>> test_nint_test 20-Mar-2007 08:34:50 TEST_NINT_TEST MATLAB version Test the routines in the TEST_NINT library. TEST005 GET_PROBLEM_NUM returns the number of problems. P00_NAME(#) returns the name for problem #. We use these two routines to print a directory of all the problems. The number of problems available is 34 1 "SquareSum"; 2 "QuadSum"; 3 "QuintSum"; 4 "HexSum"; 5 "ST04"; 6 "DR4061"; 7 "DR4062"; 8 "RC01"; 9 "Patterson #7"; 10 "Patterson #4"; 11 "Patterson #2, exp(sum(abs(X)))"; 12 "BFN02"; 13 "BFN03"; 14 "BFN04"; 15 "Genz #5, C0 Pseudo-Gaussian"; 16 "L1(X-Z)"; 17 "L2(X-Z)^2"; 18 "Disk"; 19 "Sqrt-Prod"; 20 "Sum^P"; 21 "SphereMonomial"; 22 "BallMonomial"; 23 "SimplexMonomial"; 24 "(|4X-2|+c)/(1+c)"; 25 "Patterson #3, exp(c*X)"; 26 "Patterson #1"; 27 "Genz #1 / Patterson #5, Oscillatory"; 28 "Genz #2 / Patterson #6, Product Peak"; 29 "Genz #3 / Patterson #8, Corner Peak"; 30 "Genz #4 / Patterson #9, Gaussian"; 31 "Genz #6, Discontinuous"; 32 "Keister"; 33 "Partial product ( X(1:N) )"; 34 "Mean Time at Origin"; TEST01 GET_PROBLEM_NUM returns the number of problems. P00_TITLE(#) prints the title for problem #. We use these two routines to print a directory of all the problems. The number of problems available is 34 Problem 01 Name: SquareSum Region: 0 <= X(i) <= 1 Integrand: F(X) = ( sum ( X(i) ) )^2 Problem 02 Name: QuadSum Davis, Rabinowitz, page 370, #1. Region: 0 <= X(i) <= 1 Integrand: F(X) = ( sum ( 2 * X(i) - 1 ) )^4 Problem 03 Name: QuintSum Davis, Rabinowitz, page 370, #3. Region: 0 <= X(i) <= 1 Integrand: F(X) = ( sum ( X(i) ) )^5 Problem 04 Name: HexSum Davis, Rabinowitz, page 370, #2. Region: 0 <= X(i) <= 1 Integrand: F(X) = ( sum ( 2 * X(i) - 1 ) )^6 Problem 05 Name: ST04 Stroud #4, page 26. Region: 0 <= X(i) <= 1 Integrand: F(X) = 1 / ( 1 + sum ( 2 * X(i) ) ) Problem 07 Name: DR4061 Davis, Rabinowitz, page 406, #1. Region: 0 <= X(i) <= 1 Integrand: F(X) = product ( abs ( 4 * X(i) - 2 ) ) Problem 07 Name: DR4062 Davis, Rabinowitz, page 406, #2. Region: 0 <= X(i) <= 1 Integrand: F(X) = prod ( pi * sin ( pi * X(i) ) / 2 ) Problem 08 Name: RC01 Crandall, page 49, #1 Region: 0 <= X(i) <= 1 Integrand: F(X) = sin^2 ( pi/4 * sum ( X(i) ) ) Problem 09 Name: Patterson #7 Region: 0 <= X(i) <= 1 Integrand: F(X) = exp ( sum ( C(i) * X(i) ) ) Parameters: C(1:DIM_NUM) defaults to 1/DIM_NUM. Problem 10 Name: Patterson #4 Stroud, page ? Region: 0 <= X(i) <= 1 Integrand: F(X) = sum ( abs ( X(i) - 0.5 ) ) Problem 11 Name: Patterson #2, exp(sum(abs(X))) Region: 0 <= X(i) <= 1 Integrand: F(X) = exp ( sum ( abs ( X(i) ))) Problem 12 Name: BFN02 Bratley, Fox, Niederreiter, #2 Region: 0 <= X(i) <= 1 Integrand: F(X) = product ( i * cos ( X(i) ) ) Problem 13 Name: BFN03 Bratley, Fox, Niederreiter, #3 Region: 0 <= X(i) <= 1 Integrand: F(X) = product ( low order Chebyshevs ) Problem 14 Name: BFN04 Bratley, Fox, Niederreiter, #4 Region: 0 <= X(i) <= 1 Integrand: F(X) = sum ( -1^I * product(X(1:I)) ) Problem 15 Name: Genz #5, C0 Pseudo-Gaussian Nondifferentiable peak at point Z. Region: 0 <= X(i) <= 1 Integrand: F(X) = exp ( -sum ( C(i) * | X(i) - Z(i) | )) Parameters: C(1:DIM_NUM) defaults to 2.0; Z(1:DIM_NUM) defaults to 0.5; Problem 16 Name: L1(X-Z) Lipschitz continuous. Region: 0 <= X(i) <= 1 Integrand: F(X) = sum ( | X(i) - Z(i) | ) Parameters: Z(1:DIM_NUM) defaults to (0.5,0.5,...) Problem 17 Name: L2(X-Z)^2 Zero at point Z. Radially symmetric. Region: 0 <= X(i) <= 1 Integrand: F(X) = sum ( ( X(i) - Z(i) )^2 ) Parameters: Z(1:DIM_NUM) defaults to (0.5,0.5,...) Problem 18 Name: Disk Disk of radius R centered at Z. Region: 0 <= X(i) <= 1 Integrand: F(X) = sphere interior characteristic Parameters: R, defaults to 0.5 Z(1:DIM_NUM) defaults to (0.5,0.5,...0.5) Problem 19 Name: Sqrt-Prod Region: 0 <= X(i) <= 1 Integrand: F(X) = prod ( sqrt ( | X(i) - Z(i) | ) ) Parameters: Z(1:DIM_NUM) defaults to (1/3,1/3,...,1/3) Problem 20 Name: Sum^P Region: A <= X(i) <= B Integrand: F(X) = ( sum ( X(i) ) )^p Parameters: A, defaults to 0.0. B, defaults to 1.0. P, defaults to 2.0. Problem 21 Name: SphereMonomial Region: Sphere surface, radius 1, center 0 Integrand: F(X) = C * product ( X(i)^E(i) ) Parameters: C, defaults to 1.0. E(1:DIM_NUM) defaults to 2. Problem 22 Name: BallMonomial Region: Sphere interior, radius R, center 0 Integrand: F(X) = C * product ( X(i)^E(i) ) Parameters: C, defaults to 1.0. R, defaults to 1.0. E(1:DIM_NUM) defaults to 2. Problem 23 Name: SimplexMonomial Region: Interior of unit simplex Integrand: F(X) = C * product ( X(i)^E(i) ) Parameters: C, defaults to 1.0. E(1:DIM_NUM) defaults to 2. Problem 24 Name: (|4X-2|+C)/(1+C) Region: 0 <= X(i) <= 1 Integrand: F(X) = prod ( (|4*X(i)-2|+C(i)) / (1+C(i)) ) Parameters: C(1:DIM_NUM) defaults to 0.0 Problem 25 Name: Patterson #3, exp(c*X) Region: 0 <= X(i) <= 1 Integrand: F(X) = exp ( C * product ( X(i) ) ) Parameters: C, defaults to 0.3. Problem 26 Name: Patterson #1 Region: 0 <= X(i) <= 1 Integrand: F(X) = product ( C(i) * exp ( - C(i) * X(i) ) ) Parameters: C(1:DIM_NUM) defaults to 1/DIM_NUM. Problem 27 Name: Genz #1 / Patterson #5, Oscillatory Region: 0 <= X(i) <= 1 Integrand: F(X) = cos ( 2 * pi * R + sum ( C(i) * X(i) ) ) Parameters: R, defaults to 0.3 C(1:DIM_NUM) defaults to 1/DIM_NUM Problem 28 Name: Genz #2 / Patterson #6, Product Peak Region: 0 <= X(i) <= 1 Integrand: F(X) = 1 / product ( C(i)^2 + ( X(i) - Z(i) )^2 ) Parameters: C(1:DIM_NUM) defaults to DIM_NUM^(9/4)/sqrt(170) Z(1:DIM_NUM) defaults to 0.5. Problem 29 Name: Genz #3 / Patterson #8, Corner Peak Region: 0 <= X(i) <= 1 Integrand: F(X) = 1 / ( 1 + sum( C(i) * X(i) ) )^R Parameters: R, defaults to 0.3 C(1:DIM_NUM) defaults to 1/DIM_NUM. Problem 30 Name: Genz #4 / Patterson #9, Gaussian Region: 0 <= X(i) <= 1 Integrand: F(X) = exp ( - sum ( C(i)^2 * ( X(i) - Z(i) )^2 ) Parameters: C(1:DIM_NUM) defaults to 1/DIM_NUM. Z(1:DIM_NUM) defaults to 0.5. Problem 31 Name: Genz #6, Discontinuous Region: 0 <= X(i) <= 1 Integrand: F(X) = exp ( C(i) * X(i) ) if X <= Z, 0 otherwise. Parameters: C(1:DIM_NUM) defaults to 1/DIM_NUM. Z(1:DIM_NUM) defaults to 0.5. Problem 32 Name: Keister cos(||X||)*e^(-||X||^2) in R^DIM_NUM, transformed to the unit hypbercube. Region: 0 <= X(i) <= 1 Integrand: F(X) = pi^(DIM_NUM/2) * cos (sqrt(sum(gauss_cdf_inv(X)^2/2))) Problem 33 Name: Partial product ( X(1:N) ) Region: 0 <= X(i) <= 1 Integrand: F(X) = product ( X(1:N) ) Parameters: N, defaults to 1 Problem 34 Name: Mean time at Origin Region: -PI <= X(i) <= PI Integrand: F(X) = 1/(2*PI)^DIM_NUM * 1/(1-product(cos(X(i))))) TEST02 Use a simple product rule on box regions. Use a fixed spatial dimension. Prob Dim Subs Approx Exact Error 1 3 1 2.500000 2.500000 0.000000 1 3 3 2.500000 2.500000 0.000000 1 3 5 2.500000 2.500000 0.000000 2 3 1 2.600000 2.600000 0.000000 2 3 3 2.600000 2.600000 0.000000 2 3 5 2.600000 2.600000 0.000000 3 3 1 -0.000000 0.000000 0.000000 3 3 3 -0.000000 0.000000 0.000000 3 3 5 -0.000000 0.000000 0.000000 4 3 1 9.761905 9.761905 0.000000 4 3 3 9.761905 9.761905 0.000000 4 3 5 9.761905 9.761905 0.000000 5 3 1 2.152143 2.152143 0.000000 5 3 3 2.152143 2.152143 0.000000 5 3 5 2.152143 2.152143 0.000000 6 3 1 0.843508 1.000000 0.156492 6 3 3 0.981729 1.000000 0.018271 6 3 5 0.993397 1.000000 0.006603 7 3 1 1.000000 1.000000 0.000000 7 3 3 1.000000 1.000000 0.000000 7 3 5 1.000000 1.000000 0.000000 8 3 1 0.758012 0.758012 0.000000 8 3 3 0.758012 0.758012 0.000000 8 3 5 0.758012 0.758012 0.000000 9 3 1 1.671758 1.671758 0.000000 9 3 3 1.671758 1.671758 0.000000 9 3 5 1.671758 1.671758 0.000000 10 3 1 0.708638 0.750000 0.041362 10 3 3 0.745404 0.750000 0.004596 10 3 5 0.748346 0.750000 0.001654 11 3 1 4.834326 5.073214 0.238888 11 3 3 5.046143 5.073214 0.027071 11 3 5 5.063453 5.073214 0.009761 12 3 1 0.107978 0.107978 0.000000 12 3 3 0.107978 0.107978 0.000000 12 3 5 0.107978 0.107978 0.000000 13 3 1 0.000000 0.000000 0.000000 13 3 3 -0.000000 0.000000 0.000000 13 3 5 0.000000 0.000000 0.000000 14 3 1 -0.375000 -0.375000 0.000000 14 3 3 -0.375000 -0.375000 0.000000 14 3 5 -0.375000 -0.375000 0.000000 15 3 1 0.286876 0.252580 0.034296 15 3 3 0.256268 0.252580 0.003688 15 3 5 0.253905 0.252580 0.001324 16 3 1 0.708638 0.750000 0.041362 16 3 3 0.745404 0.750000 0.004596 16 3 5 0.748346 0.750000 0.001654 17 3 1 0.250000 0.250000 0.000000 17 3 3 0.250000 0.250000 0.000000 17 3 5 0.250000 0.250000 0.000000 18 3 1 0.501831 0.523599 0.021768 18 3 3 0.538509 0.523599 0.014910 18 3 5 0.531268 0.523599 0.007669 19 3 1 0.130655 0.118506 0.012149 19 3 3 0.118682 0.118506 0.000176 19 3 5 0.119561 0.118506 0.001055 20 3 1 2.500000 2.500000 0.000000 20 3 3 2.500000 2.500000 0.000000 20 3 5 2.500000 2.500000 0.000000 ans = 0 24 3 1 0.843508 1.000000 0.156492 24 3 3 0.981729 1.000000 0.018271 24 3 5 0.993397 1.000000 0.006603 25 3 1 1.039240 1.039240 0.000000 25 3 3 1.039240 1.039240 0.000000 25 3 5 1.039240 1.039240 0.000000 26 3 1 0.022778 0.022778 0.000000 26 3 3 0.022778 0.022778 0.000000 26 3 5 0.022778 0.022778 0.000000 27 3 1 -0.717110 -0.717110 0.000000 27 3 3 -0.717110 -0.717110 0.000000 27 3 5 -0.717110 -0.717110 0.000000 28 3 1 0.797361 0.797359 0.000002 28 3 3 0.797359 0.797359 0.000000 28 3 5 0.797359 0.797359 0.000000 29 3 1 0.287607 0.287607 0.000000 29 3 3 0.287607 0.287607 0.000000 29 3 5 0.287607 0.287607 0.000000 30 3 1 0.972704 0.972704 0.000000 30 3 3 0.972704 0.972704 0.000000 30 3 5 0.972704 0.972704 0.000000 31 3 1 2.068101 1.351529 0.716572 31 3 3 1.296975 1.351529 0.054555 31 3 5 1.395480 1.351529 0.043951 32 3 1 2.303770 -------------- -------------- 32 3 3 2.203349 -------------- -------------- 32 3 5 2.186672 -------------- -------------- 33 3 1 0.083333 0.078717 0.004616 33 3 3 0.083333 0.078717 0.004616 33 3 5 0.083333 0.078717 0.004616 34 3 1 5708632.482344 1.393204 5708631.089140 34 3 3 211432.202689 1.393204 211430.809485 34 3 5 45670.460402 1.393204 45669.067198 TEST03 Use a Monte Carlo rule on box regions. Use a fixed spatial dimension. Prob Dim Points Approx Exact Error 1 3 10 2.128388 2.500000 0.371612 1 3 1000 2.529163 2.500000 0.029163 1 3 100000 2.503421 2.500000 0.003421 2 3 10 0.431363 2.600000 2.168637 2 3 1000 2.539327 2.600000 0.060673 2 3 100000 2.616048 2.600000 0.016048 3 3 10 -0.408925 0.000000 0.408925 3 3 1000 0.606271 0.000000 0.606271 3 3 100000 0.019606 0.000000 0.019606 4 3 10 0.591514 9.761905 9.170391 4 3 1000 9.546330 9.761905 0.215574 4 3 100000 9.872670 9.761905 0.110765 5 3 10 2.136089 2.152143 0.016054 5 3 1000 2.132494 2.152143 0.019649 5 3 100000 2.151398 2.152143 0.000744 6 3 10 0.656762 1.000000 0.343238 6 3 1000 0.996321 1.000000 0.003679 6 3 100000 0.999360 1.000000 0.000640 7 3 10 0.908206 1.000000 0.091794 7 3 1000 0.976800 1.000000 0.023200 7 3 100000 1.001392 1.000000 0.001392 8 3 10 0.777748 0.758012 0.019736 8 3 1000 0.762592 0.758012 0.004580 8 3 100000 0.758367 0.758012 0.000355 9 3 10 1.616989 1.671758 0.054770 9 3 1000 1.677653 1.671758 0.005895 9 3 100000 1.672351 1.671758 0.000592 10 3 10 0.711699 0.750000 0.038301 10 3 1000 0.753706 0.750000 0.003706 10 3 100000 0.749494 0.750000 0.000506 11 3 10 4.423034 5.073214 0.650180 11 3 1000 5.064299 5.073214 0.008915 11 3 100000 5.067555 5.073214 0.005659 12 3 10 0.147550 0.107978 0.039572 12 3 1000 0.057375 0.107978 0.050603 12 3 100000 0.115467 0.107978 0.007489 13 3 10 -0.433716 0.000000 0.433716 13 3 1000 0.006141 0.000000 0.006141 13 3 100000 0.002021 0.000000 0.002021 14 3 10 -0.378438 -0.375000 0.003438 14 3 1000 -0.372044 -0.375000 0.002956 14 3 100000 -0.375433 -0.375000 0.000433 15 3 10 0.258847 0.252580 0.006266 15 3 1000 0.247997 0.252580 0.004584 15 3 100000 0.252685 0.252580 0.000105 16 3 10 0.711699 0.750000 0.038301 16 3 1000 0.753706 0.750000 0.003706 16 3 100000 0.749494 0.750000 0.000506 17 3 10 0.231749 0.250000 0.018251 17 3 1000 0.249923 0.250000 0.000077 17 3 100000 0.249616 0.250000 0.000384 18 3 10 0.500000 0.523599 0.023599 18 3 1000 0.510000 0.523599 0.013599 18 3 100000 0.525930 0.523599 0.002331 19 3 10 0.096255 0.118506 0.022252 19 3 1000 0.119960 0.118506 0.001454 19 3 100000 0.118460 0.118506 0.000046 20 3 10 2.128388 2.500000 0.371612 20 3 1000 2.529163 2.500000 0.029163 20 3 100000 2.503421 2.500000 0.003421 ans = 0 24 3 10 0.656762 1.000000 0.343238 24 3 1000 0.996321 1.000000 0.003679 24 3 100000 0.999360 1.000000 0.000640 25 3 10 1.023328 1.039240 0.015912 25 3 1000 1.039950 1.039240 0.000710 25 3 100000 1.039355 1.039240 0.000115 26 3 10 0.023147 0.022778 0.000369 26 3 1000 0.022687 0.022778 0.000091 26 3 100000 0.022771 0.022778 0.000007 27 3 10 -0.706331 -0.717110 0.010779 27 3 1000 -0.719764 -0.717110 0.002654 27 3 100000 -0.717319 -0.717110 0.000209 28 3 10 0.808160 0.797359 0.010800 28 3 1000 0.796849 0.797359 0.000511 28 3 100000 0.797618 0.797359 0.000259 29 3 10 0.287279 0.287607 0.000328 29 3 1000 0.284353 0.287607 0.003254 29 3 100000 0.287452 0.287607 0.000155 30 3 10 0.974625 0.972704 0.001920 30 3 1000 0.972705 0.972704 0.000001 30 3 100000 0.972746 0.972704 0.000041 31 3 10 1.368742 1.351529 0.017213 31 3 1000 1.327299 1.351529 0.024230 31 3 100000 1.349485 1.351529 0.002044 32 3 10 2.242822 -------------- -------------- 32 3 1000 2.183501 -------------- -------------- 32 3 100000 2.174581 -------------- -------------- 33 3 10 0.038545 0.078717 0.040172 33 3 1000 0.084813 0.078717 0.006096 33 3 100000 0.083592 0.078717 0.004875 34 3 10 1.019389 1.393204 0.373815 34 3 1000 1.196148 1.393204 0.197056 34 3 100000 1.376823 1.393204 0.016381 TEST04 Demonstrate problems that use a "base point" by moving the base point around. Use a Monte Carlo rule on box regions. Use a fixed spatial dimension. Problem number = 15 Run number 1 Basis point Z = ( 0.935040, 0.133995 ) Prob Dim Points Approx Exact Error 15 2 10 0.195925 0.256001 0.060076 15 2 1000 0.257825 0.256001 0.001825 15 2 100000 0.255117 0.256001 0.000883 Run number 2 Basis point Z = ( 0.613764, 0.507233 ) Prob Dim Points Approx Exact Error 15 2 10 0.417777 0.393507 0.024270 15 2 1000 0.384441 0.393507 0.009067 15 2 100000 0.393853 0.393507 0.000346 Run number 3 Basis point Z = ( 0.246595, 0.737857 ) Prob Dim Points Approx Exact Error 15 2 10 0.277807 0.344301 0.066493 15 2 1000 0.340334 0.344301 0.003967 15 2 100000 0.343886 0.344301 0.000415 Problem number = 16 Run number 1 Basis point Z = ( 0.823099, 0.156007 ) Prob Dim Points Approx Exact Error 16 2 10 0.721934 0.722724 0.000790 16 2 1000 0.744847 0.722724 0.022123 16 2 100000 0.722035 0.722724 0.000688 Run number 2 Basis point Z = ( 0.499335, 0.619559 ) Prob Dim Points Approx Exact Error 16 2 10 0.499388 0.514295 0.014907 16 2 1000 0.502790 0.514295 0.011505 16 2 100000 0.513395 0.514295 0.000900 Run number 3 Basis point Z = ( 0.308525, 0.003180 ) Prob Dim Points Approx Exact Error 16 2 10 0.893534 0.783493 0.110041 16 2 1000 0.792393 0.783493 0.008900 16 2 100000 0.783856 0.783493 0.000363 Problem number = 17 Run number 1 Basis point Z = ( 0.507452, 0.187844 ) Prob Dim Points Approx Exact Error 17 2 10 0.224457 0.264163 0.039706 17 2 1000 0.252324 0.264163 0.011840 17 2 100000 0.265997 0.264163 0.001834 Run number 2 Basis point Z = ( 0.933190, 0.418279 ) Prob Dim Points Approx Exact Error 17 2 10 0.231878 0.360998 0.129121 17 2 1000 0.362219 0.360998 0.001221 17 2 100000 0.362619 0.360998 0.001621 Run number 3 Basis point Z = ( 0.760668, 0.445089 ) Prob Dim Points Approx Exact Error 17 2 10 0.243771 0.237630 0.006141 17 2 1000 0.247482 0.237630 0.009853 17 2 100000 0.237226 0.237630 0.000404 Problem number = 18 Run number 1 Basis point Z = ( 0.921271, 0.605275 ) Prob Dim Points Approx Exact Error 18 2 10 0.500000 0.785398 0.285398 18 2 1000 0.454000 0.785398 0.331398 18 2 100000 0.441650 0.785398 0.343748 Run number 2 Basis point Z = ( 0.603005, 0.645698 ) Prob Dim Points Approx Exact Error 18 2 10 0.800000 0.785398 0.014602 18 2 1000 0.658000 0.785398 0.127398 18 2 100000 0.668760 0.785398 0.116638 Run number 3 Basis point Z = ( 0.678168, 0.849412 ) Prob Dim Points Approx Exact Error 18 2 10 0.400000 0.785398 0.385398 18 2 1000 0.455000 0.785398 0.330398 18 2 100000 0.466130 0.785398 0.319268 Problem number = 19 Run number 1 Basis point Z = ( 0.177853, 0.740058 ) Prob Dim Points Approx Exact Error 19 2 10 0.282715 0.280481 0.002233 19 2 1000 0.279165 0.280481 0.001316 19 2 100000 0.280299 0.280481 0.000182 Run number 2 Basis point Z = ( 0.177856, 0.620795 ) Prob Dim Points Approx Exact Error 19 2 10 0.329441 0.263511 0.065930 19 2 1000 0.266857 0.263511 0.003346 19 2 100000 0.263309 0.263511 0.000202 Run number 3 Basis point Z = ( 0.450565, 0.532758 ) Prob Dim Points Approx Exact Error 19 2 10 0.231409 0.223396 0.008012 19 2 1000 0.225974 0.223396 0.002577 19 2 100000 0.223205 0.223396 0.000192 TEST05 Use a simple product rule on a box region. Use a fixed problem; Let the spatial dimension increase. Prob Dim Subs Approx Exact Error Calls 6 1 1 0.944850 1.000000 0.055150 5 6 1 3 0.993872 1.000000 0.006128 15 6 1 5 0.997794 1.000000 0.002206 25 6 2 1 0.892742 1.000000 0.107258 25 6 2 3 0.987782 1.000000 0.012218 225 6 2 5 0.995593 1.000000 0.004407 625 6 3 1 0.843508 1.000000 0.156492 125 6 3 3 0.981729 1.000000 0.018271 3375 6 3 5 0.993397 1.000000 0.006603 15625 6 4 1 0.796989 1.000000 0.203011 625 6 4 3 0.975713 1.000000 0.024287 50625 6 4 5 0.991205 1.000000 0.008795 390625 TEST_NINT_TEST Normal end of execution. 20-Mar-2007 08:47:45 >>