function [ a, more, maxder, numder ] = derange1_weed_next ( n, a, more, ...
maxder, numder )
%*****************************************************************************80
%
%% DERANGE1_WEED_NEXT computes derangements of (1,...,N), one at a time.
%
% Discussion:
%
% A derangement of N objects is a permutation which leaves no object
% unchanged.
%
% A derangement of N objects is a permutation with no fixed
% points. If we symbolize the permutation operation by "P",
% then for a derangment, P(I) is never equal to I.
%
% The number of derangements of N objects is sometimes called
% the subfactorial function, or the derangement number D(N).
%
% This routine simply generates all permutations, one at a time,
% and weeds out those that are not derangements.
%
% Example:
%
% Here are the derangements when N = 4:
%
% 2143
% 2341
% 2413
% 3142
% 3412
% 3421
% 4123
% 4312
% 4321
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 08 June 2015
%
% Author:
%
% John Burkardt
%
% Input:
%
% integer N, the number of objects being permuted.
%
% integer A(N). On an initialization call, A is ignored.
% Otherwise, A should be the output value of A from the previous call.
%
% logical MORE, is FALSE on an initialization call, and TRUE otherwise.
%
% integer MAXDER, NUMDER, two parameters
% used by the program for bookkeeping. The user should declare these
% variables, and pass the output values from one call to the next,
% but should not alter them.
%
% Output:
%
% integer A(N), if MORE is TRUE, the next derangement.
% If MORE is FALSE, then A contains no useful information.
%
% logical MORE is TRUE if the next derangement was output in
% A, and FALSE if there are no more derangements.
%
% integer MAXDER, NUMDER, two parameters
% used by the program for bookkeeping. The user should declare these
% variables, and pass the output values from one call to the next,
% but should not alter them.
%
%
% Initialization on call with MORE = FALSE.
%
if ( ~ more )
a = [];
maxder = derange_enum ( n );
numder = 0;
end
%
% Watch out for cases where there are no derangements.
%
if ( maxder == 0 )
more = 0;
return
end
%
% Get the next permutation.
%
while ( true )
[ a, more ] = perm1_lex_next ( n, a, more );
%
% See if it is a derangment.
%
deranged = derange1_check ( n, a );
if ( deranged )
break;
end
end
numder = numder + 1;
if ( maxder <= numder )
more = 0;
end
return
end