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Abstract

The Sparse Grids Matlab Kit provides a Matlab implementation of sparse grids, and can be used for approx-
imating high-dimensional functions and, in particular, for surrogate-model-based uncertainty quantification. It is
lightweight, high-level and easy to use, good for quick prototyping and teaching; however, it is equipped with some
features that allow its use also in realistic applications. The goal of this paper is to provide an overview of the
data structure and of the mathematical aspects forming the basis of the software, as well as comparing the current
release of our package to similar available software.
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1 Introduction

The Sparse Grids Matlab Kit (SGMK) implements the combination technique form of sparse grids for interpolation and
quadrature of high-dimensional functions; it is geared towards Uncertainty Quantification (UQ) problems but general
enough for other purposes. It is lightweight, high-level and (hopefully) easy to use, good for quick prototyping and
teaching. However, some functionalities (evaluation recycling, buffering strategy for adaptive sparse grid generation,
interface with Matlab parallelization and with other software by the UM-Bridge protocol [1]) make it convenient also
for realistic applications.

The SGMK is freely available under the BSD2 license at https://sites.google.com/view/sparse-grids-kit
(releases, documentation, release-related material) as well as on Github at https://github.com/lorenzo-tamellini/
sparse-grids-matlab-kit (source code): the first version was released in 2014 (14-4 “Ritchie”), and the current
version was released in 2023 (23-5 “Robert”). It is written in Matlab, and its compatibility with Octave has been
tested. No installation is required, i..e, the SGMK folder just needs to be added to the working directory with the
usual Matlab addpath command. The package is organized as illustrated in the following tree diagram:

Sparse Grids Matlab Kit
main
tools
src
docs-examples

Roughly speaking, the folder main collects all the “operative” functions: those for generating sparse grids, that will be
discussed in Sect. 3.4, as well as the main functionalities (quadrature, interpolation, evaluation, plotting, computing
derivatives, conversion to polynomial chaos expansions), that will be discussed in Sect. 4. The folder tools collects all
the “building block” functions that are required to create a sparse grid (knots generation, level-to-knots computation,
multi-index generation, see Sects. 3.1, 3.2, 3.3 respectively), as well as utility functions for e.g. evaluating polynomials,
converting between data structures, and interfaces to Matlab parallel functions. In general, functions in this folder
are functions that are ancillary to the functions in main but that the standard user of the SGMK will have to use.
Conversely, the folder sre contains source files with low-level functions that typically are not of interest of the standard
users, but only for SGMK developers. Finally, the folder docs-examples collects complementary materials, such as
several tutorials, a few test examples and a testing unit. The documentation provided in this user manual is further
complemented by the additional documentation provided in the help of each function. Additionally, a thorough
description of the mathematical background of functions and algorithms is provided in the main paper [2].

This manual is organized as follows: Sect. 2 introduces the minimal mathematical background necessary to un-
derstand the entities implemented in the SGMK. Then, Sect. 3 covers how sparse grids are generated in the SGMK,
how they are stored in memory (data structure) and what options are available for their generation. Sect. 4 discusses
the main functionalities made available by the SGMK, as well as how to interface the SGMK with external software,
either by file exchange or by using the UM-Bridge protocol. Finally, Sect. 5 illustrates the usage of the SGMK over
a simple (yet quite paradigmatic) problem of forward and inverse UQ for partial differential equations (PDEs). This
final example should hopefully convey that it is quite straightforward to use the SGMK to perform a wide array of
possible common tasks in UQ, with a relatively small number of lines of code. All the code snippets discussed in the
paper, as well as the complete code for the final PDE example are available on the SGMK webpage.

2 A short overview on the basics of sparse grids

The aim of this section is to briefly recall the mathematical foundations of sparse grids, which guide the software
implementation. We consider the two problems of a) approximating and b) computing weighted integrals of (the
components of) a function f : RN — RY given some samples of f whose location we are free to choose. More
specifically, we assume that f depends on N random variables y = (y1,...,yn) € I, with = T'; x...xI'y € RY being
the set of all possible values of y. We denote by p, : I';, — RT the probability density function (pdf) of each variable
Yn, n =1,..., N and assume independence of y1, ..., yn, such that the joint pdf of y is p(y) = HnN:1 pn(yn),Vy € T.

The first step to build a sparse grid is to define a set of collocation knots for each variable y,,. We thus introduce the
univariate discretization level 7,, € N and a so-called “level-to-knots function” that specifies the number of collocation
knots to be used for each random variable, i.e.,

m: Ny — Np, i, = m(iy). (1)



Then, we denote by Ty ;, the set of m(i,) discretization knots along y,, i.e.,

Tnin, = {yfj’;ﬁ(in) Cin = 1,...7m(in)} forn=1,...,N. (2)

Such sequence is usually chosen according to the probability distribution of the random variables p,, for efficiency
reasons. Furthermore, for efficiency purposes it is beneficial if the sequences of knots are nested, i.e., if 7,4, C Tn ;.
when j, > i,. These aspects will be further discussed in Sect. 3.1.

Next, we introduce the N-dimensional tensor grids, that are obtained by taking the Cartesian product of the
N univariate sets of knots just introduced. For this purpose we collect the discretization levels i, in a multi-index
i = [i1,...,in] € NY and denote the corresponding tensor grid by 7; = ®f¥:1 Tn,i,- Using standard multi-index
notation, we can then write

Ti= {YS@)@) }jSm(i)

yin

,  with yffl)(l) = yyg(“), o ,y%ijz(iN) and j € NY,
where m(i) = [m(i1), m(i2),...,m(in)] and j < m(i) means that j, < m(i,) for every n=1,..., N.

A tensor grid approximation of f(y) based on global Lagrangian interpolants collocated at these grid knots can
then be written in the following form

= > (v9) 29 ), (3)

i<m(i)
where {Eg)(i) (y) }j<m(i) are the N-variate Lagrange basis polynomials, defined as tensor products of univariate La-
grange polynomials, i.e.
. N o m(in) Un 7y(k) _
£ ) = T ) with 100w =TT o5
n=1 k=1,k%jn In,m(in) — Yn,m(in)

Similarly, the tensor grid quadrature of f(y), i.e. the approximation of the weighted integral of its components, can
be computed by taking the integral of the Lagrangian interpolant in Eq. (2):

oA ::/F Ui(y) Z f m() ( / lif’;n(zn) (Yn)p (yn)dyn>

i<m(i)
= > 7 (v )(H S:M> S (39) « ()
j<m() i=1 j<m(i)

(Jn)

where w,” iy A€ the standard quadrature weights obtained by computing the integrals of the associated univariate

Lagrange polynomials, and wg)(i) are their multi-variate counterparts.
Finally, building upon the concepts just introduced, the sparse grid approzimation of f(y) and of its weighted

integral (cf. tasks a) and b) above), can be written as (see e.g. [2, Section 2| for the full derivation of this formula):

fly) =Uz(y) = Zciui, ¢ = Z (—1)Mlh (5)

= jefo, 13"
i+jer
/ f dy QI Z Ci Ql? (6)
i€z

with 7 C Nf denoting the multi-index set collecting the multi-indices in the sum. The sparse grid is then defined as

=T (7)
ieZ
c;;ﬁO

The equalities in Egs. (5) and (6) are known as “combination technique” form of the sparse grids approximation and
quadrature, and are valid only if Z is chosen as downward closed, i.e.

vkeZ, k-—e,cIforeveryn=1,...,N such that k, > 1. (8)
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Figure 1: Sparse grid generated by Listing 1.

3 Generating sparse grids

Equations (5), (6), and (7) are the formulas that constitute the backbone of the implementation of the SGMK. We
illustrate the package in two steps: in this section we discuss the creation of the sparse grid data structure, whereas
in the next section we describe the main operations that can be done (interpolation, quadrature, etc).

The basic creation of a sparse grid is as easy as the following code snippet (Listing 1). We report it and then spend
the rest of the section dissecting these lines and discussing the alternative options available for the same operations.

1 knots = @(n) knots uniform(n,0,1); % Gauss-Legendre knots on [0,1]

2 lev2knots = @lev2knots_doubling;

3 I =1[11;

4 1 2;

5 2 1;

6 3 1];

7 S = create_sparse_gridmultiidx_set (I, knots, lev2knots);

8 Sr = reduce_sparse_grids(S);

9 plot_sparse_grid(S, [], 'ok', 'LineWidth', 3, 'MarkerFaceColor', 'k', 'MarkerSize',b12)

Listing 1: Basic creation of a sparse grid.

The first six lines declare the “ingredients” of the sparse grid, while the actual construction of the grid is delegated
to Lines 7 and 8. The command plot_sparse grids at Line 9 generates the plot of the sparse grid reported in Fig.
1. Most of the lines have a one-to-one correspondence with the mathematical description of sparse grids presented in
the previous section:

e knots is the function to generate the univariate set of collocation knots 7, ;

stn

in Eq. (2);
e lev2knots is the level-to-knots function m in Eq. (1);

e I is the multi-index set Z in Egs. (5), (6), (7);

e S contains the sparse grid understood as collection of tensor grids 7, i € Z, ¢; # 0;

e Sr contains the sparse grid understood as the union of tensor grids without repetitions of knots in common, see
Eq. (7). We discuss more the generation of sr in Sec. 3.4.1.

Next, we present and discuss the alternatives available in the SGMK for each of the operations in the listing above:
assignment of the function knots is discussed in Sect. 3.1, assignment of the function lev2knots is discussed in Sect.
3.2, construction of the multi-index set I is discussed in Sect. 3.3, and finally construction of s and sr, and the details
of the respective data structure are discussed in Sect. 3.4. Note that the alternatives for the first three operations are
provided in the tools folder

tools
knots_functions
lev2knots_functions
idxset_functions

whereas the functions for the sparse-grids generation are available in the main folder.




domain parameters pdf
: — T
uniform I = [a, b a,beR p(y) = 5= ]
_(y=n)
normal =R w0 € R p(y) = - 1% 207
exponential T'=[0,00) AeR, A >0 p(y) = e
gamma '=[0,0) a,BeR, a>-1,>0 ply = F(::)xacfﬁy
I'(a+8+2
beta I'=[a,b] abao,feER, a,f>-1 ply) = F(a-i—l)l“(,(ﬁ’cfi-l[)i(b—)a)ﬂJrﬁJrl (y —a)*(b—y)?
triangular T = [a,b] a,beR ply) = ﬁ(h —y)
Table 1: Random variables and corresponding pdfs.
knots function nestedness
uniform Gauss—Legendre knots_uniform No
Clenshaw—Curtis knots_CC Yes for suitable m
Leja (standard, symmetric, P-disk) knots_leja Yes
Equispaced knots_trap Yes for suitable m
Midpoint knots midpoint Yes for suitable m
normal Gauss—Hermite knots_normal No
Genz—Keister knots_GK Yes
weighted Leja (standard, symmetric) knots.normal_leja Yes
exponential Gauss-Laguerre knots_exponential No
weighted Leja knots_exponential leja Yes
gamma Gauss—generalized Laguerre knots_gamma No
weighted Leja knots_gamma_leja Yes
beta Gauss—Jacobi knots beta No
weighted Leja (standard, symmetric) knots beta leja Yes
triangular weighted Leja knots_triangular_leja  Yes

Table 2: Different type of collocation knots, corresponding function of the SGMK and a flag on the nestedness property.

3.1 Knots functions

We begin by addressing the different types of collocation knots that are implemented in the SGMK, i.e., the possible
options to replace the assignment in Line 1 of Listing 1, knots = @(n) knots_uniform(n,0,1). As already hinted,
the knots should be chosen according to the pdf of the corresponding random variables y,; in Tab. 1 we report the
random variables that are considered in the SGMK, along with the expression of the respective pdf, as well as the
parameters on which the pdfs depend.

The SGMK provides two families of knots (Gauss-type knots and Leja-type knots) that can be used to construct
collocation knots for almost all the random variables listed in Tab. 1, and some additional choices that are available
only for certain random variables: specifically, Clenshaw—Curtis, equispaced knots, and midpoint knots for uniform
random variables, and Genz—Keister knots for normal random variables. We give details on all these families of knots
in the next paragraphs, but we mention already that one big distinction is that some of these families of knots are
nested whereas others are not, and one should in general favor knots of the former class, as stated already in Sect.
2. More specifically, Gauss-type knots are not nested, whereas all the other choices are nested. The full list of knots
available in the SGMK and the corresponding commands to generate them are reported in Tab. 2, together with a
flag to indicate whether a specific choice is nested or not.

Gauss-type knots Given a pdf, Gauss-type collocation knots are defined as the zeros of the corresponding orthog-
onal polynomials:

e Legendre polynomials for uniform random variables;
e Hermite polynomials for normal (gaussian) random variables;
e Laguerre polynomials for exponential random variables;

e generalized Laguerre polynomials for gamma random variables;
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Figure 2: Gauss-type knots with the corresponding pdfs.

e Jacobi polynomials for beta random variables.

The weights can be formally computed by taking the integral of the corresponding Lagrange polynomials. However, in
practice, knots and weights are more conveniently derived from the eigenvalue decomposition of a suitable matrix, see
e.g. [3] for further details. Note that Gauss-type quadrature rules employing k knots have degree of exactness 2k — 1.
In Fig. 2 we display the first 8 Gauss-type knots for the different random variables listed above.

Leja knots Leja knots were first introduced for unweighted interpolation on univariate and bivariate domains, see
e.g. [4], and are therefore a suitable choice when y,, are uniform random variables on the interval [a,b]. They are built
recursively as
b , g
tW =p, 1@ =q, t® = %, and 1) = argmax;cq p) H|t — ¢tk (9)
k=1
and the corresponding quadrature weights are obtained by evaluating the integrals of the Lagrangian polynomials in
Eq. (4) by Gauss-type quadrature rules with appropriate degree of exactness. Observe that by construction Leja knots
are nested.
A limitation of Leja knots is that they are not symmetric with respect to the mid-point ‘%rb of the interval.
However, sequences of symmetric knots can be constructed generating only the even elements of the sequence with
the standard formula in Eq. (9) and then symmetrizing them to obtain the odd elements, i.e.

dD @ g g 0tD
) ’ 2 ’
2j—1
t(29) = argmax; ey p) H [t — ™),
k=1
ey Z 0Fb (o et by (10)
5 2

Another class of Leja-type knots, called P-disk knots, can be obtained projecting on the real axis the Leja knots
generated on the complex unit ball. P-disk knots are then naturally defined on [—1, 1], and they amount to:

¢1:07 (252:71—7 ¢3:%3

@) = cos ¢j, where ¢ ¢oji0 = ¢"2+2, (11)

G2j+3 = G212 + 7.

Of course, a linear transformation needs to be applied for random variables on the general interval [a,b]. For more
details on this family of knots we refer to [5]. The first 9 knots of the three classes just described are plotted in Fig.
Ja.

Remark. Leja sequences are not unique, since the function to be mazximized at each iteration might have more than
one mazximum; this fact is well-known in literature, see e.g. [6, 7]. In our implementation, at each iteration j the
mazximization problem is solved by a “brute—force zooming” algorithm: we look for the mazimum over a grid in [a,b]
with increasingly small step-size, over a window that narrows around the location of the current mazimum; note that the
initial step-size is chosen small enough that the maximum is always guaranteed to be the global maximum and not a local
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Figure 3: (a)-(c): Collocation knots for uniform random variables on [0,1]: (a) Leja knots; (b) nested Clenshaw—
Curtis (CC) knots; (¢) comparison of the different types of knots. (d): Collocation knots for standard normal random
variables.

one. This computation is only performed once and then collocation knots are saved on file, therefore its computational
cost is not an issue. When multiple global mazima are present, the implemented algorithm selects the smallest one
(with sign). The function that computes the Leja knots is not released as a function per se in the SGMK but can be
found at the beginning of the tutorial docs-examples/test_compute normal leja_and convergence test.m (with
minor variations due to the fact that such tutorial is discussing weighted Leja knots — more about these knots in the
following).

Weighted Leja knots It is possible to extend the construction of Leja knots to the case when y, are random
variables with a probability distribution other than uniform, see [7]. These knots are the so-called weighted Leja knots
and can be computed again recursively, by suitably introducing a weight in Eq. (9), i.e., solving

j—1
t0) = argmax,cp/p(t) [ (¢ = t*)),
k=1

where p is the pdf of the random variable and T" its domain. The same computational considerations discussed for
the standard (non-weighted) Leja knots are valid for the weighted Leja knots as well. As for standard Leja sequences,
weighted sequences can be symmetrized, extending analogously Eq. (10). In the SGMK, weighted Leja knots are
available for all supported random variables, whereas symmetric weighted Leja knots are available only for random
variables with symmetric pdfs, namely for normal and beta random variables (in the latter case, only when the pdf
parameters «, § are identical, cf. Tab. 1).

Clenshaw—Curtis knots Besides the variants of Leja knots, the so-called Clenshaw—Curtis knots are another nested
alternative to Gauss-type knots in case of uniform random variables. They are computed on [—1,1] as

() (U-Um ,
t 1<j<K
K COS(K—1 ==

and then linearly transformed to any generic interval [a,b]; the corresponding weights can be efficiently computed
by Fast Fourier Transform, see [8]. Quadrature formulas based on this family of knots result to be as accurate
as the Gauss-type quadrature. Moreover, two sets of Clenshaw-Curtis knots with K7 and K5 knots are nested if
(Ko —1)/(K; — 1) = 2! for some integer I. Such sequences are obtained e.g. for K = 1,3,5,9, 17, see Fig. 3b.

Equispaced and midpoint knots These two sequences of knots are provided for uniform random variables only.
They provide classical low-order quadrature formulas [9] and can therefore be useful for quadrature of functions with
low regularity. In particular:

e Equispaced knots in [a, b] are provided by the function knots_trap that implements the trapezoidal quadrature

)

rule with knots t% and weights w;!

) =a+nG-1) 1<j<K

1

1 K .
w%):w%):h/Z WIthh:iK—l'
W =h 2<j<K-1



definition function

linear m(in) = in lev2knots_lin
2-step min) =20, — 1) +1 lev2knots_2step
doubling m(l) =1, m(zn) =214 lev2knots_doubling
tripling m(in) = 3’” lev2knots_tripling
Genz—Keister m(1) =1,m(2) =3,m(3) =9, m(4) =19, m(5) =35 lev2knots GK

Table 3: Types of level-to-knots functions and corresponding function of the SGMK.

Similarly to Clenshaw—Curtis knots, two sets of equispaced knots with K; and K5 knots are nested if (Ko —
1)/(K; — 1) = 2! for some integer .

e Midpoint knots are provided by the function knots midpoint, that implements the midpoint quadrature rule:

) h ‘ ,
9 —ag+Z4nG—-1) 1<j<K 1
W =h 1<j<K

Two sets of midpoint knots with K; and K knots are nested if K5/K; = 3! for some integer /.

Observe that these two rules depart a bit from the general framework of the package, in that they do not derive quadra-
ture weights as integral of global Lagrange polynomials, but rather as integrals of piecewise Lagrange polynomials
(linear and constant, respectively). However, we remark that the package does not provide piecewise interpolation,
but only global interpolation. Therefore, if one were to use these knots to build a sparse grid interpolant of a function,
Runge phenomena can be expected, leading to poor approximations. These knots are thus to be intended essentially
as quadrature knots only. To summarize, in Fig. 3c we give a comparison of the types of collocation knots available
for uniform random variables.

Genz—Keister knots The sequence of Genz—Keister knots is obtained by modifying the sequence of Gauss—Hermite
knots to enforce nestedness, see [10]. The knots and the corresponding weights are tabulated and available for
K =1,3,9,19,35. In Fig. 3d we display the first 9 Genz—Keister knots, together with Gauss-type and symmetric
weighted Leja knots for normal random variables.

3.2 Level-to-knots functions

The above list of knots can be used in conjunction with different types of level-to-knots functions (see Eq. (1)) that
associate the discretization levels collected in the multi-index i to the number of collocation knots to be used; of
course, some choices are smarter than others, such as those that guarantee nestedness. For example, in the case of
Clenshaw—Curtis knots, any number of knots can be used, but a specific relation must hold between the cardinality of
the sequences of knots such that they are nested (see discussion above). In the case of symmetric Leja knots instead,
it is natural to use a level-to-knots function that adds two knots (or, more generally, an even number of knots) at each
level, to make sure that sequences that are constructed by symmetrization are actually used as such.

In Tab. 3 we list the level-to-knots functions that are implemented in the SGMK, which are the possible options
to replace the assignment in Line 2 of Listing 1, lev2knots = @lev2knots doubling. The function linear can be
used for Gauss-type and Leja knots: however, as already pointed out, in case of symmetric Leja knots it is convenient
to resort to the functions of type 2-step or doubling. The function of type doubling is essential for the generation
of sequences of nested Clenshaw—Curtis and equispaced knots; the function tripling must be used to obtain nested
midpoint knots, and the tabulated function Genz—Keister is specific for the case of Genz—Keister knots. Table 4
gives an overview on the possible combination of knots and level-to-knots functions that generate sequences of nested
collocation knots.

3.3 Multi-index sets

As discussed in [2, Section 2], the quality of the sparse grid approximations (5) and (6) depends on the choice of the
multi-index set Z. One approach to this end is to design the set based on some knowledge on the problem at hand,
such as the smoothness of the function to be approximated; an alternative “a-posteriori” /adaptive approach will be
discussed later on.



knots

level-to-knots functions for nestedness

uniform Leja - standard linear, 2-step, doubling
Leja - symmetric linear, 2-step, doubling
Leja - P-disk linear, 2-step, doubling
Clenshaw—Curtis doubling
equispaced doubling
midpoint tripling
normal weighted Leja - standard linear, 2-step, doubling
weighted Leja - symmetric  linear, 2-step, doubling
Genz—Keister Genz—Keister
exponential weighted Leja linear, 2-step, doubling
gamma weighted Leja linear, 2-step, doubling
beta weighted Leja - standard linear, 2-step, doubling
weighted Leja - symmetric  linear, 2-step, doubling
triangular weighted Leja - standard linear, 2-step, doubling

Table 4: Families of knots with the corresponding level-to-knots functions to ensure nestedness.

Note that multi-indices are always stored in the SGMK as row vectors with N components, and multi-index sets
are correspondingly stored as matrices, each row being a multi-index; moreover, it is required that such matrices
are in lexicographic order by row. This check is of course not delegated to the user (SGMK functions operating on
multi-index sets will check ordering and throw an error if a set is not sorted).

Another requirement on multi-index sets is the already mentioned downward-closedness property, see Eq. (8): to
this end, the SGMK provides the function check_set_admissibility (I), which in case of non-downward-closedness
of the set I also returns the smallest downward-closed set that includes I. For visualization purposes, the SGMK also
provides the function plot multiidx_set (which supports only the cases N =2, N = 3).

Small multi-index sets can be typed in “manually”, such as in Lines 3-6 of Listing 1, but of course dedicated
functions are available. In particular multiidx box set (jj), where jj is a multi-index, generates the hyper-
rectangular (a.k.a. “box”) set Z = {i € N : i < j}. Furthermore, most multi-index sets that can be written as
Z={ieNY :r()<w}forr:NY - R, and w € N} can be created invoking the function multiidx gen as follows

N = 2;

rule = @(ii) sum(ii-1);

w = 4;

base = 1;

I = multiidx_gen(N, rule,w,6base);

[S NI VR

Listing 2: Creation of a multi-index set.

where rule is a @-function such that rule(ii) evaluates r(i), and the integer value w defines the size of the multi-
index set, and hence controls the quality of the associated sparse grid approximation. In the following, we refer
to r as rule of the approximation and to w as level of the approximation. The implementation of multiidx gen is
recursive over n, n = 1,..., N. This is a flexible solution that can accommodate for a wide range of rules r (although
admittedly not the most efficient speed-wise): the only requests are that r is non-decreasing in each argument, and
that 7(j) > w = r([j, 1]) > w,Vj € N}, n < N.

A list of multi-index sets Z commonly found in literature and the implementation of the corresponding rule in
Matlab is available in Tab. 5. The vectors g € Rf appearing in the definitions in Tab. 5! are the so-called anisotropy
weights, whose purpose is to tune the shape of the multi-index set in such a way that more collocation knots are
placed in the random variables deemed to be more important; in particular, the larger the weight, the more penalized
the corresponding variable, i.e. the lower the number of collocation knots placed on that random variable. Whenever
g1 = ... = gn, the resulting grid is named isotropic, and anisotropic otherwise. Finally, we clarify the role of the
line base=1 in Listing 2: its purpose is to specify that the smallest entry of each multi-index is 1 (another option
would be base=0; multi-index sets like these will be needed later on, in Sect. 4.4). We further illustrate the use of
multiidx gen with the help of the following example.

Example 1 (Multi-index sets). The two-dimensional isotropic multi-index set Ls,m(4) can be generated as in Listing
2. For the case of anisotropic sets we have to further specify the vector of weights g:

IThe peculiar writing g (1:1length (ii)) is due to fact that multiidx_gen works recursively on the directions n = 1 to N, and
therefore we need to be able to call the @-function also when the length of g and ii do not match.




definition function
Tmax(w) = {i € N¥ 1 max,, g, (i, —1) Sw} rule = @(ii) max(g(l:length(ii)).*(ii-1))
Tsum(w) = {i c Nf : ZnNzlgn(in -1)< w} rule = @(ii) sum(g(l:length(ii)).*(ii-1))

Torod(w) = {i eNY: I, i < w} rule = @Q(ii) prod((ii)."g(l:length(ii)))

n=1"n

Table 5: Multi-index sets and corresponding definitions in Matlab.

name set generated by the rule level-to-knots functions

TP’ Tmax linear
'TD' Tsum linear
"HC' Torod linear
'SM' Toum doubling

Table 6: Pre-sets available in define_function for_rule. Rules are defined in Tab. 5, level-to-knots functions in
Tab. 3.

1 N = 2;

> g = [1,2];

3 rule = @(ii) sum(g(l:length(ii)).=*(ii-1));

4 w=4;

5 base = 1;

¢ I.aniso = multiidx_.gen (N, rule,w,6 base);

7 plot_multiidx set (I.aniso, 'sk', 'LineWidth',2, 'MarkerSize',22, 'MarkerFaceColor', 'b')

Figure 4 (top-row) shows the isotropic and anisotropic version of the index sets, together with the corresponding sparse
grids, generated using symmetric Leja knots and level-to-knots function of type 2-step. The code to generate such grids
18 almost identical to the one in Listing 1 and will be discussed in details later on.

The following rows of the figure show multi-index sets and grids for the other choices of sets introduced in Tab. 5,
i.€., Tz (Mid-row of the figure) and T,roq (bottom-row of the figure), again in their isotropic and anisotropic versions
(left and right part of the figure, respectively). The code to generate these multi-index sets is identical to the listing
above (other than changing Line 8 with the appropriate definition from Tab. 5).Note that Z,,q. sets can be equivalently
generated with the command multiidx box_set. Finally, we also mention that for faster generation of Lsym, the
function fast_TD_set is available - the reason for this naming will be clearer later on.

Typing rules of Tab. 5 might be inconvenient, especially if anisotropic rules are needed. To this end, the SGMK
provides the convenience function define_functions_for rule that takes as input a string (“the name of the sparse
grid”) and returns the associated rule and level-to-knots function for a number of common cases (see Tab. 6):

] 1 [lev2knots, rule] = define_functions_for_rule (<string-name>)

The first three names ('TP', 'TD', 'HC') are borrowed from the literature on polynomial approximation spaces, and
refer to the Tensor Product, Total Degree, and Hyberbolic Cross spaces, respectively, see [2, Section 2]. The fourth
name 'SM' refers to one of the most used type of sparse grid, the so-called Smolyak grid, which is obtained combining
Zsum with the level-to-knots function of type doubling (the complete example will be given in Listing 3).

3.4 Sparse grid generation and data structure

We are finally ready to discuss Lines 7 and 8 of Listing 1, that are responsible of generating the sparse grid. The
approach reported in the snippet can be called a-priori, since it requires to specify the multi-index set Z before
sampling the function f. In this section we detail this approach first, and then discuss also the “dual” approach, i.e.
the adaptive algorithm to generate sparse grids, in which the multi-index set Z is computed simultaneously to the
sampling of the function f (Sect. 3.4.2). Note that regardless of the way in which sparse grids are generated, they are
eventually stored with the same data structure, that we describe below while discussing the a-priori approach.

3.4.1 A-priori sparse grids

Listing 1 shows a first way to generate a sparse grid with the multi-index set determined a-priori: directly typing in
the set, (or using the functions multiidx box set, multiidx gen, or define functions for rule), and then using
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Figure 4: Isotropic and anisotropic multi-index sets and corresponding sparse grids of symmetric Leja knots on
I = [0,1]? generated using level-to-knots function of type 2-step.

the function create _sparse grid multiidx set. Another possibility is to call the command create_sparse grid,
that takes care of generating both the multi-index set given the rule and the associated sparse grid in one call, as
shown in the following snippet.

1
2
3
4
5
6

N = 2;

w = 3;

knots = @(n) knots CC(n,0,1);

lev2knots = @lev2knots_doubling;

rule = @(ii) sum(ii-1);

S = create_sparse_grid (N, w,knots, lev2knots, rule) ;

Listing 3: Basic creation of a sparse grid given a multi-index set defined by a rule.

The output of create_sparse grid (and of create_sparse grid multiidx set) is a sparse grid in the so-called

extended format, that stores separately the information of each tensor grid composing the sparse grid (more precisely,
of those grids whose coefficient in the combination technique formula is non-zero, see Egs. (5), (6), and (7)). The data
structure chosen to this end is a structure array, where each structure identifies one of the tensor grids:
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Each tensor grid structure contains the following fields:

e idx: the multi-index i € Z corresponding to the current tensor grid;
e knots: matrix collecting the knots 7j, each knot being a column vector;

e weights: vector of the quadrature weights wfrjl)(i) corresponding to the knots;

e size: size of the tensor grid, i.e. the number of knots M; = [[~_, m(in);

e knots per_ dim: cell array with N components, each component collecting in an array the set of one-dimensional
knots 7, used to build the tensor grid;

e m: vector collecting the number of knots used in each of the N directions m(i) = [m(i1), m(i2),...,m(in)];

o coeff: the coefficients ¢; of the sparse grid in the combination technique formulas (5) and (6).

Note in particular that sparse grid knots (and in general knots y € T") are always stored in the SGMK as column-vectors
(and sets of knots such as S.knots are stored as matrices where knots are columns).

The structure array above has seven components, since seven tensor grids are used in the construction of the sparse
grid. We report below the first component of the structure array:

In Fig. 5a we plot the sparse grid generated in Listing 3, and in Fig. 5b—h the seven tensor grids that explicitly
contribute to it. We can easily observe that some knots appear in multiple tensor grids, and therefore the sparse
grids structure s contains redundant information. This is a general fact, happening not only when nested knots are
used, but also (to a smaller extent) in the case of non-nested knots. Hence, it is convenient to generate a structure
containing only the non-repeated knots and a list of corresponding weights, that can be computed taking the linear
combination of the quadrature weights of each instance of the repeated knot with the combination coefficient weights
in Eq. (5). This can be done calling the function Sr = reduce_sparse grid(S), that outputs a unique structure
containing the following fields:

e knots: matrix collecting the list of non-repeated knots, i.e., the set Tz in Eq. (7);
e weights: vector of quadrature weights corresponding to the knots above;
e size: size of the sparse grid, i.e. the number of non-repeated knots;

e m: index array that maps each knot of Sr.knots to their original position in [S.knots] (if they have been
retained as unique representative of several repeated knots);



1 1 ® 1 | @ ® ®
0.8 0.8 * 0.8 ® 0.8
[ J
0.6 0.6 0.6 0.6
( ([ ] ] [ ] ®
0.4 0.4 0.4 0.4
([ ]
0.2 0.2 0.2 0.2
[ ] [ J
0 0 ° 0 s . ° °
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
(a) 7}511111(3) (b) 7—[173] with Cl,3] = -1 (c) ﬁ1,4] with C[1,3] = 1 (d) 7’[272] with Cl,3] = -1
1 @ 1 oo — o ¢ 1
0.8 b 0.8 0.8 0.8
0.6 0.6 0.6 0.6
[ ] [ I [ o o o o [ [ I ®.e 6 6 06 0
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
[ ]
@ 0 e — & oo 0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
(e) 7‘[273] with C[I,S] =1 (f) 7—[34] with 0[113] =-1 (g) 7‘[372] with 0[1’3] =1 (h) 7—[44] with C[113] =1

Figure 5: The sparse grid generated by Listing 3 and the seven tensor grids that generate it.

e n: index array that maps each knot of [S.knots] to Sr.knots.

For instance, the sparse grid s above consists of 67 knots

1 >> size([S.knots])
2 ans =

3

4 2 67

and the corresponding reduced sparse grid results in 29 non-repeated knots:

>> Sr =
struct with fields:

knots: [2x29 double]
m: [29x1 double]
weights: [1x29 double]
n: [67x1 double]

size: 29

© 0 N TR W N e

Both extended and reduced formats are useful for working with sparse grids and should always be stored in memory,
although this implies a certain redundancy in memory storage; see [2, Section 3| for some considerations and numerical

tests about the performance of reduce_sparse grid.

Finally, for quick generation of a sparse grid (both extended and reduced formats), the SGMK provides also the
convenience function create_sparse_grid quick preset, which generates Smolyak grids of level w with Clenshaw—

Curtis knots in the default interval [—1, 1]N , and only takes as inputs N and w

1 >> [S,Sr] = create_sparse_grid_quick_preset (N,w);

3.4.2 Adaptive sparse grids

The SGMK provides also the possibility to construct adaptive sparse grids, i.e. sparse grids where the multi-index set,
and hence the approximations in Egs. (5) and (6), are constructed in an iterative way, relying on some heuristic criteria
(called profit indicators in the following) based on the values of the function currently being interpolated/integrated.
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name short description default value

'nested' Specifies nestendess of knots none (must always be set)
'max pts' Maximum number of evaluations of f allowed 1000
'prof_tol' Stops algorithm when all profits are below this 10714
threshold
'paral'’ Controls interaction with Matlab parallel toolbox NaN (i.e. serial computations)
'recycling' Can speed up computations when non-nested knots 'priority to evaluations'
are used
'prof’ Sets the profit to be used (see Tab. 8) 'Linf/new_points'
'op_vect' In case of vector-valued f, specifies the vector norm  Euclidean norm

to be used in the computation of the profits to ac-
count for the different components of f

'pts_tol' Tolerance to detect identical knots when calling 1le-14
reduce_sparse grid internally
'pdf"’ Needed for certain profits (see Tab. 8) none (must be set if required
by profit)
'var buffer size' Controls buffer size N (i.e., no buffer)
'plot’ Plots current multi-index set and candidate set at false

each iteration (N = 2 only)

Table 7: Main control options of the implementation of adapt_sparse_grids and their default value.

The function provided to this end is called adapt_sparse_grids and a minimal working example of its use is provided
in Listing 4.

f = @(y) exp(sum(y)); % @-function, takes as input a column vector for y and returns a scalar
% or column-vector

N = 2;

knots = @(n) knots CC(n,0,1);

lev2knots = @lev2knots_doubling;

controls = struct('nested',true); % each field of this struct specifies an optional argument

% to control the algorithm
Ad = adapt_sparse_grids (f,N, knots, lev2knots, [], controls);

0 N e e W N

Listing 4: Basic creation of an adaptive sparse grid.

The implemented adaptive algorithm for sparse grid generation is an extension of the classical Gerstner—Griebel
dimension-adaptive algorithm [11] (see [2, Section 3.1] for the mathematical background), and can accommodate for
non-nested knots, vector-valued functions, several profit definitions, and the so-called “dimension-buffering”. In the
following, we discuss the options available in the SGMK, which can be passed to the code in the typical Matlab way by
suitably setting the fields of a structure, i.e. controls = ('option-name', <option-value>,..) and then passing
such structure as input to adapt_sparse grids, cf. Listing 4. The available options are reported in Tab. 7; we discuss
the main ones below and refer readers to the help of adapt_sparse_grids for a full discussion on the other ones.

The algorithm iteratively explores the set of multi-indices and at each iteration adds one multi-index to the current
multi-index set Z, choosing from a set of candidate multi-indices (the so-called reduced margin of Z) the one with the
largest profit. The profit indicator of a given multi-index i quantifies the “net contribution” of i to the sparse grid
and is computed by dividing an “error contribution” estimator & (i.e., how much the sparse grid approximation /
quadrature of f would improve if i was added to Z) by a “work contribution” W; (i.e., how many new evaluations
f would be needed if i was added to Z). Of course, several error indicators are possible, and the work contribution
depends on whether the knots used are nested or not, which means that several profit definitions are possible. The
profits implemented in the SGMK are listed in Tab. 82, where:

&2 = | Qzugy — Qzlv, (12)

&' = max (|Uzug (v) — Us(y)IvEW)) (13)

.- {Hiv_l (m(in) — m(i, — 1))  for nested knots ”
CI m) for non-nested knots

?Note that some profit indicators actually do not consider the work contribution and therefore are not profits, strictly speaking.
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profit name Definition

deltaint £
deltaint/new points ES/W
Linf gut
Linf/new points (default) gL w
weighted Linf (requires 'pdf' option &Y

to be set)

weighted Linf/new points (requires gU,p/W
'pdf ' option to be set)

Table 8: Profits and corresponding names, cf. Eqgs. (12)—(16).

with |||}y the Euclidean norm in RY (see below for other choices) and

£(y) = 1 for y distributed as uniform random variables (15)
y) = &(y) = p(y) for the other supported random variables,
. Tzugy \ Tz for nested knots, i.e. the new knots added by i, cf. Eq. (7) 16)

T for non-nested knots, i.e., the tensor grid generated by i.

As already hinted, the profit to be used can be specified as a field of the structure array controls (Line 6 of Listing
4), such as controls = struct(.., 'prof', 'Linf'). The weight £ in Eq. (13) can be provided as a function handle
controls = struct(..,'pdf',@(y) ..), and the default norm |-||yy can also be changed (e.g. to an ¢ norm or a
Mahalanobis distance), by specifying a suitable @-function in the field 'op_vect' of controls. The formula for the
work contribution and the testing set H are automatically selected based on the field 'nested' of the structure array,
which can take value <true/false> and is the only mandatory field to be provided.

The adaptive algorithm terminates when one or more suitable stopping criterion is met. Common choices are
checking that the computational work or the profits of the multi-indices in the reduced margin are respectively above
or below a certain tolerance. These termination criteria can be controlled by setting further fields in the controls
structure array: controls = struct(.., 'maxpts',<value>, 'prof tol',6 <value>).

Finally, the so-called buffering of dimensions is a way to speed up the computations when f depends on a large
number of random variables, N > 1, in which case the set of candidates to be examined is very large. In this scenario,
it is possible to start the adaptive algorithm considering a reduced set of random variables, and gradually including
the remaining ones as the algorithm evolves. In particular, the algorithm is forced to consider at most Ny, ¢ “non-
activated” / “buffered” random variables at each iteration, whereas the non-buffered version would always consider
the whole set of random variables. This behavior is obtained by setting to Ny, s the field 'var buffer_size' of the
controls structure, controls = struct (.., 'var buffer size',6K <value>).

The output of the function adapt_sparse_grids is a structure, which contains in separate fields both the extended
and the reduced version of the grid, as well as additional information such as the values of the function f evaluated
at the collocation knots, the current index set, the reduced margin and others.

>> Ad
Ad =

struct with fields:

N: 2
S: [1x7 struct]
Sr: [1x1l struct]
f_ on_Sr: [1x257 double] % values of f at the sparse grid knots
nb_pts: 257 % nb. of knots in Sr
nested: 1
nb_pts_visited: 257 % number of knots considered during the construction.
% For nested knots, this is equal to nb_pts; for non-nested knots,
% this will be larger than nb_pts, because some knots enter and then exit
% the grid when the corresponding idx exits from the combination technique.
actual nb of evaluations of f required to build the sparse grid.
This is not necessarily equal to nb_pts_visited because for speed reasons
some function evaluations might be taken more than once (e.g. when
if evaluating f is faster than checking whether the point has been
already evaluated)

© 0N O g W N e
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3.4.3 Grid recycling

We close this section pointing out a useful feature of the functions to build sparse grids. For efficiency reasons, all
these functions can take as optional input another grid already available in memory and recycle as many computations
as possible from there, in terms of e.g. generating the multi-index set, computing the coefficients of the combination
technique, and generating the tensor grids needed for the the extended version of their storage. The mechanisms
implemented to this end are a bit different depending whether one is working with a-priori or adaptive sparse grids:

1. the commands create_sparse grid and create_sparse_grid multiidx_set take as input an extended version
of a previous grid:

2. adapt_sparse_grids takes as input the result of a previous computation, to resume the computation where the
previous one stopped:

3. When the new grid differs from the previous one by just one multi-index, the code can be further optimized,
and an ad-hoc function in this case is available:

4 Operating on sparse grids

After having discussed how to generate a sparse grid, the aim of this section is to present the main functionalities
of the SGMK. In Sect. 4.1 we first discuss basic tasks, i.e. evaluation, quadrature and interpolation of the function
f, as well as plotting of the sparse grid approximation. The following Sect. 4.2 covers some advanced features that
can be optionally activated to save computational time (evaluation recycling, parallelization). We then move to tools
to manipulate the sparse grid approximation: Sect. 4.3 covers computation of gradients and Hessians, and Sect. 4.4
computation of Sobol indices by conversion to polynomial chaos expansion. Most of these functions work for vector-
valued f:T'C RY — RV, in which case the function is applied component-wise to f. Finally, in Sect. 4.5 we discuss
how to interface the SGMK with external software, either by saving grids on file or using the UM-Bridge protocol.
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4.1 Basic operations: function evaluation, quadrature, interpolation, and plotting

Once a sparse grid is built, the basic operations of interest are: evaluating a function f for each point of the grid,
f(y;), Vy; € Tz, approximating the integral (expected value) [. f(y)p(y)dy, evaluating and plotting the sparse grid
approximation Uz (y) for y € T'; cf. Egs. (5), (6), and (7). The corresponding functions of the SGMK are:

e evaluate on_sparse grid, that evaluates the function f at the sparse grid knots;

e quadrature on_sparse grid, that computes integrals of f by quadrature formulas collocated at the sparse grid
knots, cf. Eq. (6);

e interpolate on sparse grid, that evaluates the sparse grids approximation as defined in Eq. (5)
e plot_sparse grids_interpolant, that plots such sparse grids approximation.

We illustrate them with the help of the following snippets. First, the values of f at the sparse grid knots are obtained
as follows:

£f = Q(y) exp(sum(y));

% S as in Listing 3

Sr = reduce_sparse_grid(S);

f_on_Sr = evaluate_on_sparse_grid(f, Sr);

L N S

We plot the result in Fig. 6a. Once the values of f at the sparse grid knots are available we can compute the
approximated value of the integral of f (see Eq. (6)), as well as construct and evaluate the sparse grid approximation
defined in Eq. (5). The snippet below shows how to compute approximated integrals of f and of f:

quadrature_on_sparse_grid(f_on_Sr, Sr);
quadrature_on_sparse grid(f_on_Sr."2,Sr);

1 q
2 g2

Finally, the following piece of code shows how to evaluate the sparse grid approximation at a uniform cartesian grid
of 15 x 15 points. The resulting surface is reported in Fig. 6b. Note that for this operation both the extended and
reduced versions of the sparse grid are needed (see [2, Section 4.4] for a discussion on why this is the case).

% building the cartesian grid of 15x15 equispaced points

y = linspace(0,1,15);

[Y1,Y2] = meshgrid(y,y);

% rearrange the points such that each point is a column

eval points = [Y1(:)';¥2(:)']; % matrix of dim. 2x15

% S, Sr and f_on_Sr as above

f vals = interpolate_on_sparse_grid(S,Sr, f_on_Sr,eval_points);
surf (Y1, Y2, reshape (f_vals, 15,15))

[ I e A

The snippet above is actually very close to the implementation for the case N = 2 of the last function mentioned at
the beginning of this section, i.e. plot_sparse grids_interpolant, that plots the sparse grids approximation. For
N = 3, this function would instead plot a number of contour lines colored according to the value of the interpolant,
stacked over the same axis; finally, when NV > 3 a number of bi-dimensional cuts of the domain I' are considered,
and for each of them the surface (i.e., the plot for N = 2) will be generated, keeping all other y,, constant to their
mid-value. Examples for cases N = 3 and N = 4 are reported in the listing below, and the corresponding plots are
shown in Fig. 7 and 8, respectively. We refer the readers to the help of plot_sparse grids_interpolant for the
full description of the optional controls to generate plots like these. Of course, the SGMK contains also functions to
plot the knots of a sparse grid: plot_sparse grid (that we have already used multiple times in previous snippets)
and plot3_sparse grid (see snippet below). The former can be used to plot two-dimensional sparse grids, or two-
dimensional projections of a higher-dimensional sparse grid; the latter can be used instead to plot three-dimensional
sparse grids, or three-dimensional projections.

1 N = 3;

2 £ = @(x) exp(sum(x));

3 % S as in Listing 3 with N = 3, Sr its reduced version

4 plot3_sparse_grid(S)

5 f_on_Sr = evaluate_on_sparse_grid(f, Sr);

¢ domain = [0 0 O; 1 1 1]; % domain where to plot

7 plot_sparse_grids_interpolant (S, Sr,domain, f_.on_Sr, 'nb_contourfs',5, 'nb_countourf_lines',10);
8

9 N = 4;

10 £ = @(x) exp(x(1l,:)+0.5%*x(2,:)+1.5%x(3,:)+2*x(4,:))
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Figure 6: Evaluations of f(y) = exp(y1 + y2) at the sparse grid knots and corresponding sparse grid approximation.

(a) Sparse grid (b) Sparse grid approximation

Figure 7: Sparse grid and corresponding approximation of f(y) = exp(y1 + y2 + y3)-

11 % S as in Listing 3 with N=4, Sr its reduced version

12 f_on_Sr = evaluate_on_sparse_grid(f,Sr);

13 domain = [0 0 0 0; 1 1 1 1]; % domain where to plot

14 plot_sparse_grids_interpolant (S,Sr,domain, f.on_Sr, 'two.dimcuts',[1 2 3 4 1 4])
15 % cut for (yl,y2), (y3,y4), (y1l,y4)

4.2 Enhancing computational performance

The function evaluate_on_sparse grids is in practice a wrapper for looping through the knots of a sparse grid and
calling the evaluation of f. It is convenient especially because it implements a couple of advanced features that can
be used to improve the computational efficiency: evaluation recycling and parallelization. We discuss them below.

4.2.1 Evaluation recycling

When multiple grids have to be built and the function f evaluated at the corresponding knots (for instance, when
the user would like to refine the current sparse grid approximation of f adding more collocation knots to the grid,
or when several sparse grids are being compared), significant computational savings can be achieved by recycling the
evaluations of f that have been already performed. This can be obtained by passing to evaluate_on_sparse grids
the previous grids and the corresponding evaluations as additional inputs, as shown in the next listing where we
generate a sequence of grids with increasing w in a for loop.

1 2;

2 = @(y) exp(sum(y));

3 knots = @(n) knots CC(n,0,1);

4 lev2knots = @lev2knots_doubling;

N
£
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Figure 8: Sparse grid approximation of f(y) = exp(y1 + 3y2 + 5y3 + 2y4).

rule = Q(ii) sum(ii-1);

% consider a sequence of grids with increasing level
w.vec = 1:6;

S old = []; % initialize the grid

Sr.old = []; % initialize the reduced grid

10 evals_old = []; % initialize the set of evaluations
11 for w = w_vec

© w0 N o o

12 % recycle tensor grids from S_old

13 S = create_sparse_grid(N,w,knots, lev2knots, rule, S_old);

14 Sr = reduce_sparse_grid(S);

15 % recycle evaluations on S_old

16 f_evals = evaluate_on_sparse_grid(f,S,Sr,evals_old, S.old, Sr_old);
17 ..

18 % do something with f_evals

19 ..

20 % then update the containers

21 S_old = S;

22 Sr_old = Sr;

23 evals_old = f evals;
24 end

Note that it is also possible to pass as input a generic list of points (i.e. not a sparse grid):

1 f_evals = evaluate_on_sparse_grid(f,S,Sr,evals_old, [],M)

where M is a matrix containing the list of points at which the evaluations of f are available, and evals_old contains
such evaluations. As discussed in [2, Section 4.1], the computational overhead to detect the evaluations that can be
recycled is larger in this case than in the previous snippet, where the evaluations are recycled from another sparse
grid.

4.2.2 Parallelization of evaluations by Matlab parpool

The function evaluate_ on_sparse_grids also acts as wrapper to calls of the Matlab parallel toolbox construct parfor,
to speed-up the evaluations of f by running the evaluations on multiple cores. This functionality is activated by first
opening a Matlab parallel session (parpool command) and then specifying one further input in the call to the function:

1 f_evals = evaluate_on_sparse_grid(f, S, Sr,evals_old, S_.old, Sr_old,paral);

where Sr, evals_ old, S_old, Sr_old can be set to [] if no grid / point recycling is required. Here paral is an integer
number that specifies the minimum number of evaluations of f above which parfor should replace the regular for
when looping over the knots of the sparse grid. This apparently cumbersome call is due to the fact that communication
between workers of a parpool takes some time. Therefore, unless a sufficient number of evaluations of f are requested,
serial evaluation might be faster, depending on the time it takes to perform one evaluation of f. The default value of
paral is NaN, which means that no parallel is used. Note that evaluate_on_sparse grid will not open a parpool
session, but will check if one is open and throw an error if not.

Remark. Note that recycling and paralllelization of evalutions are available also for quadrature on sparse grid.
Indeed, the quadrature function can also take as input a @-function (instead of the evaluations of f as explained in

Sect. 4.1)
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name orthonormal pdf function

Legendre uniform lege eval multidim

Hermite normal herm eval multidim

Laguerre exponential lagu eval multidim

generalized Laguerre gamma generalized lagu eval multidim
probabilistic Jacobi®  beta jacobi_ prob_eval multidim
Chebyshev (1%* kind)  Chebyshev cheb_eval multidim

Table 9: Orthonormal polynomials, corresponding pdfs, and function name.

] 1 [q, f_on_Sr] = quadrature_on_sparse_grid(f,Sr);

In this way, the call to quadrature on_sparse grid embeds the one to evaluate on_sparse grids and, as such, all
the functionalities of the latter are inherited by the former.

4.3 Gradients and Hessian

Computing gradients and Hessians of the sparse grids approximation of f can be useful in applications, such as the
inverse UQ problem discussed in Sect. 5.2, optimization or local sensitivity analysis studies. To this end, the SGMK
provides the functions derive_sparse grid and hessian_sparse grid, that respectively compute gradients and
Hessians of the sparse grid approximation of a scalar-valued function f : RN — R by centered finite differences schemes;
gradients and Hessians of vector-valued functions must be computed component-wise calling repeatedly the functions
derive sparse grid and hessian sparse grid. More specifically, derive_sparse grid returns the gradient of f
evaluated at multiple points as a matrix, each column being the gradient in one point; hessian_sparse_grid conversely
computes the Hessian matrix at a single point. The step-size h of the computation along each variable y,, is defaulted
to (b —a)/10° (other values can be specified if needed), where a, b are the boundaries of ' along y, (or of the subset
of T'y, where derivatives are needed, in case of unbounded domains).

4.4 Polynomial chaos expansion and Sobol indices computation

The generalized Polynomial Chaos Expansion (gPCE) is the expansion of a function f over multi-variate p-orthonormal
polynomials, that in practice gets truncated as follows:

Fy) =Y dpPply),
PEA

where A C N¥ is a multi-index set, and Pp, = HnN:1 P, (yn) are products of N univariate pp-orthonormal polynomials

of degree p,. The SGMK provides functions to evaluate a number of different orthonormal polynomials in the folder

tools
L polynomials functions

The available polynomials with the corresponding orthonormal pdf and the associated function names are listed in
Tab. 9.

Thus, a gPCE is completely determined upon prescribing a multi-index set A and the vector containing the
corresponding expansion coefficients dp:

e the multi-index set A can be constructed with the same procedures detailed in Sect. 3.3: the only difference
is that now the entries of each multi-index indicate a polynomial degree, therefore entries with value zero are
allowed. This can be obtained e.g. by means of the option base=0 in the function multiidx gen.

N = 2;
rule = @(ii) sum(ii);
w = 3;

base = 0;
Lambda = multiidx_gen (N, rule,w,base);

[S I U R VR

3These polynomials are slightly different from the classical Jacobi polynomials: the former are orthonormal with respect to the beta
pdf, cf. Tab. 1, whereas the latter are orthonormal with respect to the weight function w(y) = (y — a)?(b — y)® — note the switch in the
role of the parameters a, 8.
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Figure 9: Sparse grid multi-index set and corresponding PCE multi-index set.

e The coefficients dp can be computed in several ways, e.g. by quadrature, least squares fitting or compressed
sensing approaches. The strategy provided by the SGMK is briefly described below.

Once the multi-index set is defined and gPCE coefficients are available, the gPCE can be evaluated in a straightforward
way as follows:

PCE coeffs = [..]; % a vector of coefficients obtained e.g. by least square or quadrature
eval_ points = rand(N,10); % points where to evaluate the gPCE of £
PCE_vals = zeros(l,size(eval_points,2));
for i = 1l:length(PCE_coeffs)
PCE_vals = PCE._vals+PCE_coeffs (i) xlege_eval multidim(eval_points,Lambda(i,:),0,1);
% 0,1 are shape param and indicate that the Legendre polynomials are defined over [0,1]"N

N o oA N R

end

Coming to the computation of the gPCE coefficients, the SGMK provides a function to compute them given the
evaluations of f over a sparse grid. Such function is called convert_tomodal and it supports transformation to
all polynomials listed in Tab. 9, and, roughly speaking, works by converting the sparse-grid surrogate model into
its equivalent gPCE by performing a change of polynomial basis. The function convert_tomodal returns a vector
containing the gPCE coefficients PCE_coeffs and a matrix Lambda containing the multi-index set of the gPCE:

£ = Q(y) exp(sum(y));
w = 3;
base = 1;

knots = @(n) knots CC(n,0,1);

lev2knots = @lev2knots_doubling;

rule = @(ii) sum(ii-1);

I = multiidx_gen (N, rule,w,6base);

S = create_sparse_grid multiidx_set (I,knots, lev2knots);

Sr = reduce_sparse_grid(S);

f_on_Sr = evaluate_on_sparse_grid(f, Sr);

domain = [0 O; 1 1];

[PCE_coeffs,Lambda] = convert_to_modal (S, Sr, f.on_Sr,domain, 'legendre');

© 0 N e O R W N e

[
N o= O

Note that the multi-index set of the PCE is completely determined by the choices of the level-to-knots function
and of the multi-index set of the sparse grid from which the conversion procedure begins. In Fig. 9 we plot both
multi-index sets from the snippet above.

The conversion to gPCE is useful e.g. to compute the indices of the Sobol decomposition of f: to this end, the
SGMK provides a wrapper function compute_sobol_indices_from sparse_grid which calls convert to.modal and
performs some algebraic manipulations of the gPCE coefficients of f to compute the Sobol indices of f; we give an
example of its usage in Sect. 5.1.

4.5 Interfacing the SGMK with other software

Interfacing the SGMK with other software implementing the evaluation of f can be done in (at least) two ways: by
saving sparse grids on file and then using external tools to evaluate f at each point, or through the interface provided
by the software UM-Bridge [1], available at https://um-bridge-benchmarks.readthedocs.io/en/docs/.
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4.5.1 Saving grid on file

Saving a grid (reduced format) on file can be obtained by the command export_sparse grid to_file(Sr, filename),
which generates a ASCII file (default name points.dat) that has the following format

<Nb of points of Sr> N
<coord 1 of point 1> <coord 2 of point 1> <coord 3 of point 1> ..
<coord 1 of point 2> <coord 2 of point 2> <coord 3 of point 2> ..

Optionally, one additional column with the quadrature weight of each collocation point can be added.

4.5.2 Using the UM-Bridge interface

The software UM-Bridge provides a means to interfacing UQ software with complex software for evaluating f(y) (e.g.
when f(y) is the numerical solution of a PDE) by providing a standardized protocol between two layers:

1. the first one (client side) converts requests of evaluations of f at collocation points from, e.g., the SGMK, such
as those occurring when evaluate on_sparse_grids is called, into HTTP messages;

2. the second one (server side) converts back the client requests to actual calls to the software that implements the
evaluation of f(y).

The fact that communication is via HTTP messages opens the way to several possibilities on the server side: the
software implementing the evaluation of f(y) can be an executable running either on the same machine of the client,
or on a remote server. UM-Bridge clients are currently available in Python, C++, Matlab, R, while servers are
available only in Python and C++. In particular, the UM-Bridge Matlab client is fully compatible with the SGMK.
For instance, the following snippet evaluates over a sparse grid the function f(y) provided by a service running on a
remote server:

1 % uri of the service running the server

2 uri = 'http://XxX.XXX.XX.XXX';

3 % HTTPModel is an object provided by the UM-Bridge Matlab client.

4 model = HTTPModel (uri, 'forward') ;

5 % model.evaluate(y) sends a request to the server to evaluate the model at y.
6 % Wrap it in an @-function

7 £ = @(y) model.evaluate(y);

8 N=2;

9 w=5;

[S,Sr]=create_sparse_grid_quick_preset (N, w);
f_evals = evaluate_on_sparse_grid(f,Sr);

=
= o

Note that once the call to HTTPModel.evaluate is encapsulated in an anonymous function, UM-Bridge is fully
transparent to SGMK, and it would be e.g. possible to enable parallel evaluations of £ as discussed in Sect. 4.2.2,
without any change to the snippet above, beside activating a parpool session and passing a value for paral to
evaluate._on_sparse grid (of course, the server machine must be able to process parallel requests).

5 Working example

The aim of this section is to give a comprehensive overview on the functionalities of the SGMK for forward and inverse
UQ problems. To this end we consider the following PDE:

Oz (a2, y)Ou(z, )) 1, forz e (0,1) (17)
(0 ) =u(l,-) =
with piecewise constant diffusion coefficient a(z,y) : [0,1] x T' = R, T' = [—v/3,v/3]"V of the following form

N
a(@,y) =+ Y SnUnX(z,_1.2.](T), (18)

n=1

where p =1, &, = % for 0 <n < N, y, are independent uniform random variables y,, ~ U (—\/g, \/3) with zero mean
and unit variance, and s, > 0 such that u — V38, > 0.
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5.1 Forward UQ analysis

We focus first on the forward UQ analysis, i.e. the study of the propagation of the randomness in the diffusion
coefficient a(x,y) to a functional of the solution of Eq. (17), often called quantity of interest, that we denote in the
following by I(y). In this example we consider as quantity of interest the spatial integral of the solution w, i.e.

I(y) = / w(z,y)dz, (19)

and aim to estimate its expected value E[I] = [ I(y)p(y)dy, its variance Var[I] = E[I?] — E[I]?, and its pdf. In the
following we choose N = 2 (which allows plotting the sparse grid approximation as a surf plot), and set the coefficients
s1 and s in Eq. (18) to 0.5 and 0.1, respectively.

Both the estimation of the moments and of the pdf of I require evaluations of the quantity of interest at the sparse
grids knots. It is then convenient to define a wrapper for the call to the PDE solver and the estimation of I. Note that
we use here a piece-wise linear finite element solver using 200 elements, but of course any other solver can be used.

To perform the UQ analysis we choose to work with Smolyak grids of Clenshaw—Curtis knots, since the random
variables y,, are uniform. As the level of approximation w determines the accuracy of the sparse grid approximation
and quadrature, we test w = 2,...,8 and compare the corresponding estimates of the expected value with respect to
a very accurate result obtained with w = 10 (see Fig. 10a).

The plot shows that w = 4 gives already very accurate results in terms of expected value, and we expect errors in the
other quantities (variance, pdf) to be roughly of the same size, due to the “simple” structure of the problem at hand.
Hence, for the following numerical results we consider w = 4. The expected value is estimated to

For the computation of the variance of I we proceed as follows

and obtain

Further, the sparse grid approximation of I (cf. Eq. (5)) is plotted in Fig. 10b.
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Figure 10: Forward UQ. Sparse grid approximation of I.

Then, the estimate of the pdf of I can be done sampling such sparse grid approximation: we evaluate the sparse
grid approximation at M = 5000 uniformly distributed samples of I" and estimate the pdf by means of an histogram
or a kernel density estimator. The results are reported in Fig. 10c.

Finally, we check the principal and total Sobol indices of I. The principal Sobol indices are two values between
0 and 1 which quantify the variability of I due to y; and yo alone, respectively. The total Sobol indices quantify
instead the variability of I due to each random variable considering both its individual contributions as well as its
contributions in combination with any other variable, and are again numbers between 0 and 1 (note that, on the
contrary, their sum can be larger than 1). In other words, the first total Sobol index quantifies the variability of I due
to y; alone and combined with y,, and vice versa for the second one.

They result to be

This clearly shows that the first random variable is more influential on I than the second one. This could also be
inferred from the plot of the sparse grid approximation in Fig. 10b, where we can observe that the variability of I
with respect to y; is larger than with respect to ys.

5.2 Inverse UQ analysis

In this section we address inverse UQ analysis, i.e. “adjusting” the pdf of the stochastic input y given a set of noisy
measurements (data) of the solution of Eq. (17), or of functionals thereof. Such pdf is usually called data-informed or
posterior pdf, ppost, and can be derived using the Bayes theorem, which can be informally stated as

1

pdf(data)’ (20)

pdf(y given data) = pdf(data given y) x pdf(y) x
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where “pdf(y given data)” is the posterior pdf ppos: that we aim at computing, “pdf(data given y)” is the so-called
likelihood function, which is denoted in the following by L(y), and “pdf(y)” is the pdf of the random variables
based only on a-priori information on them, denoted by pprior- The “pdf(data)” can be simply considered to be the
normalization constant such that the posterior pdf is actually a pdf (i.e., its integral is equal to 1). Thus, we can write
in more formal terms that

Ppost (}’) X ‘C(y)ppm'or (Y) (21)

Then, let us consider as data a set of values ug, k = 1,..., K of the solution of the PDE in Eq. (17) at different
measurement points x1,xs,...,Zg, for an unknown value of the inputs y*. Moreover, we assume that these observa-
tions are corrupted by additive random errors e1,...,ex (noise), which we assume for simplicity to be independent,

identically distributed normal random variables with zero mean and variance o2, i.e.

{ﬂk =u(rg,y*)tex, k=1,...,K (22

Ek NN(O,U?).

We also introduce the misfits between such data and the values obtained by the PDE model in Eq. (17) for any value
of y, ie.
Mk(y) :ﬂkfu(xkay)a kilaaK

The next step for the computation of the posterior pdf of y is to write a computable expression for the likelihood
function L(y) in Eq. (21). Due to the assumptions on the measurement errors €, we can write

H

(G —ulzg,y)? uuk y))z _ME)

I | T202

27TU2

27Ta2

Finally, we make the quite strong (but often reasonable) assumption that the posterior pdf p,.s; can be well approxi-
mated by a normal distribution. This assumption is reasonable in presence of numerous data with small measurement
noise, and when the observation functional (in this case the evaluation of u at zy) is adequately sensitive to the input
variables, such that the actual posterior is unimodal and well peaked. In case any of these requirements is not valid,
a more appropriate approach would be to apply e.g. Markov-Chain Monte Carlo methods, which are agnostic with
respect to the shape of ppest, see e.g. [12] and references therein. Under normality assumption of the posterior, we
only have to choose its mean and covariance matrix, see again e.g. [12]:

e The mean can be taken as the mode of the posterior pdf (i.e., its maximum), which we denote as yyap (Maximum
A-Posteriori); note that yymap can be interpreted as a reasonable approximation of the true value of y that
generated the data, i.e., y* =~ ymap, cf. Eq. (22).

From a computational point of view, it is convenient to compute ynmap by taking the negative logarithm of
Eq. (21) and computing the minimum of such quantity. Moreover, since we assumed a uniform prior pdf for y,
the operation just described finally amounts to computing the minimum of the so-called negative log-likelihood
function (NLL):

K M2 (
NLL(y) := —log (£ Z Ml 2 + Klogo? + K logV2r (23)
k=1 E
ymap := argmin NLL(y). (24)
yer

Note that this minimization is actually independent of o2, and it is in practice equivalent to the classical least-
squares approach for calibrating y, i.e. to the minimization of the sum of the squared errors:

K
=D M), (25)
k=1

yMap = argmin LS(y). (26)
yel

An approximation of o2 can actually be recovered after having determined yyap, by using the standard sample
variance estimator:

1 K
Z MG (ymap).
K
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Figure 11: Inverse UQ.

e The covariance matrix Y05 can be taken as the inverse of the Hessian of the NLL at ymap. A convenient
approximation for Yo is
Ypost A Ug(Jy“TJyu)ilv

where Jyu is the Jacobian matrix of u(z1,y),...,u(zk,y) with respect to y, i.e. (Jyu)ge = aiy[u(xk,y).

For the numerical tests reported in this section we fix s; = so = 0.5 in Eq. (18). We consider a FEM discretization
with K + 2 = 82 knots, and generate a set of K synthetic data (one for each internal knot of the mesh), i.e., we use

Eq. (22) with 2 = kg, k=1,..., K, y* = [0.9,-1.1] and 0. = 0.01.
K = 80;
x_k = linspace(0,1,K+2);

s [0.5, 0.5];

y-star = [0.9,-1.1];

sigma_eps = 0.01;

u_star = PDE_solver(x_k,y_star,mu,s,PDE_rhs);

u_star = u_.star(2:end-1); % select the values at the internal knots of the mesh
u.tilde = u._star + sigma_eps*randn(K,1);

[ I e A "

The data thus generated are plotted in Fig. 11a. The negative log-likelihood function is defined as

1 u = Q(y) PDE_solver(x._k,y,mu,s,PDE_rhs);

2 misfits = @(y) [0;u.-tilde;0] - u(y); % misfits are computed also at the boundary to keep
3 % the code compact, but their contribution is zero
4 NLL = Q(y) sum(misfit(y)."2/(2xsigma_eps”2))+(K-2)+*log(sigma_eps”2)+(K-2)*0.5xlog(2+pi);

A plot of NLL in a neighborhood of y* is given in Fig. 11b,c. Its isolines are approximately ellipses, which indicates
that the normal approximation of py.s: is appropriate in this case.

The minimization in Eq. (24) or (26) can be computationally expensive, especially when sampling the values u(-,y)
calls a complex model (this is actually not the case for our current example, but we illustrate this step nonetheless
for the sake of generality). Hence, the exact quantity of interest u can be replaced in Eq. (23) by its sparse grid
approximation, which is in general cheaper to evaluate. We consider here the sparse grid built in Sect. 5.1 (third
snippet) corresponding to w = 5 and proceed as follows

1 u.on_Sr = evaluate_on_sparse_grid(u,Sr); % u.on_Sr has dimension (K-2) x Sr.size:
2 % the ith row contains u(x_i, Sr.knots)

3 u.approx = @Q(y) interpolate_on_sparse_grid(S,Sr,u.on_Sr,y);

4 % redefine misfits to use u_approx instead of u

5 misfits = @(y) [0;u.-tilde;0] - u_approx(y);

6 % note that interpolate_on_sparse_grids supports vector-valued functions,

7 % so in one call we get the values of u at all nodes x_.i

s LS = Q(y) sum(misfits(y)."2);

For the minimization we resort to the Matlab function fminsearch

1 % initial guess of the minimization: center of Gamma
2 y.start = [0; O0];

3 y-MAP = fminsearch (LS, y-start);

4 sigma_eps_approx = sqrt (mean (misfits(y _MAP)."2));
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Figure 12: Inverse UQ. Gaussian approximation of the posterior distribution of y.

which returns

© 0N O O W N e

o
=}

>> y_MAP
y-MAP =

0.8787
-1.0581

>> sigma_eps_approx
sigma_eps_approx =

0.0084

They are reasonably good approximations of y* and o2.Now, for the computation of an approximation of the covariance
matrix we need the Jacobian matrix of u with respect to y. Each row of the Jacobian matrix can then be computed
by the function derive_sparse_grid as shown in the following

(=2 N R R

Jac_at MAP = zeros (K-2,N);
domain = [-sqrt(3), -sqrt(3); sqrt(3), sqrt(3)];
for i = 1:(K-2)
Jac_at MAP (i, :) = derive_sparse_grid(S,Sr,u_on_Sr (i, :),domain,y MAP)"';
end
Sigma_post = sigma_eps_approx”2*inv(Jac_at_MAP'xJac_at_MAP);

which returns

(23NN VI VY

>> Sigma_post
Sigma_post =

0.0036 -0.0013
-0.0013 0.0009

The resulting normal approximation of the posterior distribution of y is plotted in Fig. 12.

Finally, having the posterior distribution of y at hand, we can perform the forward UQ analysis of the quantity of

interest I defined in Eq. (19) based on such pdf. The procedure is analogous to what done in Sect. 5.1, but the sparse
grid generation needs to be further discussed due to the fact that this time y; and y» are no longer independent. A
possible solution is to introduce the transformation

y =ymar +H'z (27)

with H being the Choleski factor of ¥Xpos (i.e. HTH = Ypost) and z ~ N(0, I), which allows to move from indepen-
dent variables z1, 22 to y1,y2 dependent random variables. Hence, we first construct a sparse grid according to the
distribution of z, for example
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knots = @(n) knots_normal(n,0,1);

rule = Q@(ii) sum(ii-1);

lev2knots = @lev2knots_lin;

S = create_sparse_grid (N, w, knots, lev2knots, rule);
Sr = reduce_sparse_grid(S);

and then apply the change of variables in Eq. (27) to the sparse grid knots before calling the PDE solver:

= chol (Sigma_post);
= @(z) QoI(xx,H'xz+y MAP,mu,s,PDE_rhs); % moving from z to y
_on_Sr = evaluate_on_sparse_grid(I, Sr);

Similarly, for the estimation of the distribution of I we have to draw samples according to the distribution of z. This
time we do not need to apply the change of variables in Eq. (27), since it is embedded in the definition of I in the
previous snippet:

E I S

M = 5000;

z_samples = randn(N,M);

I vals_randn = interpolate_on_sparse_grid(S,Sr,I_on_Sr,z_samples);
[pdf_vals,pdf pts] = ksdensity(I_-vals_randn);

In Fig. 13 we compare the posterior-based and prior-based pdfs of I. We can immediately observe that the variability
of I is strongly reduced in the posterior-based case (note the support of the posterior-based pdf of I, which is much
smaller than the prior-based one).
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