03-Feb-2021 09:40:47 truncated_normal_rule_test: MATLAB/Octave version 9.9.0.1467703 (R2020b) Test truncated_normal_rule. 03-Feb-2021 09:40:47 TRUNCATED_NORMAL_RULE MATLAB/Octave version 9.9.0.1467703 (R2020b) For the (truncated) Gaussian probability density function pdf(x) = exp(-0.5*((x-MU)/SIGMA)^2) / SIGMA / sqrt ( 2 * pi ) compute an N-point quadrature rule for approximating Integral ( A <= x <= B ) f(x) pdf(x) dx The value of OPTION determines the truncation interval [A,B]: 0: (-oo,+oo) 1: [A,+oo) 2: (-oo,B] 3: [A,B] The user specifies OPTION, N, MU, SIGMA, A, B and FILENAME. FILENAME is used to generate 3 files: filename_w.txt - the weight file filename_x.txt - the abscissa file. filename_r.txt - the region file, listing A and B. OPTION = 0 N = 5 MU = 1 SIGMA = 2 A = -oo B = +oo FILENAME = "option0" Moments: 1: 1 2: 1 3: 5 4: 13 5: 73 6: 281 7: 1741 8: 8485 9: 57233 10: 328753 11: 2389141 Hankel matrix H: Col: 1 2 3 4 5 Row 1 : 1 1 5 13 73 2 : 1 5 13 73 281 3 : 5 13 73 281 1741 4 : 13 73 281 1741 8485 5 : 73 281 1741 8485 57233 6 : 281 1741 8485 57233 328753 Col: 6 Row 1 : 281 2 : 1741 3 : 8485 4 : 57233 5 : 328753 6 : 2.38914e+06 Frobenius norm of H-R'*R = 7.28306e-12 Cholesky factor R: Col: 1 2 3 4 5 Row 1 : 1 1 5 13 73 2 : 0 2 4 30 104 3 : 0 0 5.65685 16.9706 169.706 4 : 0 0 0 19.5959 78.3837 5 : 0 0 0 0 78.3837 6 : 0 0 0 0 0 Col: 6 Row 1 : 281 2 : 730 3 : 735.391 4 : 979.796 5 : 391.918 6 : 350.542 Jacobi matrix J: Col: 1 2 3 4 5 Row 1 : 1 2 0 0 0 2 : 2 1 2.82843 0 0 3 : 0 2.82843 1 3.4641 0 4 : 0 0 3.4641 1 4 5 : 0 0 0 4 1 Eigenvector matrix V: Col: 1 2 3 4 5 Row 1 : 0.106101 0.471249 0.730297 -0.471249 0.106101 2 : -0.303127 -0.638838 2.47969e-16 -0.638838 0.303127 3 : 0.537348 0.279149 -0.516398 -0.279149 0.537348 4 : -0.638838 0.303127 -7.47125e-17 0.303127 0.638838 5 : 0.447214 -0.447214 0.447214 0.447214 0.447214 Creating quadrature files. "Root" file name is "option0". Weight file will be "option0_w.txt". Abscissa file will be "option0_x.txt". Region file will be "option0_r.txt". TRUNCATED_NORMAL_RULE: Normal end of execution. 03-Feb-2021 09:40:47 03-Feb-2021 09:40:47 TRUNCATED_NORMAL_RULE MATLAB/Octave version 9.9.0.1467703 (R2020b) For the (truncated) Gaussian probability density function pdf(x) = exp(-0.5*((x-MU)/SIGMA)^2) / SIGMA / sqrt ( 2 * pi ) compute an N-point quadrature rule for approximating Integral ( A <= x <= B ) f(x) pdf(x) dx The value of OPTION determines the truncation interval [A,B]: 0: (-oo,+oo) 1: [A,+oo) 2: (-oo,B] 3: [A,B] The user specifies OPTION, N, MU, SIGMA, A, B and FILENAME. FILENAME is used to generate 3 files: filename_w.txt - the weight file filename_x.txt - the abscissa file. filename_r.txt - the region file, listing A and B. OPTION = 1 N = 9 MU = 2 SIGMA = 0.5 A = 0 B = +oo FILENAME = "option1" ORDER = 0, B = -0, MU = -2, S = 0.5 ORDER = 0, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 1 ORDER = 1, B = -0, MU = -2, S = 0.5 ORDER = 1, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -2.00007 ORDER = 2, B = -0, MU = -2, S = 0.5 ORDER = 2, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 4.25013 ORDER = 3, B = -0, MU = -2, S = 0.5 ORDER = 3, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -9.5003 ORDER = 4, B = -0, MU = -2, S = 0.5 ORDER = 4, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 22.1882 ORDER = 5, B = -0, MU = -2, S = 0.5 ORDER = 5, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -53.8767 ORDER = 6, B = -0, MU = -2, S = 0.5 ORDER = 6, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 135.489 ORDER = 7, B = -0, MU = -2, S = 0.5 ORDER = 7, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -351.792 ORDER = 8, B = -0, MU = -2, S = 0.5 ORDER = 8, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 940.69 ORDER = 9, B = -0, MU = -2, S = 0.5 ORDER = 9, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -2584.96 ORDER = 10, B = -0, MU = -2, S = 0.5 ORDER = 10, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 7286.48 ORDER = 11, B = -0, MU = -2, S = 0.5 ORDER = 11, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -21035.4 ORDER = 12, B = -0, MU = -2, S = 0.5 ORDER = 12, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 62108.6 ORDER = 13, B = -0, MU = -2, S = 0.5 ORDER = 13, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -187323 ORDER = 14, B = -0, MU = -2, S = 0.5 ORDER = 14, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 576499 ORDER = 15, B = -0, MU = -2, S = 0.5 ORDER = 15, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -1.80863e+06 ORDER = 16, B = -0, MU = -2, S = 0.5 ORDER = 16, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 5.77913e+06 ORDER = 17, B = -0, MU = -2, S = 0.5 ORDER = 17, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = -1.87928e+07 ORDER = 18, B = -0, MU = -2, S = 0.5 ORDER = 18, H = 4, H_PDF = 0.00013383, H_CDF = 0.999968 MOMENT_PDF = 6.21469e+07 Moments: 1: 1 2: 2.000066917232235 3: 4.250133834464469 4: 9.500301127545054 5: 22.18820263093846 6: 53.87670638942198 7: 135.488666067517 8: 351.792391719167 9: 940.6899490564888 10: 2584.964681551312 11: 7286.481748479722 12: 21035.37520083773 13: 62108.57520999469 14: 187323.2760225026 15: 576499.4214774877 16: 1808630.309033735 17: 5779133.448608049 18: 18792788.13335104 19: 62146893.42328629 Hankel matrix H: Col: 1 2 3 4 5 Row 1 : 1 2.00007 4.25013 9.5003 22.1882 2 : 2.00007 4.25013 9.5003 22.1882 53.8767 3 : 4.25013 9.5003 22.1882 53.8767 135.489 4 : 9.5003 22.1882 53.8767 135.489 351.792 5 : 22.1882 53.8767 135.489 351.792 940.69 6 : 53.8767 135.489 351.792 940.69 2584.96 7 : 135.489 351.792 940.69 2584.96 7286.48 8 : 351.792 940.69 2584.96 7286.48 21035.4 9 : 940.69 2584.96 7286.48 21035.4 62108.6 10 : 2584.96 7286.48 21035.4 62108.6 187323 Col: 6 7 8 9 10 Row 1 : 53.8767 135.489 351.792 940.69 2584.96 2 : 135.489 351.792 940.69 2584.96 7286.48 3 : 351.792 940.69 2584.96 7286.48 21035.4 4 : 940.69 2584.96 7286.48 21035.4 62108.6 5 : 2584.96 7286.48 21035.4 62108.6 187323 6 : 7286.48 21035.4 62108.6 187323 576499 7 : 21035.4 62108.6 187323 576499 1.80863e+06 8 : 62108.6 187323 576499 1.80863e+06 5.77913e+06 9 : 187323 576499 1.80863e+06 5.77913e+06 1.87928e+07 10 : 576499 1.80863e+06 5.77913e+06 1.87928e+07 6.21469e+07 Frobenius norm of H-R'*R = 5.35028e-09 Cholesky factor R: Col: 1 2 3 4 5 Row 1 : 1 2.00007 4.25013 9.5003 22.1882 2 : 0 0.499866 2.00003 6.37564 19.0027 3 : 0 0 0.352748 2.11956 9.01426 4 : 0 0 0 0.30279 2.4344 5 : 0 0 0 0 0.295097 6 : 0 0 0 0 0 7 : 0 0 0 0 0 8 : 0 0 0 0 0 9 : 0 0 0 0 0 10 : 0 0 0 0 0 Col: 6 7 8 9 10 Row 1 : 53.8767 135.489 351.792 940.69 2584.96 2 : 55.4781 161.655 474.29 1407.42 4233.89 3 : 33.5963 117.73 400.296 1342.42 4481.97 4 : 12.97 58.0946 237.771 924.731 3491.16 5 : 2.98781 19.2013 100.727 472.558 2072.54 6 : 0.31273 3.84462 29.0813 175.56 931.797 7 : 0 0.351126 5.1134 44.7389 306.831 8 : 0 0 0.412284 6.98179 69.7036 9 : 0 0 0 0.503269 9.76547 10 : 0 0 0 0 0.636592 Jacobi matrix J: Col: 1 2 3 4 5 Row 1 : 2.00007 0.499866 0 0 0 2 : 0.499866 2.00107 0.705684 0 0 3 : 0 0.705684 2.00757 0.858375 0 4 : 0 0 0.858375 2.03119 0.974595 5 : 0 0 0 0.974595 2.08494 6 : 0 0 0 0 1.05975 7 : 0 0 0 0 0 8 : 0 0 0 0 0 9 : 0 0 0 0 0 Col: 6 7 8 9 Row 1 : 0 0 0 0 2 : 0 0 0 0 3 : 0 0 0 0 4 : 0 0 0 0 5 : 1.05975 0 0 0 6 : 2.16889 1.12278 0 0 7 : 1.12278 2.26913 1.17418 0 8 : 0 1.17418 2.37158 1.22069 9 : 0 0 1.22069 2.46964 Eigenvector matrix V: Col: 1 2 3 4 5 Row 1 : 0.0205816 -0.0988633 -0.295502 0.540525 0.617497 2 : -0.0748697 0.268565 0.512095 -0.408409 0.135786 3 : 0.178448 -0.447133 -0.420024 -0.163711 -0.416442 4 : -0.31803 0.490457 0.00654816 0.409225 -0.161318 5 : 0.446358 -0.305202 0.363907 -0.0274693 0.35374 6 : -0.509154 -0.0355367 -0.332626 -0.364352 0.156716 7 : 0.479842 0.336392 -0.0368366 0.203275 -0.342104 8 : -0.366187 -0.432129 0.353683 0.236437 -0.103489 9 : 0.195372 0.288646 -0.323198 -0.340644 0.351248 Col: 6 7 8 9 Row 1 : -0.439003 0.185853 -0.0416334 0.00355303 2 : -0.531101 0.41598 -0.139327 0.016472 3 : -0.143403 0.527266 -0.300584 0.0515525 4 : 0.336852 0.340647 -0.468611 0.125187 5 : 0.324559 -0.0842147 -0.524627 0.248267 6 : -0.150572 -0.395438 -0.355151 0.407887 7 : -0.364799 -0.255096 0.0194422 0.546214 8 : 0.0396921 0.193515 0.362849 0.562836 9 : 0.358483 0.363845 0.36811 0.371812 Creating quadrature files. "Root" file name is "option1". Weight file will be "option1_w.txt". Abscissa file will be "option1_x.txt". Region file will be "option1_r.txt". TRUNCATED_NORMAL_RULE: Normal end of execution. 03-Feb-2021 09:40:47 03-Feb-2021 09:40:47 TRUNCATED_NORMAL_RULE MATLAB/Octave version 9.9.0.1467703 (R2020b) For the (truncated) Gaussian probability density function pdf(x) = exp(-0.5*((x-MU)/SIGMA)^2) / SIGMA / sqrt ( 2 * pi ) compute an N-point quadrature rule for approximating Integral ( A <= x <= B ) f(x) pdf(x) dx The value of OPTION determines the truncation interval [A,B]: 0: (-oo,+oo) 1: [A,+oo) 2: (-oo,B] 3: [A,B] The user specifies OPTION, N, MU, SIGMA, A, B and FILENAME. FILENAME is used to generate 3 files: filename_w.txt - the weight file filename_x.txt - the abscissa file. filename_r.txt - the region file, listing A and B. OPTION = 2 N = 9 MU = 2 SIGMA = 0.5 A = -oo B = 3 FILENAME = "option2" ORDER = 0, B = 3, MU = 2, S = 0.5 ORDER = 0, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 1 ORDER = 1, B = 3, MU = 2, S = 0.5 ORDER = 1, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 1.97238 ORDER = 2, B = 3, MU = 2, S = 0.5 ORDER = 2, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 4.11188 ORDER = 3, B = 3, MU = 2, S = 0.5 ORDER = 3, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 8.96133 ORDER = 4, B = 3, MU = 2, S = 0.5 ORDER = 4, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 20.2607 ORDER = 5, B = 3, MU = 2, S = 0.5 ORDER = 5, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 47.2453 ORDER = 6, B = 3, MU = 2, S = 0.5 ORDER = 6, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 113.104 ORDER = 7, B = 3, MU = 2, S = 0.5 ORDER = 7, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 276.938 ORDER = 8, B = 3, MU = 2, S = 0.5 ORDER = 8, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 691.393 ORDER = 9, B = 3, MU = 2, S = 0.5 ORDER = 9, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 1755.42 ORDER = 10, B = 3, MU = 2, S = 0.5 ORDER = 10, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 4522.76 ORDER = 11, B = 3, MU = 2, S = 0.5 ORDER = 11, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 11802.9 ORDER = 12, B = 3, MU = 2, S = 0.5 ORDER = 12, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 31149.9 ORDER = 13, B = 3, MU = 2, S = 0.5 ORDER = 13, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 83028 ORDER = 14, B = 3, MU = 2, S = 0.5 ORDER = 14, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 223252 ORDER = 15, B = 3, MU = 2, S = 0.5 ORDER = 15, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 604977 ORDER = 16, B = 3, MU = 2, S = 0.5 ORDER = 16, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 1.65077e+06 ORDER = 17, B = 3, MU = 2, S = 0.5 ORDER = 17, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 4.53234e+06 ORDER = 18, B = 3, MU = 2, S = 0.5 ORDER = 18, H = 2, H_PDF = 0.053991, H_CDF = 0.97725 MOMENT_PDF = 1.25131e+07 Moments: 1: 1 2: 1.972376068660481 3: 4.111880343302405 4: 8.961333338879379 5: 20.26073078906856 6: 47.24525647851546 7: 113.1038111278635 8: 276.937661026991 9: 691.3934536882151 10: 1755.421615911829 11: 4522.756662066391 12: 11802.9018422451 13: 31149.88794017103 14: 83027.99171207208 15: 223251.6501446842 16: 604976.8640265733 17: 1650774.194330571 18: 4532336.179472007 19: 12513103.68896266 Hankel matrix H: Col: 1 2 3 4 5 Row 1 : 1 1.97238 4.11188 8.96133 20.2607 2 : 1.97238 4.11188 8.96133 20.2607 47.2453 3 : 4.11188 8.96133 20.2607 47.2453 113.104 4 : 8.96133 20.2607 47.2453 113.104 276.938 5 : 20.2607 47.2453 113.104 276.938 691.393 6 : 47.2453 113.104 276.938 691.393 1755.42 7 : 113.104 276.938 691.393 1755.42 4522.76 8 : 276.938 691.393 1755.42 4522.76 11802.9 9 : 691.393 1755.42 4522.76 11802.9 31149.9 10 : 1755.42 4522.76 11802.9 31149.9 83028 Col: 6 7 8 9 10 Row 1 : 47.2453 113.104 276.938 691.393 1755.42 2 : 113.104 276.938 691.393 1755.42 4522.76 3 : 276.938 691.393 1755.42 4522.76 11802.9 4 : 691.393 1755.42 4522.76 11802.9 31149.9 5 : 1755.42 4522.76 11802.9 31149.9 83028 6 : 4522.76 11802.9 31149.9 83028 223252 7 : 11802.9 31149.9 83028 223252 604977 8 : 31149.9 83028 223252 604977 1.65077e+06 9 : 83028 223252 604977 1.65077e+06 4.53234e+06 10 : 223252 604977 1.65077e+06 4.53234e+06 1.25131e+07 Frobenius norm of H-R'*R = 1.87738e-09 Cholesky factor R: Col: 1 2 3 4 5 Row 1 : 1 1.97238 4.11188 8.96133 20.2607 2 : 0 0.470758 1.80806 5.49244 15.4718 3 : 0 0 0.289977 1.60928 6.27684 4 : 0 0 0 0.203971 1.44766 5 : 0 0 0 0 0.15778 6 : 0 0 0 0 0 7 : 0 0 0 0 0 8 : 0 0 0 0 0 9 : 0 0 0 0 0 10 : 0 0 0 0 0 Col: 6 7 8 9 10 Row 1 : 47.2453 113.104 276.938 691.393 1755.42 2 : 42.3113 114.399 308.371 832.134 2252.55 3 : 21.2753 67.1884 203.923 604.463 1765.91 4 : 6.77779 26.4928 93.8617 313.258 1005.7 5 : 1.34134 7.23653 31.7332 123.692 447.505 6 : 0.132036 1.29097 7.80905 37.6784 159.29 7 : 0 0.118225 1.29307 8.59877 44.9904 8 : 0 0 0.112312 1.3466 9.69862 9 : 0 0 0 0.112445 1.45526 10 : 0 0 0 0 0.118019 Jacobi matrix J: Col: 1 2 3 4 5 Row 1 : 1.97238 0.470758 0 0 0 2 : 0.470758 1.86837 0.615978 0 0 3 : 0 0.615978 1.70893 0.703407 0 4 : 0 0 0.703407 1.54771 0.773539 5 : 0 0 0 0.773539 1.40394 6 : 0 0 0 0 0.836837 7 : 0 0 0 0 0 8 : 0 0 0 0 0 9 : 0 0 0 0 0 Col: 6 7 8 9 Row 1 : 0 0 0 0 2 : 0 0 0 0 3 : 0 0 0 0 4 : 0 0 0 0 5 : 0.836837 0 0 0 6 : 1.27609 0.895399 0 0 7 : 0.895399 1.15993 0.949983 0 8 : 0 0.949983 1.05254 1.00119 9 : 0 0 1.00119 0.952033 Eigenvector matrix V: Col: 1 2 3 4 5 Row 1 : -0.001487 -0.019684 0.100789 -0.281349 -0.490598 2 : 0.00779962 0.0774482 -0.28465 0.510324 0.426332 3 : -0.0288123 -0.204765 0.489295 -0.406235 0.163782 4 : 0.0835209 0.394682 -0.4923 -0.105901 -0.407254 5 : -0.194556 -0.542186 0.130939 0.428166 -0.157133 6 : 0.364709 0.466945 0.335976 -0.0481594 0.34653 7 : -0.540311 -0.0960929 -0.359979 -0.391687 0.258006 8 : 0.59855 -0.334939 -0.120736 0.0624763 -0.217071 9 : -0.413604 0.403102 0.390972 0.37577 -0.355547 Col: 6 7 8 9 Row 1 : -0.574819 0.477461 -0.298887 0.14795 2 : -0.0117293 0.40282 -0.465096 0.303331 3 : 0.437139 -0.0371546 -0.403217 0.413431 4 : 0.179961 -0.387646 -0.163646 0.456491 5 : -0.296474 -0.378061 0.121846 0.444238 6 : -0.371136 -0.0779073 0.340694 0.392152 7 : -0.0155049 0.258195 0.429785 0.312473 8 : 0.336394 0.402191 0.377857 0.21508 9 : 0.327001 0.284068 0.215819 0.108454 Creating quadrature files. "Root" file name is "option2". Weight file will be "option2_w.txt". Abscissa file will be "option2_x.txt". Region file will be "option2_r.txt". TRUNCATED_NORMAL_RULE: Normal end of execution. 03-Feb-2021 09:40:47 03-Feb-2021 09:40:47 TRUNCATED_NORMAL_RULE MATLAB/Octave version 9.9.0.1467703 (R2020b) For the (truncated) Gaussian probability density function pdf(x) = exp(-0.5*((x-MU)/SIGMA)^2) / SIGMA / sqrt ( 2 * pi ) compute an N-point quadrature rule for approximating Integral ( A <= x <= B ) f(x) pdf(x) dx The value of OPTION determines the truncation interval [A,B]: 0: (-oo,+oo) 1: [A,+oo) 2: (-oo,B] 3: [A,B] The user specifies OPTION, N, MU, SIGMA, A, B and FILENAME. FILENAME is used to generate 3 files: filename_w.txt - the weight file filename_x.txt - the abscissa file. filename_r.txt - the region file, listing A and B. OPTION = 3 N = 5 MU = 100 SIGMA = 25 A = 50 B = 150 FILENAME = "option3" Moments: 1: 1 2: 100 3: 10483.58831471845 4: 1145076.494415535 5: 129568497.7600003 6: 15112482585.63112 7: 1809207227068.942 8: 221506953202234.8 9: 2.765093050095114e+16 10: 3.51026037257232e+18 11: 4.522018809010304e+20 Hankel matrix H: Col: 1 2 3 4 5 Row 1 : 1 100 10483.6 1.14508e+06 1.29568e+08 2 : 100 10483.6 1.14508e+06 1.29568e+08 1.51125e+10 3 : 10483.6 1.14508e+06 1.29568e+08 1.51125e+10 1.80921e+12 4 : 1.14508e+06 1.29568e+08 1.51125e+10 1.80921e+12 2.21507e+14 5 : 1.29568e+08 1.51125e+10 1.80921e+12 2.21507e+14 2.76509e+16 6 : 1.51125e+10 1.80921e+12 2.21507e+14 2.76509e+16 3.51026e+18 Col: 6 Row 1 : 1.51125e+10 2 : 1.80921e+12 3 : 2.21507e+14 4 : 2.76509e+16 5 : 3.51026e+18 6 : 4.52202e+20 Frobenius norm of H-R'*R = 6.9282 Cholesky factor R: Col: 1 2 3 4 5 Row 1 : 1 100 10483.6 1.14508e+06 1.29568e+08 2 : 0 21.9906 4398.13 684875 9.8025e+07 3 : 0 0 565.103 169531 3.49279e+07 4 : 0 0 0 14563.4 5.82538e+06 5 : 0 0 0 0 370064 6 : 0 0 0 0 0 Col: 6 Row 1 : 1.51125e+10 2 : 1.35494e+10 3 : 6.16191e+09 4 : 1.49208e+09 5 : 1.85032e+08 6 : 9.33226e+06 Jacobi matrix J: Col: 1 2 3 4 5 Row 1 : 100 21.9906 0 0 0 2 : 21.9906 100 25.6974 0 0 3 : 0 25.6974 100 25.7713 0 4 : 0 0 25.7713 100 25.4105 5 : 0 0 0 25.4105 100 Eigenvector matrix V: Col: 1 2 3 4 5 Row 1 : 0.236407 0.4929 0.634289 -0.4929 0.236407 2 : -0.467897 -0.530162 1.09386e-09 -0.530162 0.467897 3 : 0.590175 0.0661848 -0.542794 -0.0661848 0.590175 4 : -0.530162 0.467897 -1.88877e-09 0.467897 0.530162 5 : 0.309524 -0.502662 0.550502 0.502662 0.309524 Creating quadrature files. "Root" file name is "option3". Weight file will be "option3_w.txt". Abscissa file will be "option3_x.txt". Region file will be "option3_r.txt". TRUNCATED_NORMAL_RULE: Normal end of execution. 03-Feb-2021 09:40:47 truncated_normal_rule_test: Normal end of execution. 03-Feb-2021 09:40:47