function k = perm1_distance ( n, a, b )
%*****************************************************************************80
%
%% PERM1_DISTANCE computes the distance of two permutations of (1,...,N).
%
% Discussion:
%
% The distance is known as the Ulam metric.
%
% If we let N be the order of the permutations A and B, and L(P) be
% the length of the longest ascending subsequence of a permutation P,
% then the Ulam metric distance between A and B is
%
% N - L ( A * inverse ( B ) ).
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 20 June 2004
%
% Author:
%
% John Burkardt
%
% Input:
%
% integer N, the order of the permutation.
%
% integer A(N), B(N), the permutations to be examined.
%
% Output:
%
% integer K, the Ulam metric distance between A and B.
%
binv = perm1_inverse ( n, b );
c = perm1_mul ( n, a, binv );
[ length, c2 ] = perm_ascend ( n, c );
k = n - length;
return
end