hermite_cubic_test
hermite_cubic_test,
an Octave code which
calls hermite_cubic(), which
demonstrates the use of cubic polynomials in the Hermite form.
Licensing:
The computer code and data files described and made available on this web page
are distributed under
the MIT license
Related Data and Programs:
hermite_cubic,
an Octave code which
can compute the value, derivatives or integral of a
hermite cubic polynomial, or manipulate an interpolating function
made up of piecewise Hermite cubic polynomials.
Source Code:
-
hermite_cubic_test01.m,
tests HERMITE_CUBIC_VALUE;
-
hermite_cubic_test02.m,
tests HERMITE_CUBIC_VALUE;
-
hermite_cubic_test03.m,
tests HERMITE_CUBIC_INTEGRATE;
-
hermite_cubic_test04.m,
tests HERMITE_CUBIC_SPLINE_VALUE;
-
hermite_cubic_test05.m,
tests HERMITE_CUBIC_TO_POWER_CUBIC;
-
hermite_cubic_test06.m,
tests HERMITE_CUBIC_INTEGRATE using vectors;
-
hermite_cubic_test07.m,
tests HERMITE_CUBIC_INTEGRAL;
-
hermite_cubic_test08.m,
tests HERMITE_CUBIC_SPLINE_INTEGRAL;
-
hermite_cubic_test09.m,
tests HERMITE_CUBIC_SPLINE_INTEGRATE;
-
hermite_cubic_test10.m,
tests HERMITE_CUBIC_SPLINE_INTEGRAL, demonstrating that for
equally spaced data, the derivative values D(2:N-1) have no
effect on the computed integral estimate at all.
-
hermite_cubic_test11.m,
tests HERMITE_CUBIC_LAGRANGE_VALUE, which evaluates the four
Lagrange basis functions associated with a Hermite cubic polynomial.
-
hermite_cubic_test12.m,
tests HERMITE_CUBIC_LAGRANGE_INTEGRAL, which returns the integrals
of the four Lagrange basis functions associated with a Hermite
cubic polynomial over the definition interval [X1,X2].
-
hermite_cubic_test13.m,
tests HERMITE_CUBIC_LAGRANGE_INTEGRATE;
-
hermite_cubic_test14.m,
tests HERMITE_CUBIC_SPLINE_QUAD_RULE;
-
hermite_cubic_test15.m,
tests HERMITE_CUBIC_SPLINE_QUAD_RULE;
-
cubic_value.m,
returns the value and derivatives of a particular cubic polynomial.
-
cubic_integrate.m,
returns the integral of a particular cubic polynomial from A to B.
-
cubic_antiderivative.m,
evaluates the antiderivative function of a particular cubic polynomial.
Last modified on 28 January 2019.