>> table_voronoi ( 'diamond_02_00009.xy' ) 12-Aug-2010 09:14:15 TABLE_VORONOI MATLAB version: This program is given the coordinates of a set of points in the plane, calls GEOMPACK to determine the Delaunay triangulation of those points, and then digests that data to produce information defining the Voronoi diagram. The input file contains the following data: G_NUM: the number of generators; G_XY: the (X,Y) coordinates of the generators. The computed Voronoi information includes: G_DEGREE: the degree of each Voronoi cell; G_START: the index of the first Voronoi vertex; G_FACE: the list of all Voronoi vertices; V_NUM: the number of (finite) Voronoi vertices; V_XY: the (X,Y) coordinates of the Voronoi vertices; I_NUM: the number of Voronoi vertices at infinity; I_XY: the directions associated with the Voronoi vertices at infinity. HANDLE_FILE Read the TABLE file "diamond_02_00009.xy". The header has been read. The spatial dimension of the data M = 2 The number of generators, G_NUM = 9 The data has been read. The generators Row: 1 2 Col 1: 0.000000 0.000000 2: 0.000000 1.000000 3: 0.200000 0.500000 4: 0.300000 0.600000 5: 0.400000 0.500000 6: 0.600000 0.300000 7: 0.600000 0.500000 8: 1.000000 0.000000 9: 1.000000 1.000000 Triangle Area 1 0.100000 2 0.120000 3 0.035000 4 0.010000 5 0.010000 6 0.020000 7 0.020000 8 0.095000 9 0.150000 10 0.040000 11 0.200000 12 0.200000 TRI_AUGMENT: Number of boundary triangles = 4 Voronoi cell degrees 1: 5 2: 5 3: 5 4: 5 5: 4 6: 5 7: 5 8: 5 9: 5 The Voronoi vertices: Row: 1 2 Col 1: -0.525000 0.500000 2: 0.287500 0.175000 3: 0.064286 0.735714 4: 0.300000 0.500000 5: 0.500000 0.700000 6: 0.300000 0.200000 7: 0.500000 0.400000 8: 0.576316 0.928947 9: 0.500000 -0.250000 10: 0.987500 0.400000 11: 1.112500 0.500000 12: 0.500000 1.062500 g_degree = 5 5 5 5 4 5 5 5 5 g_start = 1 6 11 16 21 25 30 35 40 g_face = Columns 1 through 14 -14 9 2 1 -13 -13 1 3 12 -16 1 3 4 6 Columns 15 through 28 2 3 12 8 5 4 4 5 7 6 2 6 7 10 Columns 29 through 42 9 5 8 11 10 7 -15 11 10 9 -14 -16 12 8 Columns 43 through 44 11 -15 v_num = 12 v_xy = Columns 1 through 8 -0.5250 0.2875 0.0643 0.3000 0.5000 0.3000 0.5000 0.5763 0.5000 0.1750 0.7357 0.5000 0.7000 0.2000 0.4000 0.9289 Columns 9 through 12 0.5000 0.9875 1.1125 0.5000 -0.2500 0.4000 0.5000 1.0625 i_num = 4 i_xy = -1 0 1 0 0 -1 0 1 G_START: The index of the first Voronoi vertex G_FACE: The Voronoi vertices G G_START G_FACE 1 1 -14 9 2 1 -13 2 6 -13 1 3 12 -16 3 11 1 3 4 6 2 4 16 3 12 8 5 4 5 21 4 5 7 6 6 25 2 6 7 10 9 7 30 5 8 11 10 7 8 35 -15 11 10 9 -14 9 40 -16 12 8 11 -15 V_NUM: Number of Voronoi vertices = 12 Voronoi vertices: Row: 1 2 Col 1: -0.525000 0.500000 2: 0.287500 0.175000 3: 0.064286 0.735714 4: 0.300000 0.500000 5: 0.500000 0.700000 6: 0.300000 0.200000 7: 0.500000 0.400000 8: 0.576316 0.928947 9: 0.500000 -0.250000 10: 0.987500 0.400000 11: 1.112500 0.500000 12: 0.500000 1.062500 I_NUM: Number of Voronoi vertices at infinity = 4 Directions at infinity: Row: 1 2 Col 1: -1.000000 -0.000000 2: 0.000000 -1.000000 3: 1.000000 -0.000000 4: 0.000000 1.000000 TABLE_VORONOI Normal end of execution. 12-Aug-2010 09:14:15 >>