fisher_pde_ftcs_test


fisher_pde_ftcs_test, an Octave code which calls fisher_pde_ftcs(), which estimates a solution of the Kolmogorov Petrovsky Piskonov Fisher partial differential equation (PDE) ut=uxx+u*(1-u), using the forward time centered space (FTCS) method, with an oscillating Dirichlet condition on the left, and a zero Neumann condition on the right.

Licensing:

The information on this web page is distributed under the MIT license.

Related Data and codes:

fisher_pde_ftcs, an Octave code which estimates a solution of the Kolmogorov Petrovsky Piskonov Fisher partial differential equation (PDE) ut=uxx+u*(1-u), using the forward time centered space (FTCS) method, with an oscillating Dirichlet condition on the left, and a zero Neumann condition on the right.

Source Code:


Last revised on 15 September 2024.