X1=X0+dX X2 10.000000 10.700895 9.365758 10.000000 10.980233 10.980233 0.000000 0.001470 0.145745 F(X0) F(X1=X0+dX) F(X2) 0.000000 13.662705 0.000000 0.000000 -0.251888 0.000000 p00_newton_test(): Problem number = 3 Using option OPTION = 1 Powell function, (3,6,0). Number of variables is 3 Fixing variable X(2) = 6.124707 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 3.000000 3.195017 2.928354 6.000000 6.124707 6.124707 0.000000 0.004517 0.003594 F(X0) F(X1=X0+dX) F(X2) 0.000000 16498.489399 0.000000 0.000000 -0.013393 0.000001 p00_newton_test(): Problem number = 3 Using option OPTION = 2 Powell function, (4,5,0). Number of variables is 3 Fixing variable X(1) = 5.367912 Convergence was achieved in 3 steps. X0 X1=X0+dX X2 5.000000 5.367912 5.367912 4.000000 4.395443 3.710246 0.000000 0.005130 0.004186 F(X0) F(X1=X0+dX) F(X2) 0.000000 36969.595873 0.000000 0.000000 -0.013059 0.000000 p00_newton_test(): Problem number = 3 Using option OPTION = 3 Powell function, (6,3,0). Number of variables is 3 Fixing variable X(1) = 6.225553 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 6.000000 6.225553 6.225553 3.000000 3.136768 2.872122 0.000000 0.007972 0.006636 F(X0) F(X1=X0+dX) F(X2) 0.000000 16716.066564 0.000000 0.000000 -0.014421 0.000001 p00_newton_test(): Problem number = 3 Using option OPTION = 4 Powell function, (1,1,0). Number of variables is 3 Fixing variable X(2) = 1.049334 Convergence was achieved in 3 steps. X0 X1=X0+dX X2 1.000000 1.029919 0.952986 1.000000 1.049334 1.049334 0.000000 0.000849 -0.000001 F(X0) F(X1=X0+dX) F(X2) 0.000000 815.789463 0.000000 0.000000 -0.028777 0.000000 p00_newton_test(): Problem number = 4 Using option OPTION = 1 Broyden function Number of variables is 3 Fixing variable X(2) = 3.039883 Convergence was achieved in 3 steps. X0 X1=X0+dX X2 0.400000 0.413924 0.429090 3.000000 3.039883 3.039883 0.000000 0.008033 -0.028624 F(X0) F(X1=X0+dX) F(X2) 0.000000 -0.023998 -0.000000 0.000000 0.016397 0.000000 p00_newton_test(): Problem number = 5 Using option OPTION = 1 Wacker function, A = 0.1. Number of variables is 4 Fixing variable X(3) = 0.004995 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.007873 0.001982 0.000000 0.002629 0.002982 0.000000 0.004995 0.004995 0.000000 0.008767 0.002870 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.001815 -0.000000 0.000000 -0.006479 -0.000000 0.000000 -0.010206 0.000000 p00_newton_test(): Problem number = 5 Using option OPTION = 2 Wacker function, A = 0.5. Number of variables is 4 Fixing variable X(3) = 0.005926 Convergence was achieved in 1 steps. X0 X1=X0+dX X2 0.000000 0.000428 0.001282 0.000000 0.005516 0.002821 0.000000 0.005926 0.005926 0.000000 0.004713 0.004409 F(X0) F(X1=X0+dX) F(X2) 0.000000 -0.000945 -0.000000 0.000000 0.002493 -0.000000 0.000000 -0.000412 -0.000000 p00_newton_test(): Problem number = 5 Using option OPTION = 3 Wacker function, A = 1.0. Number of variables is 4 Fixing variable X(4) = 0.001076 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.000200 -0.000227 0.000000 0.002131 0.000149 0.000000 0.001957 0.000907 0.000000 0.001076 0.001076 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.000426 0.000000 0.000000 0.001979 -0.000000 0.000000 0.001048 -0.000000 p00_newton_test(): Problem number = 6 Using option OPTION = 1 Aircraft function, x(6) = - 0.050. Number of variables is 8 Fixing variable X(1) = 0.001664 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000009 0.001664 0.001664 0.051206 0.052501 0.051206 -0.000003 0.002314 0.000093 0.059606 0.067758 0.059606 0.000017 0.009053 0.000032 -0.050000 -0.051035 -0.050000 0.000109 0.004142 -0.000063 0.000000 0.004717 0.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 -0.717688 0.000000 -0.000000 -0.158989 0.000000 0.000000 0.016345 -0.000000 -0.000000 -0.006698 0.000000 0.000000 -0.004005 -0.000000 0.000000 -0.001035 0.000000 0.000000 0.004717 0.000000 p00_newton_test(): Problem number = 6 Using option OPTION = 2 Aircraft function, x(6) = - 0.008. Number of variables is 8 Fixing variable X(1) = 0.005688 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000002 0.005688 0.005688 0.008193 0.015741 0.008193 -0.000001 0.003947 0.000068 0.009537 0.019310 0.009537 0.000003 0.000707 -0.000051 -0.008000 -0.008367 -0.008000 0.000018 0.007208 -0.000456 0.000000 0.009679 0.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 -0.431459 0.000000 0.000000 -0.221310 -0.000000 -0.000000 -0.066637 0.000000 0.000000 -0.002168 0.000000 0.000000 -0.004027 0.000000 0.000000 -0.000367 0.000000 0.000000 0.009679 0.000000 p00_newton_test(): Problem number = 6 Using option OPTION = 3 Aircraft function, x(6) = 0.000. Number of variables is 8 Fixing variable X(1) = 0.000469 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.000469 0.000469 0.000000 0.003013 -0.000000 0.000000 0.006597 0.000002 0.000000 0.005650 0.000000 0.000000 0.005881 -0.000006 0.000000 0.000057 0.000000 0.000000 0.007149 -0.000039 0.000000 0.000787 0.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 -0.412984 0.000000 0.000000 -0.134251 -0.000000 0.000000 0.020131 -0.000000 0.000000 -0.002650 -0.000000 0.000000 -0.007798 0.000000 0.000000 0.000057 0.000000 0.000000 0.000787 0.000000 p00_newton_test(): Problem number = 6 Using option OPTION = 4 Aircraft function, x(6) = + 0.050. Number of variables is 8 Fixing variable X(1) = 0.002978 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 -0.000011 0.002978 0.002978 -0.051206 -0.050183 -0.051207 0.000006 0.000701 -0.000145 -0.059606 -0.057351 -0.059606 -0.000021 0.005628 -0.000152 0.050000 0.056900 0.050000 -0.000123 0.001171 -0.000440 0.000000 0.006403 0.000000 F(X0) F(X1=X0+dX) F(X2) -0.000000 0.040525 0.000000 -0.000000 -0.248516 -0.000000 0.000000 -0.010709 -0.000000 -0.000000 -0.002408 -0.000000 -0.000000 -0.001984 -0.000000 0.000000 0.006900 0.000000 0.000000 0.006403 0.000000 p00_newton_test(): Problem number = 6 Using option OPTION = 5 Aircraft function, x(6) = + 0.100. Number of variables is 8 Fixing variable X(1) = 0.001059 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 -0.000027 0.001059 0.001059 -0.102412 -0.097768 -0.102412 0.000015 0.005952 -0.000095 -0.119212 -0.120122 -0.119212 -0.000048 0.006772 -0.000141 0.100000 0.110431 0.100000 -0.000268 0.004921 -0.000471 0.000000 0.002472 0.000000 F(X0) F(X1=X0+dX) F(X2) -0.000000 0.187707 0.000000 -0.000000 -0.279628 0.000000 0.000000 0.015985 -0.000000 -0.000000 0.003794 -0.000000 0.000000 -0.007441 -0.000000 0.000000 0.010431 0.000000 0.000000 0.002472 0.000000 p00_newton_test(): Problem number = 7 Using option OPTION = 1 Cell kinetics problem, seeking limit points. Number of variables is 6 Fixing variable X(6) = 0.001126 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.006618 0.000011 0.000000 0.008867 0.000011 0.000000 0.004000 0.000011 0.000000 0.007969 0.000011 0.000000 0.007550 0.000011 0.000000 0.001126 0.001126 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.660646 -0.000000 0.000000 0.893705 -0.000001 0.000000 0.392390 -0.000000 0.000000 0.801804 -0.000000 0.000000 0.755325 -0.000000 p00_newton_test(): Problem number = 8 Using option OPTION = 1 Riks mechanical problem, seeking limit points. Number of variables is 6 Fixing variable X(3) = 0.002343 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.003330 0.000205 0.000000 0.009478 0.000661 0.000000 0.002343 0.002343 0.000000 0.002929 0.000000 0.000000 0.007416 0.000000 0.000000 0.000321 -0.000032 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.004418 -0.000000 0.000000 0.009862 -0.000000 0.000000 -0.000471 0.000000 0.000000 0.002929 0.000000 0.000000 0.007416 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 1 Oden problem, VAL=0.00, Target X(1)=4.0, Limits in X(1). Number of variables is 4 Fixing variable X(3) = 0.008127 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.002329 0.001017 0.000000 0.006492 -0.000000 0.000000 0.008127 0.008127 0.000000 0.001944 0.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.010390 -0.000000 0.000000 0.012907 -0.000000 0.000000 0.001944 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 2 Oden problem, VAL=0.25, Target X(1)=4.0, Limits in X(1). Number of variables is 4 Fixing variable X(3) = 0.004912 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.008666 0.000595 0.000000 0.001368 0.000608 0.000000 0.004912 0.004912 0.250000 0.273732 0.250000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.064148 -0.000000 0.000000 0.001361 -0.000000 0.000000 0.023732 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 3 Oden problem, VAL=0.50, Target X(1)=4.0, Limits in X(1). Number of variables is 4 Fixing variable X(3) = 0.002417 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.009912 0.000265 0.000000 0.005750 0.000580 0.000000 0.002417 0.002417 0.500000 0.507115 0.500000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.076525 -0.000000 0.000000 0.010100 -0.000000 0.000000 0.007115 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 4 Oden problem, VAL=1.00, Target X(1)=4.0, Limits in X(1). Number of variables is 4 Fixing variable X(3) = 0.005875 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.009446 0.000398 0.000000 0.000164 0.002474 0.000000 0.005875 0.005875 1.000000 1.043525 1.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.072076 -0.000000 0.000000 -0.004756 0.000000 0.000000 0.043525 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 5 Oden problem, VAL=0.00, Target X(1)=4.0, Limits in X(2). Number of variables is 4 Fixing variable X(3) = 0.004532 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.006466 0.000567 0.000000 0.003435 -0.000000 0.000000 0.004532 0.004532 0.000000 0.009872 0.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.046926 -0.000000 0.000000 0.006737 -0.000000 0.000000 0.009872 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 6 Oden problem, VAL=0.25, Target X(1)=4.0, Limits in X(2). Number of variables is 4 Fixing variable X(3) = 0.009018 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.005716 0.001093 0.000000 0.001347 0.001118 0.000000 0.009018 0.009018 0.250000 0.267979 0.250000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.036832 -0.000000 0.000000 0.000276 -0.000000 0.000000 0.017979 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 7 Oden problem, VAL=0.50, Target X(1)=4.0, Limits in X(2). Number of variables is 4 Fixing variable X(3) = 0.008303 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.003371 0.000912 0.000000 0.007022 0.001994 0.000000 0.008303 0.008303 0.500000 0.537271 0.500000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.019667 -0.000000 0.000000 0.009701 -0.000000 0.000000 0.037271 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 8 Oden problem, VAL=1.00, Target X(1)=4.0, Limits in X(2). Number of variables is 4 Fixing variable X(3) = 0.003009 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.006358 0.000204 0.000000 0.008154 0.001266 0.000000 0.003009 0.003009 1.000000 1.034575 1.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.048950 -0.000000 0.000000 0.013515 -0.000000 0.000000 0.034575 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 9 Oden problem, VAL=0.00, Target X(1)=4.0, Limits in X(3). Number of variables is 4 Fixing variable X(3) = 0.003011 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.001765 0.000377 0.000000 0.002301 -0.000000 0.000000 0.003011 0.003011 0.000000 0.001730 0.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.011077 -0.000000 0.000000 0.004581 -0.000000 0.000000 0.001730 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 10 Oden problem, VAL=0.25, Target X(1)=4.0, Limits in X(3). Number of variables is 4 Fixing variable X(3) = 0.005075 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.004891 0.000615 0.000000 0.007354 0.000629 0.000000 0.005075 0.005075 0.250000 0.278851 0.250000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.033994 -0.000000 0.000000 0.013167 -0.000000 0.000000 0.028851 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 11 Oden problem, VAL=0.50, Target X(1)=4.0, Limits in X(3). Number of variables is 4 Fixing variable X(3) = 0.006769 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.002028 0.000744 0.000000 0.009749 0.001625 0.000000 0.006769 0.006769 0.500000 0.537595 0.500000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.010197 -0.000000 0.000000 0.015954 -0.000000 0.000000 0.037595 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 12 Oden problem, VAL=1.00, Target X(1)=4.0, Limits in X(3). Number of variables is 4 Fixing variable X(3) = 0.007984 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.005024 0.000542 0.000000 0.005837 0.003363 0.000000 0.007984 0.007984 1.000000 1.037669 1.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.035917 -0.000000 0.000000 0.004681 -0.000000 0.000000 0.037669 0.000000 p00_newton_test(): Problem number = 9 Using option OPTION = 13 Oden problem, VAL=0.00, no targets, no limits. Number of variables is 4 Fixing variable X(3) = 0.004786 Convergence was achieved in 2 steps. X0 X1=X0+dX X2 0.000000 0.006524 0.000599 0.000000 0.006700 -0.000000 0.000000 0.004786 0.004786 0.000000 0.002629 0.000000 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.047065 -0.000000 0.000000 0.013214 -0.000000 0.000000 0.002629 0.000000 p00_newton_test(): Problem number = 10 Using option OPTION = 1 Torsion of a square rod, finite difference, PHI(S)=EXP(5*S). Number of variables is 37 Fixing variable X(37) = 0.009852 Convergence was achieved in 2 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.036154 0.010241 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 0.082100 0.000000 p00_newton_test(): Problem number = 10 Using option OPTION = 2 Torsion of a square rod, finite difference, PHI(S)=two levels. Number of variables is 37 Fixing variable X(37) = 0.007773 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.038289 0.008080 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 0.079581 0.000000 p00_newton_test(): Problem number = 11 Using option OPTION = 1 Torsion of a square rod, finite element solution. Number of variables is 26 Fixing variable X(26) = 0.009395 Convergence was achieved in 2 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.034872 0.025294 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 0.029306 0.000000 p00_newton_test(): Problem number = 11 Using option OPTION = 2 Torsion of a square rod, finite element solution. Number of variables is 26 Fixing variable X(26) = 0.007296 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.036229 0.026417 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 0.030710 0.000000 p00_newton_test(): Problem number = 12 Using option OPTION = 1 Materially nonlinear problem, NPOLYS = 2, NDERIV = 1. Number of variables is 26 Fixing variable X(26) = 0.003588 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.034585 0.022328 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 0.372735 0.000000 p00_newton_test(): Problem number = 12 Using option OPTION = 2 Materially nonlinear problem, NPOLYS = 4, NDERIV = 1. Number of variables is 42 Fixing variable X(42) = 0.009130 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.043307 0.009130 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 4.159117 0.000000 p00_newton_test(): Problem number = 12 Using option OPTION = 3 Materially nonlinear problem, NPOLYS = 4, NDERIV = 2. Number of variables is 49 Fixing variable X(49) = 0.007945 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.041535 0.007945 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 4.326300 0.000000 p00_newton_test(): Problem number = 12 Using option OPTION = 4 Materially nonlinear problem, NPOLYS = 6, NDERIV = 1. Number of variables is 58 Fixing variable X(58) = 0.007639 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.045919 0.007639 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 15.819967 0.000000 p00_newton_test(): Problem number = 12 Using option OPTION = 5 Materially nonlinear problem, NPOLYS = 6, NDERIV = 2. Number of variables is 65 Fixing variable X(65) = 0.006340 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.048443 0.006340 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 17.187833 0.000000 p00_newton_test(): Problem number = 12 Using option OPTION = 6 Materially nonlinear problem, NPOLYS = 6, NDERIV = 3. Number of variables is 72 Fixing variable X(72) = 0.006729 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.045030 0.006729 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 914.091524 0.000000 p00_newton_test(): Problem number = 13 Using option OPTION = 1 Simpson's BVP, F(U) = EXP(U), M = 8. Number of variables is 65 Fixing variable X(65) = 0.003086 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.049634 0.012507 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 6.873083 0.000001 p00_newton_test(): Problem number = 13 Using option OPTION = 2 Simpson's BVP, F(U) = function 2, M = 8. Number of variables is 65 Fixing variable X(65) = 0.009666 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.049479 0.015872 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 7.467446 0.000002 p00_newton_test(): Problem number = 13 Using option OPTION = 3 Simpson's BVP, F(U) = EXP(U), M = 12. Number of variables is 145 Fixing variable X(145) = 0.007952 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.071323 0.009025 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 22.040418 0.000002 p00_newton_test(): Problem number = 13 Using option OPTION = 4 Simpson's BVP, F(U) = function 2, M = 12. Number of variables is 145 Fixing variable X(145) = 0.004435 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.069911 0.005033 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 22.587602 0.000001 p00_newton_test(): Problem number = 13 Using option OPTION = 5 Simpson's BVP, F(U) = EXP(U), M = 16. Number of variables is 257 Fixing variable X(257) = 0.001596 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.090684 0.001950 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 49.514393 0.000001 p00_newton_test(): Problem number = 13 Using option OPTION = 6 Simpson's BVP, F(U) = function 2, M = 16. Number of variables is 257 Fixing variable X(257) = 0.007101 Convergence was achieved in 1 steps. |X0| |X1=X0+dX| |X2| 0.000000 0.090631 0.008675 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 48.357975 0.000002 p00_newton_test(): Problem number = 14 Using option OPTION = 1 Keller's BVP. Number of variables is 13 Fixing variable X(3) = 0.038063 Convergence was achieved in 2 steps. |X0| |X1=X0+dX| |X2| 1.463410 1.601568 1.469171 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 0.099237 0.000000 p00_newton_test(): Problem number = 15 Using option OPTION = 1 The Trigger Circuit. Number of variables is 7 Fixing variable X(7) = 0.009063 The iteration seemed to be diverging, and was halted. X0 X1=X0+dX X2 0.000000 0.000160 12.159345 0.000000 0.005775 34.026516 0.000000 0.006006 8.934786 0.000000 0.006711 0.712161 0.000000 0.004548 1.538352 0.000000 0.001546 12.278832 0.000000 0.009063 0.009063 F(X0) F(X1=X0+dX) F(X2) 0.000000 -0.000903 0.000000 0.000000 0.000103 Inf 0.000000 0.000557 -0.000000 0.000000 0.013013 -0.000000 0.000000 -0.001931 2822480045.325999 0.000000 -56.467412 119.518164 p00_newton_test(): Problem number = 16 Using option OPTION = 1 The Moore Spence Chemical Reaction Integral Equation. Number of variables is 17 Fixing variable X(17) = 0.007856 Convergence was achieved in 2 steps. |X0| |X1=X0+dX| |X2| 4.000000 4.184203 3.990432 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 0.210833 0.000000 p00_newton_test(): Problem number = 17 Using option OPTION = 1 Bremermann Propane Combustion System, fixed pressure. Number of variables is 12 Fixing variable X(3) = 10.170847 Convergence was achieved in 3 steps. |X0| |X1=X0+dX| |X2| 11.885894 12.394438 12.236333 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000001 1.035889 0.000000 p00_newton_test(): Problem number = 17 Using option OPTION = 2 Bremermann Propane Combustion System, fixed concentration. Number of variables is 12 Fixing variable X(11) = 1.095909 Convergence was achieved in 5 steps. |X0| |X1=X0+dX| |X2| 11.885894 12.535323 12.074694 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000001 1.052804 0.000000 p00_newton_test(): Problem number = 18 Using option OPTION = 1 The Semiconductor Problem. Number of variables is 12 Fixing variable X(7) = 0.001364 Convergence was achieved in 5 steps. |X0| |X1=X0+dX| |X2| 0.000000 2.078309 2.078195 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000000 38036.672492 0.000001 p00_newton_test(): Problem number = 19 Using option OPTION = 1 Nitric Acid Absorption Flash. Number of variables is 13 Fixing variable X(11) = 222.413738 Convergence was achieved in 3 steps. |X0| |X1=X0+dX| |X2| 208.298089 223.619042 223.791353 |F(X0)| |F(X1=X0+dX)| |F(X2)| 0.000006 18.536496 0.000000 p00_newton_test(): Problem number = 20 Using option OPTION = 1 The Buckling Spring, F(L,Theta,Lambda,Mu). Number of variables is 4 Fixing variable X(4) = -0.156583 Convergence was achieved in 3 steps. X0 X1=X0+dX X2 0.250000 0.258709 0.247692 0.392699 0.412446 0.392699 0.843189 0.894412 0.846722 -0.151588 -0.156583 -0.156583 F(X0) F(X1=X0+dX) F(X2) 0.000000 0.093469 -0.000000 -0.000000 -0.016397 0.000000 0.000000 0.019747 0.000000 p00_stepsize_test(): Print the stepsizes for each problem. Problem Option H HMIN HMAX 1 1 0.300000 0.031250 4.000000 1 2 0.300000 0.031250 4.000000 1 3 0.300000 0.031250 4.000000 1 4 0.300000 0.031250 4.000000 1 5 0.300000 0.031250 4.000000 1 6 0.300000 0.031250 4.000000 2 1 0.250000 0.001000 1.000000 2 2 0.250000 0.001000 1.000000 2 3 0.250000 0.001000 1.000000 3 1 0.500000 0.000250 3.000000 3 2 0.500000 0.000250 3.000000 3 3 0.500000 0.000250 3.000000 3 4 0.500000 0.000250 3.000000 4 1 0.300000 0.001000 25.000000 5 1 0.300000 0.001000 25.000000 5 2 0.300000 0.001000 25.000000 5 3 0.300000 0.001000 25.000000 6 1 0.250000 0.001000 0.500000 6 2 0.250000 0.001000 0.500000 6 3 0.250000 0.001000 0.500000 6 4 0.250000 0.001000 0.500000 6 5 0.250000 0.001000 0.500000 7 1 1.000000 0.001000 1.000000 8 1 1.000000 0.001000 1.000000 9 1 0.300000 0.001000 0.600000 9 2 0.300000 0.001000 0.600000 9 3 0.300000 0.001000 0.600000 9 4 0.300000 0.001000 0.600000 9 5 0.300000 0.001000 0.600000 9 6 0.300000 0.001000 0.600000 9 7 0.300000 0.001000 0.600000 9 8 0.300000 0.001000 0.600000 9 9 0.300000 0.001000 0.600000 9 10 0.300000 0.001000 0.600000 9 11 0.300000 0.001000 0.600000 9 12 0.300000 0.001000 0.600000 9 13 0.300000 0.001000 0.600000 10 1 2.000000 0.001000 10.000000 10 2 2.000000 0.001000 10.000000 11 1 0.125000 0.031250 4.000000 11 2 0.125000 0.031250 4.000000 12 1 2.000000 0.001000 10.000000 12 2 2.000000 0.001000 10.000000 12 3 2.000000 0.001000 10.000000 12 4 2.000000 0.001000 10.000000 12 5 2.000000 0.001000 10.000000 12 6 2.000000 0.001000 10.000000 13 1 2.000000 0.001000 10.000000 13 2 2.000000 0.001000 10.000000 13 3 2.000000 0.001000 10.000000 13 4 2.000000 0.001000 10.000000 13 5 2.000000 0.001000 10.000000 13 6 2.000000 0.001000 10.000000 14 1 2.000000 0.001000 10.000000 15 1 0.300000 0.001000 0.600000 16 1 0.200000 0.001000 2.000000 17 1 1.000000 0.001000 2.000000 17 2 1.000000 0.001000 2.000000 18 1 2.500000 0.001000 5.000000 19 1 0.125000 0.015625 4.000000 20 1 0.002500 0.010000 0.080000 p01_target_test(): Compute a series of solutions for problem 1. We are trying to find a solution for which X(3) = 1.0 The option chosen is 1 -1 15.000000 -2.000000 0.000000 0 15.000000 -2.000000 0.000000 1 14.710456 -1.942054 0.065381 2 14.426548 -1.858493 0.151978 3 14.284485 -1.753030 0.248724 4 14.303210 -1.696883 0.294704 5 14.346562 -1.662100 0.321314 6 14.464590 -1.606637 0.360840 7 14.737687 -1.526551 0.411765 8 15.315448 -1.414204 0.471409 9 16.496302 -1.254914 0.533635 10 18.878955 -1.023940 0.581098 11 22.864681 -0.730030 0.577102 12 26.855800 -0.482764 0.526496 13 30.848420 -0.257569 0.449637 14 34.841515 -0.043503 0.354763 15 38.834640 0.166209 0.246007 16 42.827505 0.377071 0.125569 17 46.819833 0.594907 -0.005560 18 50.811246 0.827770 -0.147486 19 54.801050 1.090470 -0.302030 20 58.787476 1.424699 -0.476327 21 60.774743 1.679907 -0.581898 22 61.652866 2.023787 -0.670441 23 59.118763 2.462680 -0.664168 24 55.135590 2.733690 -0.576602 25 51.142669 2.921815 -0.471780 26 47.147622 3.072981 -0.358791 27 43.151703 3.202024 -0.240654 28 39.155329 3.315958 -0.118836 29 35.158686 3.418752 0.005806 30 31.161871 3.512908 0.132719 31 27.164940 3.600121 0.261519 32 23.167928 3.681599 0.391925 33 19.170858 3.758244 0.523723 34 15.173744 3.830743 0.656746 35 11.176599 3.899639 0.790861 36 7.179431 3.965367 0.925959 37 5.000000 4.000000 1.000000 38 3.182245 4.028282 1.061947 p01_target_test(): Compute a series of solutions for problem 1. We are trying to find a solution for which X(3) = 1.0 The option chosen is 4 -1 4.000000 3.000000 0.000000 0 4.000000 3.000000 0.000000 1 3.725119 3.122940 0.071419 2 3.459788 3.393933 0.276048 3 3.505288 3.506450 0.381376 4 3.582515 3.575077 0.451817 5 3.790947 3.685813 0.575721 6 4.293357 3.847453 0.780173 7 5.000000 4.000000 1.000000 8 5.393861 4.068227 1.107104 p01_limit_test(): Compute a series of solutions for problem 1. We are trying to find limit points X such that TAN(1) = 0. The option chosen is 2 # Tan(LIM) X(1) X(2) X(3) -1 -9.651460e-01 15.000000 -2.000000 0.000000 0 -9.651460e-01 15.000000 -2.000000 0.000000 1 -9.463618e-01 14.710456 -1.942054 0.065381 2 -9.250432e-01 14.568502 -1.905888 0.103962 3 -8.722497e-01 14.429745 -1.859778 0.150714 4 -2.116174e-01 14.285062 -1.755231 0.246844 (limit) -3.190146e-09 14.283091 -1.741377 0.258578 5 5.541607e-01 14.300900 -1.699526 0.292624 6 7.764063e-01 14.342462 -1.664721 0.319358 7 9.077019e-01 14.458923 -1.608783 0.359376 8 9.623993e-01 14.731233 -1.528113 0.410840 9 9.839350e-01 15.308673 -1.415314 0.470885 10 9.927490e-01 16.489395 -1.255711 0.533386 11 9.964267e-01 18.871992 -1.024527 0.581038 12 9.977787e-01 22.857699 -0.730492 0.577159 13 9.981545e-01 26.848814 -0.483173 0.526611 14 9.982738e-01 30.841432 -0.257951 0.449789 15 9.982812e-01 34.834527 -0.043873 0.354942 16 9.982164e-01 38.827652 0.165843 0.246208 17 9.980823e-01 42.820518 0.376697 0.125789 18 9.978538e-01 46.812847 0.594515 -0.005321 19 9.974519e-01 50.804262 0.827342 -0.147228 20 9.966089e-01 54.794070 1.089968 -0.301746 21 9.936456e-01 58.780505 1.423983 -0.475992 22 9.911007e-01 59.774151 1.535306 -0.525600 23 9.833731e-01 60.765252 1.678251 -0.581310 (limit) 6.216922e-09 61.669363 1.983801 -0.663880 24 -6.001584e-01 61.655485 2.020487 -0.669940 25 -9.955584e-01 59.254852 2.450210 -0.666534 26 -9.981991e-01 55.272618 2.726223 -0.579987 27 -9.987508e-01 51.279821 2.916093 -0.475539 28 -9.989746e-01 47.284818 3.068211 -0.362768 29 -9.990905e-01 43.288920 3.197872 -0.244777 30 -9.991588e-01 39.292558 3.312248 -0.123070 31 -9.992025e-01 35.295922 3.415377 0.001486 32 -9.992319e-01 31.299112 3.509798 0.128328 33 -9.992525e-01 27.302185 3.597227 0.257068 34 -9.992672e-01 23.305175 3.678886 0.387423 35 -9.992780e-01 19.308106 3.755684 0.519176 36 -9.992860e-01 15.310994 3.828316 0.652160 37 -9.992919e-01 11.313850 3.897329 0.786240 38 -9.992963e-01 7.316682 3.963159 0.921305 39 -9.992996e-01 3.319497 4.026165 1.057264 40 -9.993019e-01 -0.677701 4.086644 1.194040 Number of limit points found was 2 p01_limit_test(): Compute a series of solutions for problem 1. We are trying to find limit points X such that TAN(3) = 0. The option chosen is 3 # Tan(LIM) X(1) X(2) X(3) -1 1.987065e-01 15.000000 -2.000000 0.000000 0 1.987065e-01 15.000000 -2.000000 0.000000 1 2.381148e-01 14.710456 -1.942054 0.065381 2 2.742458e-01 14.568502 -1.905888 0.103962 3 3.431278e-01 14.429745 -1.859778 0.150714 4 6.352574e-01 14.285062 -1.755231 0.246844 5 5.154483e-01 14.300900 -1.699526 0.292624 6 3.774063e-01 14.342462 -1.664721 0.319358 7 2.367368e-01 14.458923 -1.608783 0.359376 8 1.385790e-01 14.731233 -1.528113 0.410840 9 7.627537e-02 15.308673 -1.415314 0.470885 10 3.588303e-02 16.489395 -1.255711 0.533386 11 8.730521e-03 18.871992 -1.024527 0.581038 (limit) -1.538991e-11 20.485858 -0.896805 0.587587 12 -8.138855e-03 22.857699 -0.730492 0.577159 13 -1.640489e-02 26.848814 -0.483173 0.526611 14 -2.168910e-02 30.841432 -0.257951 0.449789 15 -2.556988e-02 34.834527 -0.043873 0.354942 16 -2.870640e-02 38.827652 0.165843 0.246208 17 -3.145844e-02 42.820518 0.376697 0.125789 18 -3.409213e-02 46.812847 0.594515 -0.005321 19 -3.691403e-02 50.804262 0.827342 -0.147228 20 -4.054815e-02 54.794070 1.089968 -0.301746 21 -4.768625e-02 58.780505 1.423983 -0.475992 22 -5.180441e-02 59.774151 1.535306 -0.525600 23 -6.079556e-02 60.765252 1.678251 -0.581310 24 -1.208999e-01 61.655485 2.020487 -0.669940 (limit) 5.708767e-12 61.020315 2.230139 -0.686353 25 1.704981e-02 59.254852 2.450210 -0.666534 26 2.458650e-02 55.272618 2.726223 -0.579987 27 2.734531e-02 51.279821 2.916093 -0.475539 28 2.893057e-02 47.284818 3.068211 -0.362768 29 3.000908e-02 43.288920 3.197872 -0.244777 30 3.081202e-02 39.292558 3.312248 -0.123070 31 3.144437e-02 35.295922 3.415377 0.001486 32 3.196185e-02 31.299112 3.509798 0.128328 33 3.239729e-02 27.302185 3.597227 0.257068 34 3.277152e-02 23.305175 3.678886 0.387423 35 3.309852e-02 19.308106 3.755684 0.519176 36 3.338810e-02 15.310994 3.828316 0.652160 37 3.364735e-02 11.313850 3.897329 0.786240 38 3.388158e-02 7.316682 3.963159 0.921305 39 3.409487e-02 3.319497 4.026165 1.057264 40 3.429039e-02 -0.677701 4.086644 1.194040 Number of limit points found was 2 p01_limit_test(): Compute a series of solutions for problem 1. We are trying to find limit points X such that TAN(1) = 0. The option chosen is 5 # Tan(LIM) X(1) X(2) X(3) -1 -9.162691e-01 4.000000 3.000000 0.000000 0 -9.162691e-01 4.000000 3.000000 0.000000 1 -8.450957e-01 3.725119 3.122940 0.071419 2 -1.997169e-02 3.459788 3.393933 0.276048 (limit) 1.325338e-11 3.459741 3.397490 0.279188 3 5.148460e-01 3.505288 3.506450 0.381376 4 6.947721e-01 3.582515 3.575077 0.451817 5 8.373498e-01 3.790947 3.685813 0.575721 6 9.170867e-01 4.293357 3.847453 0.780173 7 9.554633e-01 5.393861 4.068227 1.107104 8 9.739861e-01 7.686973 4.362293 1.634102 9 9.825454e-01 11.582917 4.696188 2.369711 10 9.859208e-01 15.513099 4.946640 3.024838 11 9.877792e-01 19.456782 5.152752 3.634810 12 9.889770e-01 23.407899 5.330509 4.214772 13 9.898236e-01 27.363807 5.488233 4.772861 14 9.904594e-01 31.323101 5.630887 5.314048 15 9.909579e-01 35.284939 5.761704 5.841643 16 9.913613e-01 39.248770 5.882922 6.357980 17 9.916961e-01 43.214216 5.996167 6.864782 18 9.919793e-01 47.181000 6.102660 7.363364 19 9.922228e-01 51.148917 6.203345 7.854759 20 9.924349e-01 55.117808 6.298970 8.339794 21 9.926218e-01 59.087548 6.390138 8.819145 22 9.927880e-01 63.058035 6.477345 9.293376 23 9.929370e-01 67.029187 6.561002 9.762958 24 9.930716e-01 71.000935 6.641456 10.228294 25 9.931940e-01 74.973222 6.719003 10.689729 26 9.933058e-01 78.945998 6.793896 11.147564 27 9.934085e-01 82.919221 6.866355 11.602062 28 9.935033e-01 86.892855 6.936571 12.053452 29 9.935911e-01 90.866868 7.004713 12.501942 30 9.936728e-01 94.841233 7.070931 12.947712 31 9.937489e-01 98.815924 7.135356 13.390927 32 9.938202e-01 102.790920 7.198106 13.831734 33 9.938871e-01 106.766200 7.259290 14.270267 34 9.939500e-01 110.741749 7.319001 14.706647 35 9.940093e-01 114.717549 7.377326 15.140983 36 9.940654e-01 118.693586 7.434345 15.573378 37 9.941185e-01 122.669847 7.490130 16.003924 38 9.941689e-01 126.646321 7.544745 16.432706 39 9.942168e-01 130.622997 7.598251 16.859803 40 9.942624e-01 134.599864 7.650703 17.285287 Number of limit points found was 1 p01_limit_test(): Compute a series of solutions for problem 1. We are trying to find limit points X such that TAN(3) = 0. The option chosen is 6 # Tan(LIM) X(1) X(2) X(3) -1 1.874187e-01 4.000000 3.000000 0.000000 0 1.874187e-01 4.000000 3.000000 0.000000 1 2.860437e-01 3.725119 3.122940 0.071419 2 6.610085e-01 3.459788 3.393933 0.276048 3 6.036747e-01 3.505288 3.506450 0.381376 4 5.234805e-01 3.582515 3.575077 0.451817 5 4.166357e-01 3.790947 3.685813 0.575721 6 3.207082e-01 4.293357 3.847453 0.780173 7 2.507109e-01 5.393861 4.068227 1.107104 8 2.022490e-01 7.686973 4.362293 1.634102 9 1.720667e-01 11.582917 4.696188 2.369711 10 1.574791e-01 15.513099 4.946640 3.024838 11 1.484226e-01 19.456782 5.152752 3.634810 12 1.420762e-01 23.407899 5.330509 4.214772 13 1.372975e-01 27.363807 5.488233 4.772861 14 1.335233e-01 31.323101 5.630887 5.314048 15 1.304394e-01 35.284939 5.761704 5.841643 16 1.278547e-01 39.248770 5.882922 6.357980 17 1.256449e-01 43.214216 5.996167 6.864782 18 1.237256e-01 47.181000 6.102660 7.363364 19 1.220369e-01 51.148917 6.203345 7.854759 20 1.205351e-01 55.117808 6.298970 8.339794 21 1.191872e-01 59.087548 6.390138 8.819145 22 1.179680e-01 63.058035 6.477345 9.293376 23 1.168577e-01 67.029187 6.561002 9.762958 24 1.158406e-01 71.000935 6.641456 10.228294 25 1.149040e-01 74.973222 6.719003 10.689729 26 1.140376e-01 78.945998 6.793896 11.147564 27 1.132327e-01 82.919221 6.866355 11.602062 28 1.124822e-01 86.892855 6.936571 12.053452 29 1.117801e-01 90.866868 7.004713 12.501942 30 1.111212e-01 94.841233 7.070931 12.947712 31 1.105011e-01 98.815924 7.135356 13.390927 32 1.099161e-01 102.790920 7.198106 13.831734 33 1.093629e-01 106.766200 7.259290 14.270267 34 1.088385e-01 110.741749 7.319001 14.706647 35 1.083406e-01 114.717549 7.377326 15.140983 36 1.078669e-01 118.693586 7.434345 15.573378 37 1.074154e-01 122.669847 7.490130 16.003924 38 1.069844e-01 126.646321 7.544745 16.432706 39 1.065723e-01 130.622997 7.598251 16.859803 40 1.061777e-01 134.599864 7.650703 17.285287 Number of limit points found was 0 p06_limit_test(): Compute a series of solutions for problem 6. We are trying to find limit points X such that TAN(7) = 0. The option chosen is 1 # Tan(7) X1 X2 X3 X4 X5 X6 X7 X8 Roll Pitch Yaw Attack Sideslip Elevator Aileron Rudder -1 1.0e-01 0.0000 0.0512 -0.0000 0.0596 0.0000 -0.0500 0.0001 0.0000 0 1.0e-01 0.0000 0.0512 -0.0000 0.0596 0.0000 -0.0500 0.0001 0.0000 1 1.0e-01 -0.2482 0.0519 -0.0145 0.0597 -0.0024 -0.0500 0.0260 0.0000 2 1.1e-01 -0.7446 0.0581 -0.0442 0.0607 -0.0078 -0.0500 0.0788 0.0000 3 1.2e-01 -1.2406 0.0736 -0.0757 0.0627 -0.0156 -0.0500 0.1354 0.0000 4 1.4e-01 -1.7354 0.1075 -0.1092 0.0654 -0.0291 -0.0500 0.2007 0.0000 5 2.0e-01 -2.2262 0.1856 -0.1420 0.0678 -0.0567 -0.0500 0.2864 0.0000 6 2.6e-01 -2.6996 0.3977 -0.1514 0.0642 -0.1267 -0.0500 0.4175 0.0000 7 1.1e-01 -2.9224 0.6929 -0.1047 0.0496 -0.2230 -0.0500 0.5004 0.0000 L -1.2e-13 -2.9691 0.8307 -0.0727 0.0410 -0.2688 -0.0500 0.5092 0.0000 8 -2.2e-01 -3.0104 1.1218 0.0045 0.0214 -0.3683 -0.0500 0.4727 0.0000 9 -4.5e-01 -2.9929 1.5659 0.1310 -0.0098 -0.5293 -0.0500 0.2912 0.0000 10 -5.8e-01 -2.9370 1.9670 0.2434 -0.0372 -0.6853 -0.0500 0.0162 0.0000 11 -6.6e-01 -2.8783 2.2915 0.3303 -0.0583 -0.8193 -0.0500 -0.2745 0.0000 12 -7.1e-01 -2.8170 2.5986 0.4089 -0.0773 -0.9529 -0.0500 -0.6021 0.0000 13 -7.5e-01 -2.7562 2.8880 0.4801 -0.0946 -1.0852 -0.0500 -0.9564 0.0000 14 -7.8e-01 -2.6974 3.1609 0.5450 -0.1102 -1.2158 -0.0500 -1.3306 0.0000 15 -8.0e-01 -2.6409 3.4189 0.6045 -0.1245 -1.3449 -0.0500 -1.7203 0.0000 16 -8.2e-01 -2.5870 3.6633 0.6596 -0.1376 -1.4724 -0.0500 -2.1223 0.0000 17 -8.4e-01 -2.5356 3.8953 0.7109 -0.1497 -1.5986 -0.0500 -2.5342 0.0000 18 -8.5e-01 -2.4864 4.1160 0.7589 -0.1609 -1.7235 -0.0500 -2.9545 0.0000 19 -8.7e-01 -2.4395 4.3265 0.8042 -0.1714 -1.8473 -0.0500 -3.3817 0.0000 20 -8.8e-01 -2.3945 4.5275 0.8472 -0.1812 -1.9700 -0.0500 -3.8148 0.0000 21 -8.9e-01 -2.3515 4.7199 0.8880 -0.1904 -2.0918 -0.0500 -4.2529 0.0000 22 -8.9e-01 -2.3101 4.9041 0.9270 -0.1991 -2.2127 -0.0500 -4.6955 0.0000 23 -9.0e-01 -2.2703 5.0808 0.9644 -0.2073 -2.3329 -0.0500 -5.1420 0.0000 24 -9.1e-01 -2.2320 5.2505 1.0004 -0.2151 -2.4525 -0.0500 -5.5919 0.0000 25 -9.1e-01 -2.1951 5.4136 1.0352 -0.2224 -2.5714 -0.0500 -6.0448 0.0000 26 -9.2e-01 -2.1595 5.5706 1.0688 -0.2294 -2.6897 -0.0500 -6.5004 0.0000 27 -9.2e-01 -2.1250 5.7217 1.1013 -0.2361 -2.8076 -0.0500 -6.9584 0.0000 28 -9.2e-01 -2.0917 5.8674 1.1330 -0.2424 -2.9250 -0.0500 -7.4185 0.0000 29 -9.3e-01 -2.0594 6.0079 1.1639 -0.2485 -3.0420 -0.0500 -7.8807 0.0000 30 -9.3e-01 -2.0281 6.1434 1.1940 -0.2542 -3.1587 -0.0500 -8.3446 0.0000 Number of limit points found was 1 p06_limit_test(): Compute a series of solutions for problem 6. We are trying to find limit points X such that TAN(7) = 0. The option chosen is 2 # Tan(7) X1 X2 X3 X4 X5 X6 X7 X8 Roll Pitch Yaw Attack Sideslip Elevator Aileron Rudder -1 8.3e-02 0.0000 0.0082 -0.0000 0.0095 0.0000 -0.0080 0.0000 0.0000 0 8.3e-02 0.0000 0.0082 -0.0000 0.0095 0.0000 -0.0080 0.0000 0.0000 1 8.3e-02 -0.2491 0.0076 -0.0030 0.0096 0.0024 -0.0080 0.0208 0.0000 2 8.2e-02 -0.7473 0.0031 -0.0094 0.0100 0.0075 -0.0080 0.0622 0.0000 3 8.1e-02 -1.2455 -0.0074 -0.0170 0.0110 0.0136 -0.0080 0.1032 0.0000 4 7.7e-02 -1.7435 -0.0271 -0.0276 0.0128 0.0221 -0.0080 0.1429 0.0000 5 6.6e-02 -2.2410 -0.0656 -0.0447 0.0162 0.0359 -0.0080 0.1794 0.0000 6 1.8e-02 -2.7361 -0.1516 -0.0800 0.0241 0.0637 -0.0080 0.2036 0.0000 L 4.5e-13 -2.8159 -0.1748 -0.0895 0.0263 0.0710 -0.0080 0.2044 0.0000 7 -1.8e-01 -3.2146 -0.3680 -0.1729 0.0456 0.1282 -0.0080 0.1674 0.0000 8 -2.9e-01 -3.6051 -0.6227 -0.3274 0.0802 0.1946 -0.0080 0.0265 0.0000 L -3.6e-09 -3.7571 -0.6491 -0.3835 0.0918 0.1968 -0.0080 -0.0038 0.0000 9 5.1e-01 -4.0169 -0.4614 -0.3924 0.0908 0.1371 -0.0080 0.1343 0.0000 10 3.0e-01 -4.1644 -0.1226 -0.2414 0.0554 0.0424 -0.0080 0.3349 0.0000 L -6.7e-10 -4.1637 0.0923 -0.0926 0.0224 -0.0171 -0.0080 0.3782 0.0000 11 -1.2e-01 -3.9321 0.2649 0.0247 -0.0035 -0.0686 -0.0080 0.3477 0.0000 12 -2.3e-01 -3.4971 0.5463 0.1271 -0.0277 -0.1645 -0.0080 0.2580 0.0000 13 -3.8e-01 -3.2607 0.8754 0.2188 -0.0503 -0.2843 -0.0080 0.1177 0.0000 14 -5.2e-01 -3.0866 1.2506 0.3129 -0.0738 -0.4295 -0.0080 -0.1104 0.0000 15 -6.1e-01 -2.9529 1.6149 0.3976 -0.0952 -0.5796 -0.0080 -0.4034 0.0000 16 -6.8e-01 -2.8522 1.9267 0.4664 -0.1126 -0.7154 -0.0080 -0.7097 0.0000 17 -7.2e-01 -2.7640 2.2225 0.5293 -0.1285 -0.8511 -0.0080 -1.0478 0.0000 18 -7.6e-01 -2.6851 2.5018 0.5869 -0.1429 -0.9855 -0.0080 -1.4101 0.0000 19 -7.9e-01 -2.6135 2.7653 0.6401 -0.1562 -1.1183 -0.0080 -1.7909 0.0000 20 -8.1e-01 -2.5480 3.0142 0.6895 -0.1684 -1.2496 -0.0080 -2.1864 0.0000 21 -8.3e-01 -2.4873 3.2497 0.7357 -0.1797 -1.3793 -0.0080 -2.5936 0.0000 22 -8.5e-01 -2.4308 3.4730 0.7791 -0.1902 -1.5075 -0.0080 -3.0103 0.0000 23 -8.6e-01 -2.3778 3.6850 0.8201 -0.1999 -1.6344 -0.0080 -3.4350 0.0000 24 -8.7e-01 -2.3278 3.8867 0.8591 -0.2091 -1.7601 -0.0080 -3.8664 0.0000 25 -8.8e-01 -2.2806 4.0790 0.8963 -0.2177 -1.8846 -0.0080 -4.3034 0.0000 26 -8.9e-01 -2.2357 4.2626 0.9320 -0.2257 -2.0082 -0.0080 -4.7452 0.0000 27 -9.0e-01 -2.1929 4.4381 0.9663 -0.2334 -2.1309 -0.0080 -5.1913 0.0000 28 -9.1e-01 -2.1521 4.6061 0.9994 -0.2406 -2.2527 -0.0080 -5.6411 0.0000 29 -9.1e-01 -2.1129 4.7671 1.0313 -0.2474 -2.3739 -0.0080 -6.0941 0.0000 30 -9.2e-01 -2.0754 4.9215 1.0624 -0.2539 -2.4944 -0.0080 -6.5499 0.0000 Number of limit points found was 3 p06_limit_test(): Compute a series of solutions for problem 6. We are trying to find limit points X such that TAN(7) = 0. The option chosen is 3 # Tan(7) X1 X2 X3 X4 X5 X6 X7 X8 Roll Pitch Yaw Attack Sideslip Elevator Aileron Rudder -1 8.3e-02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 8.3e-02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 8.2e-02 -0.2491 -0.0008 -0.0008 0.0000 0.0034 0.0000 0.0206 0.0000 2 8.2e-02 -0.7474 -0.0077 -0.0028 0.0004 0.0108 0.0000 0.0617 0.0000 3 8.0e-02 -1.2455 -0.0239 -0.0061 0.0012 0.0201 0.0000 0.1022 0.0000 4 7.4e-02 -1.7432 -0.0562 -0.0127 0.0029 0.0339 0.0000 0.1411 0.0000 5 5.4e-02 -2.2394 -0.1239 -0.0283 0.0070 0.0584 0.0000 0.1746 0.0000 L 7.5e-10 -2.5839 -0.2213 -0.0541 0.0135 0.0909 -0.0000 0.1861 0.0000 6 -4.9e-02 -2.7272 -0.2863 -0.0729 0.0182 0.1117 -0.0000 0.1825 0.0000 7 -2.4e-01 -3.0412 -0.5135 -0.1472 0.0364 0.1808 0.0000 0.1257 0.0000 8 -4.8e-01 -3.3358 -0.8297 -0.2756 0.0669 0.2688 0.0000 -0.0559 0.0000 9 -5.9e-01 -3.5741 -1.0625 -0.4103 0.0976 0.3246 0.0000 -0.2948 0.0000 10 -1.8e-01 -3.8621 -1.1529 -0.5628 0.1298 0.3321 0.0000 -0.5030 0.0000 L -8.3e-10 -3.9007 -1.1421 -0.5786 0.1328 0.3269 -0.0000 -0.5070 0.0000 11 3.1e-01 -3.9722 -1.1061 -0.6030 0.1372 0.3130 -0.0000 -0.4925 0.0000 12 5.2e-01 -4.0484 -1.0442 -0.6201 0.1398 0.2925 0.0000 -0.4429 0.0000 13 6.5e-01 -4.1576 -0.9147 -0.6240 0.1387 0.2534 0.0000 -0.3118 0.0000 14 6.3e-01 -4.3415 -0.6118 -0.5595 0.1212 0.1689 0.0000 0.0112 0.0000 15 4.5e-01 -4.5270 -0.2962 -0.4143 0.0874 0.0847 0.0000 0.2833 0.0000 16 2.0e-01 -4.7491 -0.0661 -0.2529 0.0516 0.0248 0.0000 0.4088 0.0000 17 8.1e-02 -5.1161 0.0631 -0.1289 0.0249 -0.0075 -0.0000 0.4586 0.0000 18 7.7e-02 -5.5980 0.1060 -0.0721 0.0128 -0.0166 0.0000 0.4960 0.0000 19 8.0e-02 -6.0948 0.1184 -0.0480 0.0078 -0.0181 -0.0000 0.5351 0.0000 20 8.2e-02 -6.5929 0.1223 -0.0354 0.0053 -0.0177 0.0000 0.5755 0.0000 21 8.3e-02 -7.0911 0.1233 -0.0279 0.0038 -0.0169 0.0000 0.6166 0.0000 22 8.4e-02 -7.5894 0.1233 -0.0230 0.0028 -0.0159 0.0000 0.6583 0.0000 23 8.4e-02 -8.0876 0.1229 -0.0196 0.0022 -0.0149 0.0000 0.7002 0.0000 24 8.4e-02 -8.5858 0.1224 -0.0170 0.0017 -0.0141 0.0000 0.7422 0.0000 25 8.5e-02 -9.0840 0.1218 -0.0151 0.0013 -0.0133 0.0000 0.7844 0.0000 26 8.5e-02 -9.5822 0.1212 -0.0135 0.0011 -0.0125 0.0000 0.8267 0.0000 27 8.5e-02 -10.0804 0.1207 -0.0123 0.0008 -0.0119 -0.0000 0.8691 0.0000 28 8.5e-02 -10.5786 0.1202 -0.0113 0.0007 -0.0113 -0.0000 0.9115 0.0000 29 8.5e-02 -11.0768 0.1197 -0.0104 0.0005 -0.0108 -0.0000 0.9540 0.0000 30 8.5e-02 -11.5750 0.1193 -0.0097 0.0004 -0.0103 -0.0000 0.9965 0.0000 Number of limit points found was 2 p06_limit_test(): Compute a series of solutions for problem 6. We are trying to find limit points X such that TAN(7) = 0. The option chosen is 4 # Tan(7) X1 X2 X3 X4 X5 X6 X7 X8 Roll Pitch Yaw Attack Sideslip Elevator Aileron Rudder -1 1.1e-01 -0.0000 -0.0512 0.0000 -0.0596 -0.0000 0.0500 -0.0001 0.0000 0 1.1e-01 -0.0000 -0.0512 0.0000 -0.0596 -0.0000 0.0500 -0.0001 0.0000 1 1.1e-01 -0.2481 -0.0540 0.0125 -0.0596 0.0110 0.0500 0.0263 0.0000 2 1.1e-01 -0.7440 -0.0779 0.0369 -0.0598 0.0356 0.0500 0.0807 0.0000 3 1.3e-01 -1.2380 -0.1370 0.0592 -0.0596 0.0693 0.0500 0.1406 0.0000 4 1.4e-01 -1.7246 -0.2650 0.0726 -0.0572 0.1253 0.0500 0.2102 0.0000 5 8.7e-02 -2.1817 -0.5371 0.0572 -0.0476 0.2282 0.0500 0.2802 0.0000 L 3.3e-11 -2.3611 -0.7236 0.0327 -0.0391 0.2935 0.0500 0.2927 0.0000 6 -7.3e-02 -2.4615 -0.8564 0.0115 -0.0324 0.3381 0.0500 0.2865 0.0000 7 -3.0e-01 -2.6928 -1.2471 -0.0639 -0.0105 0.4623 0.0500 0.1954 0.0000 8 -5.2e-01 -2.8851 -1.6485 -0.1575 0.0153 0.5796 0.0500 -0.0202 0.0000 9 -6.5e-01 -3.0208 -1.9533 -0.2397 0.0371 0.6617 0.0500 -0.2799 0.0000 10 -7.5e-01 -3.1456 -2.2333 -0.3253 0.0592 0.7315 0.0500 -0.6073 0.0000 11 -8.2e-01 -3.2609 -2.4799 -0.4114 0.0810 0.7879 0.0500 -0.9840 0.0000 12 -8.7e-01 -3.3688 -2.6916 -0.4969 0.1020 0.8318 0.0500 -1.3951 0.0000 13 -9.0e-01 -3.4716 -2.8698 -0.5817 0.1225 0.8644 0.0500 -1.8300 0.0000 14 -9.3e-01 -3.5717 -3.0161 -0.6664 0.1424 0.8867 0.0500 -2.2814 0.0000 15 -9.4e-01 -3.6716 -3.1312 -0.7522 0.1622 0.8993 0.0500 -2.7443 0.0000 16 -9.5e-01 -3.7749 -3.2135 -0.8410 0.1820 0.9017 0.0500 -3.2150 0.0000 17 -9.5e-01 -3.8876 -3.2568 -0.9365 0.2027 0.8920 0.0500 -3.6900 0.0000 18 -9.0e-01 -4.0257 -3.2384 -1.0489 0.2259 0.8626 0.0500 -4.1635 0.0000 19 -7.2e-01 -4.1296 -3.1703 -1.1275 0.2413 0.8282 0.0500 -4.3976 0.0000 L 1.3e-10 -4.2425 -3.0424 -1.2043 0.2554 0.7793 0.0500 -4.4924 0.0000 20 3.4e-01 -4.2882 -2.9749 -1.2320 0.2601 0.7564 0.0500 -4.4757 0.0000 21 7.3e-01 -4.3938 -2.7862 -1.2866 0.2687 0.6972 0.0500 -4.3052 0.0000 22 8.5e-01 -4.5014 -2.5511 -1.3255 0.2733 0.6293 0.0500 -3.9409 0.0000 23 8.8e-01 -4.5892 -2.3341 -1.3419 0.2735 0.5700 0.0500 -3.5176 0.0000 24 9.0e-01 -4.6663 -2.1307 -1.3432 0.2708 0.5165 0.0500 -3.0760 0.0000 25 9.0e-01 -4.7389 -1.9343 -1.3326 0.2659 0.4660 0.0500 -2.6270 0.0000 26 9.0e-01 -4.8111 -1.7401 -1.3108 0.2587 0.4172 0.0500 -2.1752 0.0000 27 9.0e-01 -4.8864 -1.5443 -1.2770 0.2490 0.3687 0.0500 -1.7238 0.0000 28 8.8e-01 -4.9695 -1.3429 -1.2289 0.2365 0.3195 0.0500 -1.2754 0.0000 29 8.6e-01 -5.0675 -1.1315 -1.1623 0.2202 0.2684 0.0500 -0.8339 0.0000 30 8.1e-01 -5.1939 -0.9040 -1.0696 0.1984 0.2139 0.0500 -0.4052 0.0000 Number of limit points found was 2 p06_limit_test(): Compute a series of solutions for problem 6. We are trying to find limit points X such that TAN(7) = 0. The option chosen is 5 # Tan(7) X1 X2 X3 X4 X5 X6 X7 X8 Roll Pitch Yaw Attack Sideslip Elevator Aileron Rudder -1 1.8e-01 -0.0000 -0.1024 0.0000 -0.1192 -0.0000 0.1000 -0.0003 0.0000 0 1.8e-01 -0.0000 -0.1024 0.0000 -0.1192 -0.0000 0.1000 -0.0003 0.0000 1 1.9e-01 -0.2437 -0.1076 0.0246 -0.1193 0.0210 0.1000 0.0455 0.0000 2 2.1e-01 -0.7303 -0.1530 0.0729 -0.1196 0.0687 0.1000 0.1448 0.0000 3 2.7e-01 -1.2080 -0.2668 0.1153 -0.1191 0.1361 0.1000 0.2694 0.0000 4 3.2e-01 -1.6543 -0.5026 0.1384 -0.1145 0.2447 0.1000 0.4355 0.0000 5 2.7e-01 -1.9343 -0.7810 0.1302 -0.1057 0.3578 0.1000 0.5672 0.0000 6 1.3e-01 -2.1680 -1.1412 0.0967 -0.0912 0.4920 0.1000 0.6632 0.0000 L 1.3e-09 -2.2982 -1.4033 0.0632 -0.0794 0.5834 0.1000 0.6838 0.0000 7 -8.0e-02 -2.3648 -1.5544 0.0415 -0.0721 0.6339 0.1000 0.6769 0.0000 8 -3.1e-01 -2.5360 -1.9892 -0.0291 -0.0498 0.7714 0.1000 0.5775 0.0000 9 -5.1e-01 -2.6863 -2.4122 -0.1081 -0.0260 0.8945 0.1000 0.3602 0.0000 10 -6.6e-01 -2.8176 -2.7977 -0.1889 -0.0025 0.9980 0.1000 0.0458 0.0000 11 -7.5e-01 -2.9185 -3.0951 -0.2578 0.0170 1.0721 0.1000 -0.2838 0.0000 12 -8.1e-01 -3.0112 -3.3638 -0.3256 0.0358 1.1346 0.1000 -0.6571 0.0000 13 -8.5e-01 -3.0966 -3.6038 -0.3917 0.0538 1.1866 0.1000 -1.0617 0.0000 14 -8.9e-01 -3.1758 -3.8171 -0.4558 0.0710 1.2296 0.1000 -1.4886 0.0000 15 -9.1e-01 -3.2499 -4.0065 -0.5179 0.0873 1.2649 0.1000 -1.9316 0.0000 16 -9.3e-01 -3.3198 -4.1746 -0.5783 0.1029 1.2936 0.1000 -2.3865 0.0000 17 -9.4e-01 -3.3863 -4.3236 -0.6372 0.1179 1.3166 0.1000 -2.8505 0.0000 18 -9.5e-01 -3.4501 -4.4553 -0.6948 0.1324 1.3346 0.1000 -3.3214 0.0000 19 -9.6e-01 -3.5116 -4.5713 -0.7514 0.1464 1.3482 0.1000 -3.7977 0.0000 20 -9.7e-01 -3.5714 -4.6726 -0.8071 0.1600 1.3578 0.1000 -4.2783 0.0000 21 -9.7e-01 -3.6299 -4.7603 -0.8622 0.1732 1.3637 0.1000 -4.7622 0.0000 22 -9.8e-01 -3.6876 -4.8349 -0.9170 0.1862 1.3662 0.1000 -5.2488 0.0000 23 -9.8e-01 -3.7448 -4.8967 -0.9717 0.1989 1.3652 0.1000 -5.7375 0.0000 24 -9.8e-01 -3.8020 -4.9460 -1.0266 0.2115 1.3609 0.1000 -6.2279 0.0000 25 -9.8e-01 -3.8596 -4.9824 -1.0819 0.2240 1.3533 0.1000 -6.7195 0.0000 26 -9.9e-01 -3.9184 -5.0053 -1.1383 0.2364 1.3420 0.1000 -7.2118 0.0000 27 -9.8e-01 -3.9791 -5.0134 -1.1962 0.2490 1.3267 0.1000 -7.7043 0.0000 28 -9.8e-01 -4.0429 -5.0044 -1.2566 0.2619 1.3067 0.1000 -8.1965 0.0000 29 -9.7e-01 -4.1119 -4.9739 -1.3209 0.2752 1.2806 0.1000 -8.6872 0.0000 30 -9.6e-01 -4.1900 -4.9127 -1.3920 0.2895 1.2456 0.1000 -9.1744 0.0000 Number of limit points found was 1 test_con_test(): Normal end of execution. 08-Oct-2025 20:03:54