15-May-2025 08:57:34 line_fekete_rule_test(): MATLAB/Octave version 6.4.0 Test line_fekete_rule(). line_fekete_bos_levenberg_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomial space of dimension M = 5 with the Chebyshev basis and weight 1/sqrt(1-x^2). Estimated Fekete points XF: -1.0000e+00 -6.6366e-01 -7.0070e-03 6.4164e-01 1.0000e+00 Graphics saved as "line_fekete_bos_levenberg.png" line_fekete_chebyshev_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomials of degree M = 5 with the Chebyshev basis and weight 1/sqrt(1-x^2). NF = 5 Estimated Fekete points XF: -1.0000e+00 -6.6366e-01 -7.0070e-03 6.4164e-01 1.0000e+00 Graphics saved as "line_fekete_chebyshev.png" Sum(WF) = 3.14159 line_fekete_legendre_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 5 with the Legendre basis and uniform weight. ind = 1 947 2486 4013 5001 NF = 5 Estimated Fekete points XF: -1.0000e+00 -6.2160e-01 -6.0000e-03 6.0480e-01 1.0000e+00 Graphics saved as "line_fekete_legendre.png" Sum(WF) = 2 line_fekete_bos_levenberg_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomial space of dimension M = 11 with the Chebyshev basis and weight 1/sqrt(1-x^2). Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.3794e-01 -7.9179e-01 -5.7357e-01 -2.9930e-01 -3.0030e-03 Columns 7 through 11: 2.9930e-01 5.6957e-01 7.8979e-01 9.3794e-01 1.0000e+00 Graphics saved as "line_fekete_bos_levenberg.png" line_fekete_chebyshev_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomials of degree M = 11 with the Chebyshev basis and weight 1/sqrt(1-x^2). NF = 11 Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.3794e-01 -7.9179e-01 -5.7357e-01 -2.9930e-01 -3.0030e-03 Columns 7 through 11: 2.9930e-01 5.6957e-01 7.8979e-01 9.3794e-01 1.0000e+00 Graphics saved as "line_fekete_chebyshev.png" Sum(WF) = 3.14159 line_fekete_legendre_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 11 with the Legendre basis and uniform weight. ind = 1 195 654 1135 1764 2487 3200 3854 4346 4805 5001 NF = 11 Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.2240e-01 -7.3880e-01 -5.4640e-01 -2.9480e-01 -5.6000e-03 Columns 7 through 11: 2.7960e-01 5.4120e-01 7.3800e-01 9.2160e-01 1.0000e+00 Graphics saved as "line_fekete_legendre.png" Sum(WF) = 2 line_fekete_bos_levenberg_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomial space of dimension M = 21 with the Chebyshev basis and weight 1/sqrt(1-x^2). Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.8398e-01 -9.4394e-01 -8.8188e-01 -7.9980e-01 -6.9970e-01 Columns 7 through 12: -5.8158e-01 -4.4945e-01 -3.0731e-01 -1.5716e-01 -1.0010e-03 1.5315e-01 Columns 13 through 18: 3.0531e-01 4.4945e-01 5.8158e-01 6.9970e-01 8.0180e-01 8.8388e-01 Columns 19 through 21: 9.4394e-01 9.8398e-01 1.0000e+00 Graphics saved as "line_fekete_bos_levenberg.png" line_fekete_chebyshev_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomials of degree M = 21 with the Chebyshev basis and weight 1/sqrt(1-x^2). NF = 21 Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.8398e-01 -9.4394e-01 -8.8188e-01 -7.9980e-01 -6.9970e-01 Columns 7 through 12: -5.8158e-01 -4.4945e-01 -3.0731e-01 -1.5716e-01 -1.0010e-03 1.5315e-01 Columns 13 through 18: 3.0531e-01 4.4945e-01 5.8158e-01 6.9970e-01 8.0180e-01 8.8388e-01 Columns 19 through 21: 9.4394e-01 9.8398e-01 1.0000e+00 Graphics saved as "line_fekete_chebyshev.png" Sum(WF) = 3.14159 line_fekete_legendre_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 21 with the Legendre basis and uniform weight. ind = 1 55 186 323 514 747 969 1486 1785 2131 2498 2866 3228 3553 3857 4079 4487 4678 4816 4947 5001 NF = 21 Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.7840e-01 -9.2600e-01 -8.7120e-01 -7.9480e-01 -7.0160e-01 Columns 7 through 12: -6.1280e-01 -4.0600e-01 -2.8640e-01 -1.4800e-01 -1.2000e-03 1.4600e-01 Columns 13 through 18: 2.9080e-01 4.2080e-01 5.4240e-01 6.3120e-01 7.9440e-01 8.7080e-01 Columns 19 through 21: 9.2600e-01 9.7840e-01 1.0000e+00 Graphics saved as "line_fekete_legendre.png" Sum(WF) = 2 line_fekete_bos_levenberg_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomial space of dimension M = 41 with the Chebyshev basis and weight 1/sqrt(1-x^2). Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.9600e-01 -9.8599e-01 -9.6997e-01 -9.4795e-01 -9.1992e-01 Columns 7 through 12: -8.8789e-01 -8.4985e-01 -8.0581e-01 -7.5776e-01 -7.0370e-01 -6.4765e-01 Columns 13 through 18: -5.8559e-01 -5.2152e-01 -4.5345e-01 -3.8338e-01 -3.0931e-01 -2.3524e-01 Columns 19 through 24: -1.5716e-01 -8.1081e-02 -1.0010e-03 7.7077e-02 1.5716e-01 2.3323e-01 Columns 25 through 30: 3.0931e-01 3.8138e-01 4.5345e-01 5.2152e-01 5.8559e-01 6.4765e-01 Columns 31 through 36: 7.0370e-01 7.5776e-01 8.0581e-01 8.4985e-01 8.8789e-01 9.1992e-01 Columns 37 through 41: 9.4795e-01 9.6997e-01 9.8599e-01 9.9600e-01 1.0000e+00 Graphics saved as "line_fekete_bos_levenberg.png" line_fekete_chebyshev_test(): Seek Fekete points in [-1,1] using 1000 equally spaced sample points for polynomials of degree M = 41 with the Chebyshev basis and weight 1/sqrt(1-x^2). NF = 41 Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.9600e-01 -9.8599e-01 -9.6997e-01 -9.4795e-01 -9.1992e-01 Columns 7 through 12: -8.8789e-01 -8.4985e-01 -8.0581e-01 -7.5776e-01 -7.0370e-01 -6.4765e-01 Columns 13 through 18: -5.8559e-01 -5.2152e-01 -4.5345e-01 -3.8338e-01 -3.0931e-01 -2.3524e-01 Columns 19 through 24: -1.5716e-01 -8.1081e-02 -1.0010e-03 7.7077e-02 1.5716e-01 2.3323e-01 Columns 25 through 30: 3.0931e-01 3.8138e-01 4.5345e-01 5.2152e-01 5.8559e-01 6.4765e-01 Columns 31 through 36: 7.0370e-01 7.5776e-01 8.0581e-01 8.4985e-01 8.8789e-01 9.1992e-01 Columns 37 through 41: 9.4795e-01 9.6997e-01 9.8599e-01 9.9600e-01 1.0000e+00 Graphics saved as "line_fekete_chebyshev.png" Sum(WF) = 3.14159 line_fekete_legendre_test(): Seek Fekete points in [-1,1] using 5001 equally spaced sample points for polynomials of degree M = 41 with the Legendre basis and uniform weight. ind = 1 15 50 86 136 244 311 406 506 622 750 885 1042 1206 1362 1512 1699 1845 2171 2331 2524 2697 2880 3060 3232 3410 3559 3845 3967 4108 4250 4382 4497 4596 4690 4758 4866 4916 4952 4987 5001 NF = 41 Estimated Fekete points XF: Columns 1 through 6: -1.0000e+00 -9.9440e-01 -9.8040e-01 -9.6600e-01 -9.4600e-01 -9.0280e-01 Columns 7 through 12: -8.7600e-01 -8.3800e-01 -7.9800e-01 -7.5160e-01 -7.0040e-01 -6.4640e-01 Columns 13 through 18: -5.8360e-01 -5.1800e-01 -4.5560e-01 -3.9560e-01 -3.2080e-01 -2.6240e-01 Columns 19 through 24: -1.3200e-01 -6.8000e-02 9.2000e-03 7.8400e-02 1.5160e-01 2.2360e-01 Columns 25 through 30: 2.9240e-01 3.6360e-01 4.2320e-01 5.3760e-01 5.8640e-01 6.4280e-01 Columns 31 through 36: 6.9960e-01 7.5240e-01 7.9840e-01 8.3800e-01 8.7560e-01 9.0280e-01 Columns 37 through 41: 9.4600e-01 9.6600e-01 9.8040e-01 9.9440e-01 1.0000e+00 Graphics saved as "line_fekete_legendre.png" Sum(WF) = 2 line_fekete_rule_test(): Normal end of execution. 15-May-2025 08:58:43