15-Dec-2024 19:06:45 l4lib_test(): MATLAB/Octave version 6.4.0 Test l4lib(). I4_TO_L4_TEST I4_TO_L4 converts an I4 to an L4. I4 L4 -5 1 -4 1 -3 1 -2 1 -1 1 0 0 1 1 2 1 3 1 4 1 5 1 I4_TO_L4VEC_TEST I4_TO_L4VEC converts an I4 to an L4VEC. I4 L4VEC 0: 0 0 0 0 0 0 0 0 1: 0 0 0 0 0 0 0 1 2: 0 0 0 0 0 0 1 0 3: 0 0 0 0 0 0 1 1 4: 0 0 0 0 0 1 0 0 5: 0 0 0 0 0 1 0 1 6: 0 0 0 0 0 1 1 0 7: 0 0 0 0 0 1 1 1 8: 0 0 0 0 1 0 0 0 9: 0 0 0 0 1 0 0 1 10: 0 0 0 0 1 0 1 0 L4_TO_I4_TEST L4_TO_I4 converts an L4 to an I4. L4 I4 0 0 1 1 L4_TO_S_TEST L4_TO_S converts an L4 to a string. L4 S 0 False 1 True 1999 True 0 False 1 True L4_UNIFORM_TEST L4_UNIFORM computes pseudorandom logical values. The initial seed is 123456789 1 0 2 1 3 1 4 1 5 0 6 0 7 0 8 0 9 0 10 1 L4_XOR_TEST L4_XOR computes the exclusive OR of two L4's L1 L2 L4_XOR(L1,L2) 0 0 0 0 1 1 1 0 1 1 1 0 L4MAT_PRINT_TEST L4MAT_PRINT prints a logical matrix. A(I,J) = I is divisible by J 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 Col 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Row 1: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2: 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3: 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4: 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5: 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6: 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7: 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8: 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9: 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10: 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11: 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12: 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13: 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14: 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15: 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16: 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18: 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20: 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 Col 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 Row 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L4MAT_PRINT_SOME_TEST L4MAT_PRINT_SOME prints some of a logical matrix. Here, our matrix is 20x50, but we print rows 5:15, columns 1:5 A(I,J) = I is divisible by J Col 1 2 3 4 5 Row 5: 1 0 0 0 1 6: 1 1 1 0 0 7: 1 0 0 0 0 8: 1 1 0 1 0 9: 1 0 1 0 0 10: 1 1 0 0 1 11: 1 0 0 0 0 12: 1 1 1 1 0 13: 1 0 0 0 0 14: 1 1 0 0 0 15: 1 0 1 0 1 L4MAT_TRANSPOSE_PRINT_TEST L4MAT_TRANSPOE_PRINT prints the transpose of a logical matrix. A(I,J) = I is divisible by J 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 Row 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 Col 1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 3: 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 4: 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 5: 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 6: 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 7: 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 8: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 9: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 10: 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 11: 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 12: 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 13: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 14: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 15: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 16: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 17: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 18: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 19: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 20: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L4MAT_TRANSPOSE_PRINT_SOME_TEST L4MAT_TRANSPOSE_PRINT_SOME prints some of the transpose of a logical matrix. Here, our matrix is 20x50, but we print rows 5:15, columns 1:5 A(I,J) = I is divisible by J 0 0 0 0 0 1 1 1 1 1 1 Row 5 6 7 8 9 0 1 2 3 4 5 Col 1: 1 1 1 1 1 1 1 1 1 1 1 2: 0 1 0 1 0 1 0 1 0 1 0 3: 0 1 0 0 1 0 0 1 0 0 1 4: 0 0 0 1 0 0 0 1 0 0 0 5: 1 0 0 0 0 1 0 0 0 0 1 L4MAT_UNIFORM_TEST L4MAT_UNIFORM computes a vector of pseudorandom logical values. The initial seed is 123456789 Uniform L4MAT: Col 1 2 3 4 Row 1: 0 0 0 0 2: 1 0 0 1 3: 1 0 0 0 4: 1 0 1 0 5: 0 1 1 0 L4VEC_NEXT_TEST L4VEC_NEXT generates logical vectors. 000 001 010 011 100 101 110 111 L4VEC_PRINT_TEST L4VEC_PRINT prints an L4VEC. Is I Prime?: 1: F 2: T 3: T 4: F 5: T 6: F 7: T 8: F 9: F 10: F 11: T 12: F 13: T 14: F 15: F 16: F 17: T 18: F 19: T 20: F L4VEC_UNIFORM_TEST L4VEC_UNIFORM computes a vector of pseudorandom logical values. The initial seed is 123456789 Uniform L4VEC: 1: F 2: T 3: T 4: T 5: F 6: F 7: F 8: F 9: F 10: T S_TO_L4_TEST S_TO_L4 reads logical data from a string. S L4 "0 " 0 "F " 0 "f " 0 "1 " 1 "T " 1 "t " 1 " 0 " 0 " 1 0 " 1 " 01 " 0 " Talse" 1 l4lib_test Normal end of execution. 15-Dec-2024 19:06:45