14-May-2025 11:21:52 cpr_test(): MATLAB/Octave version 6.4.0 Test cpr(), which uses the Chebyshev Proxy Rootfinder to determine all real zeros of a smooth function over an interval [a,b]. bessel_test(): Seek real roots of the J0 Bessel function. Interstitial interpolation error norm = 8.77076e-15 Number of roots = 12 Roots computed by CPR: 2.4048 5.5201 8.6537 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346 33.7758 36.9171 Maximum residual at roots = 1.01445e-14 Exact roots: 2.4048 5.5201 8.6537 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346 33.7758 36.9171 Exact f(roots): -1.0239e-16 -1.4117e-17 1.3004e-17 -7.9654e-16 -1.0152e-15 -7.3745e-16 7.5595e-17 -7.2262e-16 7.8726e-16 5.8966e-16 1.9964e-16 -8.1131e-16 f ( froots ): 9.1641e-15 4.9834e-15 -8.3098e-15 8.7343e-15 -3.5014e-15 -1.0144e-14 -5.8862e-15 6.1710e-15 7.8159e-15 -8.1171e-15 8.0040e-15 1.0549e-15 newton_test(): Seek real roots of the Newton example x^3-2x-5=0. Interstitial interpolation error norm = 5.68434e-14 Number of roots = 1 Maximum residual at roots = 9.76996e-15 Exact real root : 2.094551481542328 Computed real root: 2.094551481542327 Exact f(roots) : 1.4210854715202e-14 Computed f(roots) : 9.769962616701378e-15 Error : 4.440892098500626e-16 jenkins_test(): Seek real roots of the Jenkins polynomial p(x) = x^4 + 5.6562x^3 + 5.8854x^2 + 7.3646x + 6.1354 Interstitial interpolation error norm = 4.54747e-13 Maximum residual at roots = 2.08722e-13 Number of roots = 2 Computed roots: -4.674054017161708 -0.999999999999975 Exact roots: -4.674054017161709 -1.000000000000000 f (Computed roots ): -3.286260152890463e-14 2.087219286295294e-13 f(Exact roots): -1.865174681370263e-14 -8.881784197001252e-16 cpr_test(): Normal end of execution. 14-May-2025 11:21:52