function [ nstack, stacks, ncan ] = derange1_back_candidate ( ...
n, a, k, nstack, stacks, ncan )
%*****************************************************************************80
%
%% derange1_back_candidate(): possible K-th entries of a derangement of (1,...,N).
%
% Discussion:
%
% A derangement of N objects is a permutation which leaves no object
% unchanged.
%
% A derangement of N objects is a permutation with no fixed
% points. If we symbolize the permutation operation by "P",
% then for a derangment, P(I) is never equal to I.
%
% The number of derangements of N objects is sometimes called
% the subfactorial function, or the derangement number D(N).
%
% Licensing:
%
% This code is distributed under the MIT license.
%
% Modified:
%
% 19 June 2015
%
% Author:
%
% John Burkardt
%
% Input:
%
% integer N, the order of the derangement.
%
% integer A(N). The first K-1 entries of A
% record the currently set values of the derangement.
%
% integer K, the entry of the derangement for which candidates
% are to be found.
%
% integer NSTACK, the length of the stack.
%
% integer STACKS((N*(N+1))/2).
%
% integer NCAN(N), the number of candidates for each level.
%
% Output:
%
% integer NSTACK, the length of the output stack.
%
% integer STACKS((N*(N+1))/2), contains candidates for entry K
% added to the end of the stack.
%
% integer NCAN(N), the number of candidates for each level.
%
%
% Consider all the integers from 1 through N that have not been used yet.
%
nfree = n - k + 1;
ifree = perm1_free ( k - 1, a, nfree );
%
% Everything but K is a legitimate candidate for the K-th entry.
%
ncan(k) = 0;
for ican = 1 : nfree
if ( ifree(ican) ~= k )
ncan(k) = ncan(k) + 1;
nstack = nstack + 1;
stacks(nstack) = ifree(ican);
end
end
return
end