Home License -- for personal use only. Not for government, academic, research, commercial, or other organizational use. 13-May-2025 18:35:01 svd_truncated_test(): MATLAB/Octave version 9.11.0.2358333 (R2021b) Update 7 Demonstrate the use of the truncated Singular Value Decomposition (SVD) for cases where the sizes of M and N are very different. svd_truncated_u_test(): M = 4 N = 3 Original matrix A: 0.8147 0.6324 0.9575 0.9058 0.0975 0.9649 0.1270 0.2785 0.1576 0.9134 0.5469 0.9706 Maximum error |A - U*S*V'| = 6.66134e-16 Recomputed A = U * S * V': 0.8147 0.6324 0.9575 0.9058 0.0975 0.9649 0.1270 0.2785 0.1576 0.9134 0.5469 0.9706 svd_truncated_v_test(): M = 3 N = 4 Original matrix A: 0.9572 0.1419 0.7922 0.0357 0.4854 0.4218 0.9595 0.8491 0.8003 0.9157 0.6557 0.9340 Maximum error |A - U*S*V'| = 6.66134e-16 Recomputed A = U * S * V': 0.9572 0.1419 0.7922 0.0357 0.4854 0.4218 0.9595 0.8491 0.8003 0.9157 0.6557 0.9340 svd_truncated_test(): Normal end of execution. 13-May-2025 18:35:01