
� � � � � � � � � � � � � � �

� � �

� � �

� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �

� � �
� � �

� � �
� � �

� � �

� � �

� � �
� � �

� � �

� � �

� � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

Universit ät
Stuttgart

Sparse Grid Interpolation Toolbox User’s Guide
V5.1, February 24, 2008

Andreas Klimke

Berichte aus dem Institut für
Angewandte Analysis und Numerische Simulation

Documentation 2007/017

Universit ät Stuttgart

Sparse Grid Interpolation Toolbox User’s Guide
V5.1, February 24, 2008

Andreas Klimke

Berichte aus dem Institut für
Angewandte Analysis und Numerische Simulation

Documentation 2007/017

Institut für Angewandte Analysis und Numerische Simulation (IANS)
Fakultät Mathematik und Physik
Fachbereich Mathematik
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: ians-preprints@mathematik.uni-stuttgart.de
WWW: http://preprints.ians.uni-stuttgart.de

ISSN 1611-4176

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.
IANS-Logo: Andreas Klimke. LATEX-Style: Winfried Geis, Thomas Merkle.

Contents

1 Getting Started 7
1.1 What is the Sparse Grid Interpolation Toolbox?7
1.2 Initialization of the toolbox .8
1.3 A first example .8
1.4 Piecewise linear basis functions .11
1.5 Polynomial basis functions .13
1.6 Dimensional adaptivity .15

2 Advanced Topics 19
2.1 Degree of Dimensional Adaptivity .19
2.2 Multiple output variables .22
2.3 Derivatives .24
2.4 Numerical Integration (Quadrature) .32
2.5 Optimization .36
2.6 Improving performance .41
2.7 Interfacing concepts .45
2.8 Approximating ODEs .49
2.9 External models .52

3 Functions – Alphabetical List 55
cmpgrids .55
plotgrid .56
plotindices .57
spcgsearch .59
spcompsearch .62
spdim .64
spfminsearch .65
spget .68
spgrid .69
spinit .71
spinterp .71
spmultistart .73
spoptimget .75
spoptimset .76

5

Contents

sppurge .78
spquad .81
spset .82
spsurfun .88
spvals .89

License 93

Bibliography 95

Keyword Index 97

6

1 Getting Started

1.1 What is the Sparse Grid Interpolation Toolbox?

Introduction

The interpolation problem considered with sparse grid interpolation is an optimal recovery
problem (i.e. the selection of points such that a smooth multivariate function can be approxi-
mated with a suitable interpolation formula). Depending on the characteristics of the function
to interpolate (degree of smoothness, periodicity), various interpolation techniques based on
sparse grids exist. All of them employ Smolyak’s construction, which forms the basis of all
sparse grid methods. With Smolyak’s famous method, well-known univariate interpolation
formulas are extended to the multivariate case by using tensor products in a special way. As
a result, one obtains a powerful interpolation method that requires significantly fewer support
nodes than conventional interpolation on a full grid. The points comprising the multidimen-
sional sparse grid are selected in a predefined fashion. The difference in the number of required
points can be several orders of magnitude with increasing problem dimension. The most im-
portant property of the method constitutes the fact that the asymptotic error decay of full grid
interpolation with increasing grid resolution is preserved up to a logarithmic factor. An addi-
tional benefit of the method is its hierarchical structure, which can be used to obtain an estimate
of the current approximation error. Thus, one can easily develop an interpolation algorithm that
aborts automatically when a desired accuracy is reached.

Major features

This Matlab toolbox includes hierarchical sparse grid interpolation algorithms based on both
piecewise multilinear and polynomial basis functions. Special emphasis is placed on an effi-
cient implementation that performs well even for very large dimensionsd > 10.

There are many ways to customize the behavior of the interpolation routines. Furthermore,
additional tasks involving the interpolants can be performed, such as computing derivatives or
performing an optimization or integration. The following list gives an overview of the options
that are available:

• Enable vectorized processing. Speed up the construction of the interpolant for functions
that allow for vectorized evaluation.

• Create multiple interpolants at once for functions with multiple output arguments.

• Choose from three different grid types for piecewise linear interpolation. Depending on
your objective function, a certain grid type may perform better than the others.

7

1 Getting Started

• If very high accuracies are required, you may use the Chebyshev-Gauss- Lobatto sparse
grid, which employs polynomial basis functions.

• Compute gradients along with the interpolated values at just a small additional cost.

• Integrate the interpolant.

• Perform a search for minima and maxima using several efficient algorithms.

• Use the dimension-adaptive algorithm to automatically detect separability, and to take
the importance of the dimensions into account when constructing the interpolant. This is
especially useful in case of very high-dimensional problems when a regular sparse grid
refinement leads to too many support nodes.

• Specify the minimum or maximum sparse grid depth to compute, or specify the minimum
and maximum number of function evaluations to use (for the dimension-adaptive sparse
grid).

• Last but not least, the Sparse Grid Interpolation toolbox is designed to easily integrate
with your models in Matlab as well as external models.

For additional information on the theoretical and algorithmic aspects of sparse grid interpola-
tion, please refer to the references provided at the end of this chapter.

1.2 Initialization of the toolbox

To initialize the toolbox, it must be added to the Matlab search path. You can do this by calling
the functionspinit, i.e. go to the directory containing the sparse grid interpolation toolbox
and enterspinit at the Matlab prompt.

If you would like to use the Sparse Grid Interpolation Toolbox from within another Matlab
application, you may call thespinit function as well. It will automatically add the correct
paths to the Matlab path.

1.3 A first example

Let us interpolate a simple two-variate function

f (x,y) = sin(x)+cos(x)

with the default settings of the sparse grid interpolation package. Here, we interpolate the
function for the domain[0,π]× [0,π].

8

1.3 A first example

Constructing the interpolant

First, we compute the hierarchical surpluses (i.e. the coefficients) of the interpolant.

f = @(x,y) sin(x) + cos(y);

z = spvals(f,2,[0 pi; 0 pi])

z =

vals: {[65x1 double]}

gridType: 'Clenshaw-Curtis'

d: 2

range: [2x2 double]

maxLevel: 4

estRelError: 0.0063

estAbsError: 0.0188

fevalRange: [-1 2]

minGridVal: [0 1]

maxGridVal: [0.5000 0]

nPoints: 65

fevalTime: 0.0502

surplusCompTime: 0.0024

indices: [1x1 struct]

The functionspvals returns these hierarchical surpluses, and also includes some additional in-
formation collected during the construction process of the interpolant. For instance, We obtain
information on the estimated relative and absolute error. The number of sparse grid support
nodes is provided, as well as the computing time for evaluating the function and computing the
hierarchical surpluses. The surpluses themselves are stored under the field vals.

Computing interpolated values

To compute interpolated values, we can now use thespinterp function. To increase efficiency,
multiple interpolated values can be computed at once. Below, we compute the interpolated val-
ues for five randomly chosen points and compare them to the exact function value by computing
the maximum absolute error.

x1 = pi*rand(1,5); x2 = pi*rand(1,5);

y = spinterp(z,x1,x2)

error = max(abs(y - f(x1,x2)))

y =

1.7173 0.7210 0.2675 0.7701 0.5510

error =

0.0076

9

1 Getting Started

Visualizing the sparse grid

Let us now visualize the sparse grid. From the information returned byspvals, we see that
the used sparse grid is of the type Clenshaw-Curtis, and the maximum level was 4. In two and
three dimensions, we can easily plot the sparse grid with theplotgrid function. It takes the
level and the dimension as input arguments. Optional is an options structure containing the
sparse grid type, created withspset. The default grid type is the Clenshaw-Curtis grid, we
thus do not have to specify the grid type here.

plotgrid(4,2)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Visualizing the interpolant

To visualize the original function and compare it to the interpolant, we can plot both functions,
for instance, by usingezmesh.

subplot(1,2,1);

ezmesh(f,[0 pi]);

title('f(x,y) = sin(x) + cos(y)');

subplot(1,2,2);

ezmesh(@(x,y) spinterp(z,x,y),[0 pi]);

title('Sparse grid interpolant, n = 4');

10

1.4 Piecewise linear basis functions

1.4 Piecewise linear basis functions

Piecewise linear basis functions provide a good compromise between accuracy and computa-
tional cost due to their bounded support. The Sparse Grid Interpolation package includes three
different grid types that work with piecewise multilinear basis functions:

• The Clenshaw-Curtis grid type “ClenshawCurtis” (CC)

• the "classical" maximum-norm-based grid type “Maximum” (M), as described e.g. by
Bungartz/Griebel in [1],

• The maximum-norm-based grid without points on the boundary “NoBoundary” (NB),
with basis functions that extrapolate towards the boundary (it is not assumed that the
objective function must be zero at the boundary).

For a detailed description of the piecewise multilinear basis functions implemented here, please
see [2] or [3, ch. 3], and the references stated therein.

Accuracy of piecewise multilinear interpolation

We now take a brief look at the approximation quality. An a priori error estimate can be
obtained for a d-variate functionf if continuous mixed derivatives

Dβ f =
∂ |β | f

∂xβ1
1 · · ·xβd

d

,

11

1 Getting Started

with β ∈ Nd
0, |β | =

d
∑

i=1
βi , andβ1, . . . ,βd ≤ 2, exist. According to [4] or [5], the order of the

interpolation error in the maximum norm is then given by

∥∥ f −Aq,d(f)
∥∥

∞ = O(N−2 · |log2N|3·(d−1)),

whereAq,d(f) denotes the sparse grid interpolant off , andN denotes the number of grid points
of the sparse grids of type CC or M (the NB grid type has not yet been analyzed, but shows
the same order of convergence in numerical tests). Note that the number of grid pointsN of
Aq,d(f) can be computed byspdim(q-d,d). Piecewise multilinear approximation on a full
grid with N∗ grid points is much less efficient, i.e.O(N∗−2/d).

Number of grid points

Table 1.1 shows the number of grid points of the non-adaptive sparse grid interpolant depending
on the interpolation depth n.

Table 1.1:Comparison: Number of grid points for leveln = q−d.

d = 2 d = 4 d = 8
n M NB CC M NB CC M NB CC
0 9 1 1 81 1 1 6561 1 1
1 21 5 5 297 9 9 41553 17 17
2 49 17 13 945 49 41 1.9e5 161 145
3 113 49 29 2769 209 137 7.7e5 1121 849
4 257 129 65 7681 769 401 2.8e6 6401 3937
5 577 321 145 20481 2561 1105 9.3e6 31745 15713
6 1281 769 321 52993 7937 2929 3.0e7 141569 56737
7 2817 1793 705 1.3e5 23297 7537 9.1e7 5.8e5 1.9e5

The following graph illustrates the sparse grids of level 0 and level 2 of the three respective
grids in two dimensions.

12

1.5 Polynomial basis functions

0 0.5 1
0

0.5

1
Maximum, n = 0

9 nodes
0 0.5 1

0

0.5

1
NoBoundary, n = 0

1 node
0 0.5 1

0

0.5

1
CC−Grid, n = 0

1 node

0 0.5 1
0

0.5

1
Maximum, n = 2

49 nodes
0 0.5 1

0

0.5

1
NoBoundary, n = 2

17 nodes
0 0.5 1

0

0.5

1
CC−Grid, n = 2

13 nodes

Which piecewise linear interpolation scheme works best?

Although the performance of the three grid types is rather similar for lower- dimensional prob-
lems, there are two important points to be mentioned:

• The ClenshawCurtis grid and the NoBoundary grid have just a single node at the lowest
interpolation leveln = 0 (this means that an interpolant of level 0 of these grid types is
just a constant function). The Maximum grid has 3d nodes at the lowest level. Therefore,
the Maximum is not well-suited for higher-dimensional problems. For instance, ford =
10, already 59049 support nodes would be required to obtain an initial interpolant.

• Since the CC-grid is the most versatile grid working well in both lower and higher di-
mensions, at this point, the dimension-adaptive algorithms are implemented for this grid
type only.

Therefore, for most practical applications, we recommend using the Clenshaw- Curtis grid.
Occasionally, the other grid types may perform better by a small factor, as numerical experi-
ments show (try running the demospcompare from the command line or from the Sparse Grid
Interpolation demo page).

1.5 Polynomial basis functions

The piecewise multilinear approach can be significantly improved by using higher-order basis
functions, such as the Lagrangian characteristic polynomials. The approximation properties of
sparse grid interpolation techniques using polynomial basis functions have been studied exten-
sively in [4], where error bounds depending on the smoothness of the function were derived.

13

1 Getting Started

From the one-dimensional case, we know that one should not use equidistant nodes for
higher-order polynomial interpolation. This directly suggests using Chebyshev-based node
distributions. Since an additional requirement of an efficient sparse grid algorithm is the nesting
of the sets of nodes, the Chebyshev Gauss-Lobatto nodes are clearly the best choice, and are
therefore also suggested in [4]. In this toolbox, this grid type (CGL) is selected by the value
"Chebyshev" for the GridType property configurable with thespset function.

Since version 5.0, an additional polynomial sparse grid is available, the Gauss-Patterson
sparse grid. This grid is based on the abscissae of Gauss-Patterson integration. The Gauss-
Patterson formula is a nested quadrature rule that achieves a higher degree of exactness than
integration at the Chebyshev Gauss-Lobatto nodes. See [6, 7] for additional details.

For a detailed description of the polynomial basis functions implemented here, please see
[3, ch. 3], and the references stated therein. Since version v3.2, the toolbox uses an improved
construction algorithm employing the fast discrete cosine transform, see [8].

Accuracy of polynomial interpolation

From the error bounds of the univariate case, the following general error bounds depending on
the smoothness of the objective function f are derived in [4]. Forf ∈ Fk

d ,

Fk
d = { f : [−1,1]d → R | Dβ f continuous ifβi ≤ k ∀ i},

with β ∈ Nd
0,

Dβ f =
∂ |β | f

∂xβ1
1 · · ·xβd

d

,

the order of the interpolation error in the maximum norm is given by

∥∥ f −Aq,d(f)
∥∥

∞ = O(N−k · |logN|(k+2)(d+1)+1),

whereAq,d(f) denotes the sparse grid interpolant off , andN denotes the number of grid
points of the sparse grids of type CGL. Note that the number of grid pointsN of Aq,d(f) can
be computed byspdim(q-d,d).

Number of grid points

The number of grid points of the CGL-grid is identical to the one of the Clenshaw-Curtis (CC)
grid. The number of grid points of the Gauss-Patterson grid is identical to the one of the NB
grid.

The following graph illustrates the sparse grids of level 0 and level 2 of the CGL-grid in two
and three dimensions.

14

1.6 Dimensional adaptivity

0 0.5 1
0

0.2

0.4

0.6

0.8

1
n = 0, d = 2

1 node
0 0.5 1

0

0.2

0.4

0.6

0.8

1
n = 2, d = 2

13 nodes
0 0.5 1

0

0.2

0.4

0.6

0.8

1
n = 4, d = 2

65 nodes

0
0.5

1

0
0.5

1
0

0.5

1

n = 0, d = 3

1 node 0
0.5

1

0
0.5

1
0

0.5

1

25 nodes

n = 2, d = 3

0
0.5

1

0
0.5

1
0

0.5

1

177 nodes

n = 4, d = 3

When should I use polynomial rather than linear basis functions?

There is obviously some trade-off between the accuracy gain and the computing time required
to construct as well as interpolate the interpolant. Since the higher-order accuracy only be-
comes effective with increasing number of nodes, we recommend to use the polynomial ap-
proach only if the following two conditions are met:

• The objective function to be recovered is known to be very smooth.

• High relative accuracies smaller than 10−2 are required.

1.6 Dimensional adaptivity

With the standard sparse grid approach, all dimensions are treated equally, i.e. in each coordi-
nate direction, the number of grid points is equal. The question arises as to whether one can fur-
ther reduce the computational effort for objective functions where not all input variables carry
equal weight. This is especially important in the case of higher-dimensional problems, where
this property is often observed. Unfortunately, it is usually not known a priori which variables
(or, in this context, dimensions) are important. Therefore, an efficient approach should be able
to automatically detect which dimensions are the more or less important ones, without wasting
any function evaluations. Hegland [9] and Gerstner and Griebel [10] show that this is indeed
possible. They propose an approach to generalize sparse grids such that the number of nodes
in each dimension is adaptively adjusted to the problem at hand. Here, the adaptive refinement
is not performed in a spatial manner, as it is commonly done in two- and three-dimensional

15

1 Getting Started

problems (e.g. [5]), where more support nodes are placed in areas of increased nonlinear-
ity or non-smoothness (this can become impractical in higher dimensions due to the required
complex data structure and refinement criteria).

Besides being able to balancing the number of nodes in each coordinate direction, dimension-
adaptive sparse grids are capable of automatically detecting separability (or partial separability)
encountered in problems with additive (or nearly additive) structure.

The Sparse Grid Interpolation Toolbox includes a powerful dimension-adaptive algorithm
based on the approach by Gerstner and Griebel [10], but also includes the significant perfor-
mance enhancements described in [3, ch. 3]. Applying the dimension-adaptive algorithm is
very easy - it can be switched "on" or "off" with a single parameter of the spare grid options
structure that can be set with the spset function. Furthermore, the degree of dimensional adap-
tivity can be chosen as a scalar from the interval [0,1] where 1 stands for greedy (= purely
adaptive) and 0 stands for conservative (= standard sparse grid) refinement.

Example

Consider the following quadratic test function:

f (x) = [
d

∑
i=1

(xi −1)2]− [
d

∑
i=2

xixi−1],

implemented in Matlab by the following code:

function y = trid(x)

% TRID Quadratic function with a tridiagonal Hessian.

% Y = TRID(X) returns the function value Y for a D-

% dimensional input vector X.

%

% f(x)=[sum_{i=1}^d (x_i-1)^2] - [sum_{i=2}^d x_ix_{i-1}]

%

% The test function is due to Arnold Neumaier, listed

% on the global optimization Web page at

% http://www.mat.univie.ac.at/~neum/glopt/

d = length(x);

y = sum((x-1).^2) - sum(x(2:d).*x(1:d-1));

The function clearly exhibits additive structure, however, the function is not fully separable
due to the second term coupling the variables. Consider the high-dimensional cased = 100. A
traditional tensor-product approach would completely fail in interpolating a high-dimensional
function of this type, since at least 2100 nodes are required if an interpolation formula with
two nodes is extended to the multivariate case via conventional tensor products. With the
dimension-adaptive sparse grid algorithm, however, the structure is automatically detected, and
the function is successfully recovered using justO(d2) points. For the interpolation domain,
we have used[−d2,d2] in each dimension.

Using piecewise multilinear basis functions and the Clenshaw-Curtis-Grid,f can be recov-
ered with an estimated relative error of below 0.1 percent (the relative error is given with respect

16

1.6 Dimensional adaptivity

to the estimated range of the function) with about 27000 function evaluations, as the following
code shows.

d = 100;

range = repmat([-d^2 d^2],d,1);

options = spset('DimensionAdaptive', 'on', ...

'DimadaptDegree', 1, ...

'FunctionArgType', 'vector', ...

'RelTol', 1e-3, ...

'MaxPoints', 40000);

z1 = spvals(@trid, d, range, options)

z1 =

vals: {[26993x1 double]}

gridType: 'Clenshaw-Curtis'

d: 100

range: [100x2 double]

estRelError: 3.2552e-04

estAbsError: 9.7656e+04

fevalRange: [100 300000100]

minGridVal: [1x100 double]

maxGridVal: [1x100 double]

nPoints: 26993

fevalTime: 5.0122

surplusCompTime: 0.4784

indices: [1x1 struct]

maxLevel: [1x100 double]

activeIndices: [5149x1 uint32]

activeIndices2: [5749x1 uint32]

E: [1x5749 double]

G: [5749x1 double]

G2: [5749x1 double]

maxSetPoints: 6

dimAdapt: 1

Since the objective function is quadratic, we can even approximate the function up to floating
point accuracy with the polynomial basis functions and the Chebyshev-Gauss-Lobatto grid:

options = spset(options, 'GridType', 'Chebyshev');

z2 = spvals(@trid, d, range, options)

z2 =

vals: {[20201x1 double]}

gridType: 'Chebyshev'

d: 100

range: [100x2 double]

estRelError: 2.4835e-17

estAbsError: 7.4506e-09

fevalRange: [100 300000100]

17

1 Getting Started

minGridVal: [1x100 double]

maxGridVal: [1x100 double]

nPoints: 20201

fevalTime: 3.8847

surplusCompTime: 3.5568

indices: [1x1 struct]

maxLevel: [1x100 double]

activeIndices: [4951x1 uint32]

activeIndices2: [5151x1 uint32]

E: [1x5151 double]

G: [5151x1 double]

G2: [5151x1 double]

maxSetPoints: 2

dimAdapt: 1

We can verify the quality of the interpolants by computing the maximum relative error for
100 randomly sampled points (the relative error is computed with respect to the range of the
function values that occurred during the sparse grid construction). In this case, the estimated
error was too optimistic in the piecewise linear case- however, the relative error for the sampled
points is still below 1 percent.

% Compute 100 randomly sampled points

p = 100;

rand('state', 0);

x = -d^2 + 2*d^2*rand(p,d);

% Compute exact function values

y = zeros(p,1);

for k = 1:p

y(k) = trid(x(k,:));

end

% Compute interpolated function values

xcell = num2cell(x,1);

ip1 = spinterp(z1, xcell{:});

ip2 = spinterp(z2, xcell{:});

% Compute relative errors

err_CC = max(abs(y-ip1))/(z1.fevalRange(2)-z1.fevalRange(1))

err_CGL= max(abs(y-ip2))/(z2.fevalRange(2)-z2.fevalRange(1))

err_CC =

0.0061

err_CGL =

1.2716e-14

18

2 Advanced Topics

2.1 Degree of Dimensional Adaptivity

When dealing with high-dimensional problems, an "exhaustive" exploration of the objective
function with a standard sparse grid becomes too expensive, since too many points are gen-
erated. Therefore, dimension-adaptive sparse grids were introduced that adaptively refine the
interpolant with respect to dimensions that are most important, determined by error indicators.
However, there is still one problem with this approach: due to the fact that the error indicator
is a measure computed from hierarchical surpluses at a few points only, it can happen that the
error indicator understimates the actual error with respect to some dimensions. As a conse-
quence, the interpolant may no longer be further refined in these dimensions. In other words,
the global convergence property of sparse grid interpolants for the before-mentioned classes of
functions is lost for purely greedy dimension-adaptive refinement.

The solution to this problem is to take a "middle ground" approach by introducing an ad-
ditional parameter, the degree of dimensional adaptivity [10], that lets the user gradually shift
emphasis between greedy (= purely adaptive) and conservative (= standard sparse grid) refine-
ment.

Degree balancing approach

Version 5.1 of the toolbox introduces a simple yet very powerful new strategy to the degree of
dimensional adaptivity calleddegree balancing, replacing the previous approach based on the
interpolation depth described in [3, ch. 3]. The new approach is decribed in the following.

Definition of the degree of dimensional adaptivity

As a preliminary, we define the actual degree of dimensional adaptivity as the ratio

r = nAdaptPoints/nTotalPoints,

wherenAdaptPointsdenotes the number of points added according to a greedy, purely dimension-
adaptive refinement rule, andnTotalPointsdenotes the total number of sparse grid points. We
assume that the remaining pointsnTotalPoints−nAdaptPointsare constructed by the standard sparse
grid refinement rule.

Specifying the target dimensional adaptivity degree

The user may specify a target degree of dimensionsonal adaptivity using the DimadaptDegree
parameter of the sparse grid options structure.

19

2 Advanced Topics

Refinement rule

During interpolant construction, index sets of both a greedy dimension-adaptive (adaptive re-
finement rule) and a regular sparse grid interpolant (regular refinement rule) are maintained.
Then, at each step of the construction algorithm, the ratior is computed, representing the
current degree of dimensional adaptivity. Now, if the target rate is smaller than the current
rater, points corresponding to an index set maintained by the adaptive rule are added to the
interpolant, otherwise, points according to the regular rule are added. Thus, the generated inter-
polant will have a degree of dimensional adaptivity close to the target degree (it is "balanced"
around the target degree).

Benefits of the new approach

The new degree balancing approach has the following benefits:

• Transparent, easy to understand definition of the degree of dimensional adaptivity.

• Works independently of the problem dimension.

• The target degree of adaptivity can be adjusted interactively at any time (see example
below).

Examples

Comparison of different degrees of dimensional adaptivity

Let us use Branin’s function to illustrate how the degree of dimensional adaptivity affects the
grid construction.

fun = inline(['(5/pi*x-5.1/(4*pi^2)*x.^2+y-6).^2 + ' ...

'10*(1-1/(8*pi))*cos(x)+10']);

d = 2;

range = [-5, 10; 0, 15];

The code snippet below generates sparse grid interpolants for target degrees of dimensional
adaptivity 0, 0.5, and 1, i.e., about 0%, 50%, or 100% of the grid points are generated by the
greedy, error-indicator based refinement rule. For each interpolant, we set the minimum and
maximum number of points to 65 in order to get an interpolant with close to that number of
points.

options = spset('GridType', 'Chebyshev', 'DimensionAdaptive', 'on', ...

'MinPoints', 65, 'MaxPoints', 65, 'Vectorized', 'on', 'KeepGrid', 'on');

z1 = spvals(fun, d, range, spset(options, 'DimadaptDegree', 0));

z2 = spvals(fun, d, range, spset(options, 'DimadaptDegree', 0.5));

z3 = spvals(fun, d, range, spset(options, 'DimadaptDegree', 1));

We can check how closely the actual degrees of dimensional adaptivity meet the target rates:

20

2.1 Degree of Dimensional Adaptivity

disp(sprintf(...

'Degree of dimensional adaptivity: z1: %.2f, z2: %.2f, z3: %.2f', ...

z1.dimadaptDegree, z2.dimadaptDegree, z3.dimadaptDegree));

Degree of dimensional adaptivity: z1: 0.00, z2: 0.52, z3: 0.99

The following plot compares the generated grids and subgrid indices.

z = {z1, z2, z3};

for k = 1:3

subplot(2,3,k);

plot(z{k}.grid{1}(:,1), z{k}.grid{1}(:,2), 'k.');

axis([range(1,:), range(2,:)]);

axis square;

subplot(2,3,3+k);

plotindices(z{k});

title(sprintf('z%d, degree: %2.0f%%', k, 100*z{k}.dimadaptDegree))

axis([0,8,0,6]);

end

Adjusting the adaptivity degree during interpolant construction

Suppose we have created a dimension-adaptive interpolant with purely greedy refinement to
achieve a target estimated error of 10−3.

options = spset('GridType', 'Chebyshev', 'DimensionAdaptive', 'on', ...

'RelTol', 1e-3, 'Vectorized', 'on', 'KeepGrid', 'on', 'MinPoints', 30);

z = spvals(fun, d, range, spset(options, 'DimadaptDegree', 1));

We find that it took 45 points to achieve this estimated accuracy:

z.nPoints

z.estRelError

21

2 Advanced Topics

ans =

45

ans =

6.3274e-07

We are happy with the achieved accuracy, but in order to be more comfortable with the result,
we would like to add some additional points according to the standard sparse grid refinement
rule. We thus change the degree of dimensional adaptivity to 0 (=conservative, non-adaptive
refinement), and add another approx. 20 points to the interpolant.

z = spvals(fun, d, range, spset(options, 'DimadaptDegree', 0, ...

'MinPoints', z.nPoints + 20, 'PrevResults', z));

We can now check if the estimated error is still satisfied:

z.estRelError

ans =

6.3244e-07

The actual degree of dimensional adaptivity of the interpolant reflects our refinement by the
two different rules. 44 points (64%) out of the total points of now 69 were added according to
the dimension-adaptive refinement rule.

z.nPoints

z.dimadaptDegree

ans =

69

ans =

0.6377

2.2 Multiple output variables

Real-world problems usually have more than a single output argument. Sparse grids are very
well-suited to deal with such kind of problems, since the regular structure allows to construct
good approximations for multiple output variables at once.

The sparse grid interpolation package is designed to make dealing with multiple output ar-
guments easy, as the following example demonstrates.

Example

Consider the following simple test function with multiple output arguments:

function [out1, out2, out3, out4] = multiout(x,y)

% MULTIOUT Test function with four output arguments

out1 = (x+y).^2;

out2 = 1./exp(1+(x-0.5).^2+(y-0.3).^2);

out3 = sin(pi*(2-x))+cos(pi*(1-y));

out4 = sinh(4.*(x-0.5));

22

2.2 Multiple output variables

spvals will automatically compute interpolants with respect to all four output variables if the
number of output variables is specified in the sparse gridOPTIONS structure:

nout = 4;

options = spset('NumberOfOutputs', nout, 'Vectorized', 'on');

z = spvals(@multiout, 2, [], options)

z =

vals: {4x1 cell}

gridType: 'Clenshaw-Curtis'

d: 2

range: []

maxLevel: 5

estRelError: 0.0034

estAbsError: 0.0249

fevalRange: [4x2 double]

minGridVal: [4x2 double]

maxGridVal: [4x2 double]

nPoints: 145

fevalTime: 0.0392

surplusCompTime: 0.0129

indices: [1x1 struct]

Note that the output parameters of the objective function must all be scalar. The number of out-
putsnout specified in the options structure may be smaller than the actual number of outputs.
In this case, interpolants are constructed only with respect to the firstnout arguments.

To compute interpolated values, the desired output argument must now be specified. This
is done by adding an additional fieldselectOutput to the structurez prior to the call to the
spinterp function. The following code plots the four computed interpolants:

for k = 1:nout

z.selectOutput = k;

subplot(2,2,k);

ezmesh(@(x,y) spinterp(z,x,y), [0 1]);

axis square;

title(['out' num2str(k)]);

end

23

2 Advanced Topics

An additional example of using multiple output arguments with spvals is given by the demo
spdemovarout available at the command line or from the demos page.

2.3 Derivatives

One of the primary purposes of sparse grid interpolation is the construction of surrogate func-
tions for local or global optimization. While some optimization methods work well using
function values only, many efficient algorithms exist that require computation of the gradient.
With the Sparse Grid Interpolation Toolbox, it is possible to obtain gradients of the interpolants
directly – up to floating point accuracy – as opposed to approximating them numerically, such
as by finite differences. This is demonstrated in the following.

How to obtain the derivatives?

Computing derivatives is extremely simple. One just calls the methodspinterp, but instead
of a single left-hand argument, one uses the syntax[ip,ipgrad] = spinterp(z,x1, . . . ,xn).
This returns not only the function value at the point(s)(x1, . . . ,xn), but also the complete gra-
dient vector(s). Please see the reference page ofspinterp for further details (or the examples
provided below).

It is important to note that the entire procedure of computing the hierarchical surpluses of
the sparse grid interpolant withspvals remains the same, regardless of whether derivatives
are desired or not. Also, purging of the interpolant (seesppurge) can be performed in the
usual manner if desired. This makes using derivative information very flexible, and it can be
decided ad-hoc, well after interpolant construction (for example, when different optimization
algorithms are applied), whether to use derivatives or not.

24

2.3 Derivatives

Furthermore, the derivatives computed byspinterp arenot additional approximations of
the derivatives of the original function, but rather, theexactderivatives of the interpolant (up
to floating point accuracy). The advantage of this approach is thatno additional memory is
required to store derivative information. The derivatives are computed on-the-fly by efficient
algorithms.

Derivatives of piecewise multilinear interpolants

We start with derivatives of piecewise multilinear Clenshaw-Curtis Sparse Grid Interpolants.
Deriving a piecewise linear function leads to piecewise constant derivatives with respect to the
variable that the function is differentiated for. Since the interpolant is non-differentiable at the
kinks, the left-sided (or right-sided) derivative is computed at these points only. The following
example in two dimensions illustrates the nature of the derivatives.

First, we define the example objective function. We also define its derivatives (this is only
for comparison to give an idea of the quality of the computed derivatives).

% Define function and its derivatives

f = inline('1./(cos(2*x).^2 + sin(y).^2 + 1) + 0.2*y');

fdx = inline('4*cos(2*x).*sin(2*x)./(cos(2*x).^2 + sin(y).^2 + 1).^2');

fdy = inline('-2*cos(y).*sin(y)./(cos(2*x).^2 + sin(y).^2 + 1).^2 + 0.2');

Next, we compute the interpolant. In this case, using the regular Clenshaw- Curtis sparse grid.
We limit the sparse grid depth to 4 here (i.e.,Aq,d(f) = A4+2,2(f) is computed).

d = 2;

maxDepth = 4;

options = spset('Vectorized','on','SparseIndices','off', ...

'MaxDepth', maxDepth);

z = spvals(f,d,[],options);

Warning: MaxDepth = 4 reached before accuracies RelTol = 0.01 or

AbsTol = 1e-06 were achieved.

The current estimated relative accuracy is 0.02877.

Our aim here is to plot the derivatives. Therefore, we define a suitable grid, and set up an array
for the vectorized evaluation of the interpolant and its derivatives. We set up the grid such that
the jumps of the derivative will be clearly visible.

np = 2^double(z.maxLevel)+1;

x = linspace(0,1,np);

xstep = zeros(1,(np-1)*2);

xstep(1:2:end-1) = x(1:end-1);

xstep(2:2:end) = x(2:end) - eps;

[x,y] = ndgrid(xstep);

Next, we evaluate the interpolant at the grid points. As result,ipgrad will contain an array
of the shape of the input arraysx andy, with the difference that it is a cell array instead of
a double array, where each cell contains the entire gradient at the point of the corresponding
array entry of x and y.

25

2 Advanced Topics

[ip,ipgrad] = spinterp(z,x,y);

For plotting, it is convenient to convert the data returned as a cell array back to a double array.
This is achieved by the following statements. We extract the derivatives with respect to y here.

% Convert returned cell array to matrix

ipgradmat = cell2mat(ipgrad);

% Get the derivatives with respect to y

ipdy = ipgradmat(2:d:end,:);

Similarly, we can get all derivatives with respect to x with the command

ipdx = ipgradmat(1:d:end,:);

This approach of transforming the cell array to a double array can be easily extended to other
dimensions.

Finally, we plot the obtained derivatives next to the exact derivatives.

subplot(1,2,1,'align');

surf(x,y,fdy(x,y));

view(250,50); xlabel('x'); ylabel('y'); light;

title('Exact: {\partial}f / {\partial}y');

subplot(1,2,2,'align');

surf(x,y,ipdy);

view(250,50); xlabel('x'); ylabel('y'); light;

title('Approx.: {\partial}A^{CC}_{6,2}(f) / {\partial}y (piecewise const.

w.r.t. y)');

Augmented derivatives to achieve continuity

Obtaining the derivatives of the interpolant is usually not the primary goal, but rather, serves
a secondary purpose. For instance, in an optimization procedure, one is not interested in the

26

2.3 Derivatives

derivatives per se. Instead, the gradient vector enters an iterative procedure to achieve the pri-
mary goal, which is to numerically compute a local optimizer. Unfortunately, the discontinuous
derivatives of a piecewise multilinear interpolant have a serious drawback: the first order op-
timality condition gradf = 0 cannot be fulfilled. Instead, the sign of the gradient components
will oscillate about the optimizer of the continuous interpolant, resulting in slow convergence.

To overcome this limitation, the Sparse Grid Interpolation Toolbox offers a powerful alter-
native to computing the exact derivatives of a piecewise multilinear interpolant. By setting a
simple flag, augmented derivatives can be computed that artificially enforce continuity. This is
achieved by linear interpolation with respect to the derived variable.

Let us consider an example (we use the same test function and interpolant from above).

First, we re-define the evaluation grid (there are no more jumps to emphasize).

np = 2^double(z.maxLevel+1)+1;

x = linspace(0,1,np);

[x,y] = ndgrid(x);

Prior to evaluating the interpolant, we set the flagcontinuousDerivatives = 'on'.

z.continuousDerivatives = 'on';

Computing interpolated values and gradients of the sparse grid interpolant is done as before
with the command

[ip,ipgrad] = spinterp(z,x,y);

Finally, we generate the plot. Compare the plot to the previous one. Note that the derivatives
are now continuous.

% Convert returned cell array to matrix

ipgradmat = cell2mat(ipgrad);

% Get the derivatives with respect to y

ipdy = ipgradmat(2:d:end,:);

% Plot exact derivatives and derivatives of interpolant

subplot(1,2,1,'align');

surf(x,y,fdy(x,y));

view(250,50); xlabel('x'); ylabel('y'); light;

title('Exact: {\partial}f / {\partial}y');

subplot(1,2,2,'align');

surf(x,y,ipdy);

view(250,50); xlabel('x'); ylabel('y'); light;

title('Approx.: {\partial}A^{CC}_{6,2}(f) / {\partial}y');

27

2 Advanced Topics

To conclude this section: If piecewise multilinear sparse grid interpolants (the Clenshaw-Curtis
grid) are used, augmented derivatives can help improving efficiency when solving optimization
problems with methods that require computation of the gradient.

Derivatives of polynomial interpolants

The Chebyshev-Gauss-Lobatto (CGL) sparse grid uses globally defined polynomial basis func-
tions. These basis functions are infinitely smooth, and thus, the derivatives are infinitely
smooth, too. The Sparse Grid Interpolation Toolbox offers efficient algorithms involving
barycentric interpolation and the discrete cosine transform to compute gradients, with excellent
numerical stability.

Consider the following example. Using the test function from above, we compute a CGL-
type sparse grid interpolant (again withmaxDepth = 4).

maxDepth = 4;

options = spset('Vectorized','on','SparseIndices','off', ...

'MaxDepth', maxDepth, 'GridType', 'Chebyshev');

z = spvals(f,d,[],options);

Warning: MaxDepth = 4 reached before accuracies RelTol = 0.01 or

AbsTol = 1e-06 were achieved.

The current estimated relative accuracy is 0.020306.

The remaining code evaluates the interpolant and its derivatives at the full grid and creates the
plot, just as above.

[ip,ipgrad] = spinterp(z,x,y);

ipgradmat = cell2mat(ipgrad);

ipdy = ipgradmat(2:d:end,:);

subplot(1,2,1,'align');

28

2.3 Derivatives

surf(x,y,fdy(x,y));

view(250,50); xlabel('x'); ylabel('y'); light;

title('Exact: {\partial}f / {\partial}y');

subplot(1,2,2,'align');

surf(x,y,ipdy);

view(250,50); xlabel('x'); ylabel('y'); light;

title('Approx.: {\partial}A^{CC}_{6,2}(f) / {\partial}y');

Approximation quality

Although we see the main application of computing derivatives of sparse grid interpolants in
obtaining gradients during an optimization algorithm, it is interesting to investigate the approx-
imation quality with respect to the derivatives of the original function.

This is illustrated by the examplespcomparederiv.m that plots an approximation of the
error in the maximum norm by computing the maximum absolute error of the derivatives for
the six test functions of Genz (see testderivatives.m) at 100 randomly sampled points. The plot
presented below is for dimensiond = 3.

% Reset random number generator (to generate reproducible results)

rand('state',0);

% Run the demo.

spcomparederiv;

29

2 Advanced Topics

The legend indicates the three types of derivatives: discontinuous (HCC grid), augmented con-
tinuous (HCC grid), and smooth (HCGL grid).

Remark: For the original functions labeled labelled’continuous’ and ’discontinuous’, single-
sided derivatives are computed at the points where the function is not continuously differen-
tiable. Note that the approximations of the derivatives of both of these two functions do not
converge, for the following reasons:

• Since thediscontinuousfunction itself cannot be approximated by a continuous sparse
grid interpolant in the first place, the approximations of the derivatives will not converge,
either.

• What is less obvious is that the derivatives of thecontinuous function cannot be suc-
cessfully approximated for the whole considered box, either. Although the plot labeled
’continuous’ appears to suggest slow convergence,convergence in the maximum norm
is not achievedin regions close to the kink(s). However, this/these region(s) becomes
smaller with increasing number of support nodes. The decreasing size of the non- con-
verging region(s) close to the kink(s) explain(s) the decay of the absolute error in the
plot: It becomes less likely that any of the 100 randomly sampled points are placed here.

30

2.3 Derivatives

Computational cost

Cost for the piecewise multilinear Clenshaw-Curtis sparse grid

The gradient vector of the piecewise multilinear Clenshaw-Curtis sparse grid interpolant can
be obtained at a very small additional cost. The following two plots illustrate that this addi-
tional cost for computing either the exact derivatives or the augmented continuous derivatives
amounts to just a small factor that is almost independent of the problem dimension.

Cost for the polynomial Chebyshev-Gauss-Lobatto sparse grid

Due to the more sophisticated algorithms required in the polynomial case, the additional cost
of computing the gradients is considerably higher compared to a mere interpolation of function
values. However, as the dimension increases, the additional cost decreases, as fewer subgrids
will require a derivative computation (many subgrids are lower-dimensional than the final in-
terpolant, and thus, must not be differentiated with respect to the dimensions that are omitted).

Thus, the performance is very competitive especially in higher dimensions. For instance,
consider applying numerical differentiation instead (which you can easily do alternatively).
This would required+1 interpolant evaluations to compute the gradient if single-sided differ-
ences are used, or even 2d+1 if the more accurate centered difference formula is used.

31

2 Advanced Topics

Remark: We produced the previous graphs with the example function timespderiv.m, which
is included in the toolbox (see demos). The test was performed using Matlab R14 SP3 running
on a Linux 2.6.15 machine equipped with one AMD Athlon 1.5 GHz CPU and 512 MB of
memory.

2.4 Numerical Integration (Quadrature)

Once you have computed a sparse grid interpolant of an objective function, you can compute
the integral value of it for the given range. You can do this for any grid type, and for both
regular and dimension-adaptive sparse grid interpolants by simply calling thespquad function.
A couple of examples are provided below.

Integration of regular sparse grid interpolants

Consider the task of integrating the test function

f (x) = (1+1/d)d
d

∏
i=1

(xi)1/d

for the domain[0,1]d, andd = 5. The exact value of the integral is 1. We reproduce the
results of Table 1 for the columns labelled "Trapez", "Clenshaw", and "Gauss-Patterson" from
[7]. Note that the grid type Clenshaw-Curtis and Chebyshev of the Sparse Grid Interpolation
Toolbox correspond to the sparse grids based on the Trapez rule and the Clenshaw Curtis rule
in the paper, respectively.

Define the objective function, dimension, and maximum depth:

d = 5;

maxDepth = 6;

f = @(x) (1+1/d)^d * prod(x)^(1/d);

32

2.4 Numerical Integration (Quadrature)

Compute integral for increasing sparse grid depth, and generate the results table:

warning('off', 'MATLAB:spinterp:insufficientDepth');

z = cell(3,1);

quadr = zeros(3,1);

disp(' Clenshaw-Curtis | Chebyshev | Gauss-Patterson');

disp(' points error | points error | points error');

for k = 0:maxDepth

options = spset('MinDepth', k, 'MaxDepth', k, ...

'FunctionArgType', 'vector');

% Compute integral values with Clenshaw-Curtis grid

options = spset(options, 'GridType', 'Clenshaw-Curtis', ...

'PrevResults', z{1});

z{1} = spvals(f,d,[],options);

quadr(1) = spquad(z{1});

% Compute integral values with Chebyshev grid

options = spset(options, 'GridType', 'Chebyshev', ...

'PrevResults', z{2});

z{2} = spvals(f,d,[],options);

quadr(2) = spquad(z{2});

% Compute integral values with Gauss-Patterson grid

options = spset(options, 'GridType', 'Gauss-Patterson', ...

'PrevResults', z{3});

z{3} = spvals(f,d,[],options);

quadr(3) = spquad(z{3});

% Results output

disp(sprintf('%5d %8.3e | %5d %8.3e | %5d %8.3e', ...

z{1}.nPoints, abs(1-quadr(1)), ...

z{2}.nPoints, abs(1-quadr(2)), ...

z{3}.nPoints, abs(1-quadr(3))));

end

Clenshaw-Curtis | Chebyshev | Gauss-Patterson

points error | points error | points error

1 2.442e-01 | 1 2.442e-01 | 1 2.442e-01

11 1.080e+00 | 11 6.385e-01 | 11 8.936e-03

61 7.578e-02 | 61 1.441e-01 | 71 8.073e-04

241 2.864e-01 | 241 1.237e-01 | 351 2.070e-04

801 1.079e-01 | 801 6.650e-03 | 1471 2.256e-05

2433 8.001e-02 | 2433 1.060e-02 | 5503 1.420e-06

6993 5.030e-02 | 6993 1.743e-03 | 18943 3.437e-09

33

2 Advanced Topics

Integration of dimension-adaptive sparse grid interpolants

To illustrate a higher-dimensional, dimension-adpative case, we consider the absorption prob-
lem from W. Morokoff, R. Caflisch, "Quasi-monte carlo integration", J. Comp. Phys. 122, pp.
218-230, 1995, given by the integral equation

y(x) =
∫ 1

x
γy(x′)dx′+x.

The exact solution of this equation is given by

y(x) =
1
γ
(1− (1− γ)exp(γ(1−x))).

Two alternate representations are given in the paper, the first being an infinite integral with an
integrand with a jump, and the second one with a smooth integrand.

The sparse grid method does not work well for the first representation, since it is a non-
smooth function where the discontinuities are not parallel to the coordinate directions (see S.
Dirnsdorfer, "Numerical Quadrature on Sparse Grids", Diploma Thesis, TU Munich, 2000).
However, in case of the second representation, very accurate results can be computed using the
dimension- adaptive approach, as shown below.

We define the integrand of the absorption problem as follows. The optional parameter named
SMOOTH indicates which of the two representation should be used.

function y = absorb(varargin)

% ABSORB(R1,...,RD,GAMMA,X,SMOOTH) Finite sum integrand of

% the integrral representation of the absorption problem

% paper W. Morokoff, R. Caflisch, "Quasi-monte carlo

% integration", J. Comp. Phys. 122, pp. 218-230, 1995.

d = length(varargin) - 3;

gamma = varargin{end-2};

x = varargin{end-1};

smooth = varargin{end};

% Compute F as in paper

if ~smooth

% First representation with jump

phi = @(z) (1 .* (z >= 0)); % Heaviside function

d = d - 1;

sumR = cell(d+1,1);

sumR{1} = varargin{1};

for k = 2:d+1

sumR{k} = sumR{k-1} + varargin{k};

end

F = @(n) (gamma^n * phi(1-x-sumR{n}) ...

.* phi(sumR{n+1}-(1-x)));

else

34

2.4 Numerical Integration (Quadrature)

% Second, smooth representation

prodR1 = cell(d,1);

prodR1{1} = ones(size(varargin{1}));

for k = 2:d

prodR1{k} = prodR1{k-1};

for l = 1:k-1

prodR1{k} = prodR1{k} .* varargin{l};

end

end

prodR2 = cell(d,1);

prodR2{1} = varargin{1};

for k = 2:d

prodR2{k} = prodR2{k-1} .* varargin{k};

end

F = @(n) (gamma^n * (1 - x)^n * ...

prodR1{n} .* (1 - (1 - x) * prodR2{n}));

end

% Compute integrand value(s) (finite sum)

y = zeros(size(varargin{1}));

for n = 1:d

y = y + F(n);

end

The following loop computes increasingly accurate approximations to the solution of the ab-
sorption problem withd = 20, γ = 0.5, andx = 0 by computing a dimension-adaptive poly-
nomial interpolant of the smooth integrand which is then integrated using the spquad function.
For comparison, we also compute the integral using crude Monte Carlo (MC) with the same
number of points.

gamma = 0.5; x = 0; d = 20;

% Show exact solution

I_exact = 1/gamma - (1-gamma)/gamma*exp(gamma*(1-x))

options = spset('DimensionAdaptive','on', 'DimadaptDegree', 1, ...

'GridType', 'Chebyshev', 'Vectorized', 'on');

Nmax = 50000;

N = 2*d;

z = [];

warning('off', 'MATLAB:spinterp:maxPointsReached');

while N <= Nmax

% Compute integral via sparse grid

spoptions = spset(options, 'MinPoints', N, ...

'MaxPoints', N, 'PrevResults', z);

z = spvals(@absorb, d, [], spoptions, gamma, x, true);

35

2 Advanced Topics

e1 = abs(I_exact - spquad(z));

% Compute integral via MC (error average for 10 runs)

e2 = 0;

for k = 1:10

p = rand(z.nPoints,d);

p = num2cell(p,1);

I = sum(absorb(p{:}, gamma, x, true)) / double(z.nPoints);

e2 = e2 + abs(I_exact - I);

end

e2 = e2 / 10;

disp([' points: ' sprintf('%5d', z.nPoints) ...

' | error (CGL): ' sprintf('%9.3e',e1) ...

' | error (MC): ' sprintf('%9.3e',e2)]);

N = round(z.nPoints .* 2);

end

warning('on', 'MATLAB:spinterp:maxPointsReached');

I_exact =

0.3513

points: 41 | error (CGL): 4.622e-04 | error (MC): 1.298e-02

points: 87 | error (CGL): 5.606e-06 | error (MC): 6.008e-03

points: 177 | error (CGL): 6.010e-07 | error (MC): 7.791e-03

points: 367 | error (CGL): 1.566e-07 | error (MC): 3.442e-03

points: 739 | error (CGL): 3.893e-08 | error (MC): 4.761e-03

points: 1531 | error (CGL): 2.461e-08 | error (MC): 1.895e-03

points: 3085 | error (CGL): 1.061e-09 | error (MC): 1.036e-03

points: 6181 | error (CGL): 2.750e-09 | error (MC): 6.147e-04

points: 12393 | error (CGL): 1.335e-09 | error (MC): 6.609e-04

points: 24795 | error (CGL): 3.006e-10 | error (MC): 5.420e-04

points: 49739 | error (CGL): 1.791e-10 | error (MC): 3.305e-04

2.5 Optimization

Once a sparse grid interpolant providing a surrogate function or meta-model of an expensive
to evaluate model has been obtained, a very common task to be performed is often a search
for local/global minimizers or maximizers. Since version 4.0 of the toolbox, several efficient
optimization methods are available to perform this task. Furthermore, it is easy to use third-
party optimization codes on sparse grid interpolants.

Available algorithms

The following optimization algorithms are included with the toolbox:

36

2.5 Optimization

• spcgsearch - suitable for optimizing polynomial sparse grid interpolants.

• spcompsearch - suitable for optimizing piecewise linear sparse grid interpolants.

• spfminsearch - works for all types of interpolants, but usually less efficient thansp-

compsearch or spcgsearch.

• spmultistart - a multiple random start search method that uses any of the above meth-
ods for the local searches.

Many parameters of these algorithms can be configured with an options structure created with
thespoptimset function.

Optimizing piecewise linear interpolants

We consider a simple algebraic test functionf , the well-known six-hump camel back function.
Here, we visualizef slightly shifted and in logarithmic scaling to cleary show the 6 minima.
Two minima are global, indicated by the red triangle.

f = @(x,y) (4-2.1.*x.^2+x.^4./3).*x.^2+x.*y+(-4+4.*y.^2).*y.^2;

ezcontour(@(x,y) log(2+f(x,y)), [-3 3 -2 2], 51);

hold on;

plot([0.08984201 -0.08984201], [-0.71265640 0.71265640], 'r^');

37

2 Advanced Topics

We construct a sequence of piecewise linear interpolants, and optimize them by the sp-
compsearch function in each step. Here, we use a maximum ofN = 705 points, as used by the
Clenshaw-Curtis grid of levelnmax = 5, to approximate the (global) minimum.

nmax = 7;

z = [];

range = [-3 3; -2 2];

f_exact = -1.0316284535

warning('off', 'MATLAB:spinterp:insufficientDepth');

tic;

for n = 1:nmax

spoptions = spset('MinDepth', n, 'MaxDepth', n, 'PrevResults', z, ...

'KeepFunctionValues', 'on');

z = spvals(f,2,range,spoptions);

[xopt, fval, exitflag, output] = spcompsearch(z,range);

disp([' grid pnts: ' sprintf('%3d', z.nPoints) ...

' | optim fevals: ' sprintf('%3d', output.nFEvals) ...

' | fval: ' sprintf('%+5f', fval) ...

' | abs. error: ' num2str(abs(f_exact-fval))]);

end

toc;

warning('on', 'MATLAB:spinterp:insufficientDepth');

f_exact =

-1.0316

grid pnts: 5 | optim fevals: 8 | fval: +0.000000 | abs. error: 1.0316

grid pnts: 13 | optim fevals: 8 | fval: +0.000000 | abs. error: 1.0316

grid pnts: 29 | optim fevals: 12 | fval: -0.750000 | abs. error: 0.2816

grid pnts: 65 | optim fevals: 12 | fval: -0.984375 | abs. error: 0.0472

grid pnts: 145 | optim fevals: 20 | fval: -0.986956 | abs. error: 0.0446

grid pnts: 321 | optim fevals: 20 | fval: -1.026468 | abs. error: 0.0051

grid pnts: 705 | optim fevals: 24 | fval: -1.031286 | abs. error: 0.0003

Elapsed time is 0.641286 seconds.

Optimizing polynomial interpolants

If the objective function is smooth, polynomial interpolants are a good choice. In the example
below, by using the Chebyshev-Gauss-Lobatto sparse grid, we achieve an exponential conver-
gence rate for the considered analytic function. To further reduce the number of sparse grid
points, we use a dimension-adaptive interpolant. We start withN = 5 nodes, and increase the
number of nodes by about a factor of 1.5 in each step of the loop, up to about 100 points.

Nmax = 100;

N = 5;

z = [];

38

2.5 Optimization

warning('off', 'MATLAB:spinterp:maxPointsReached');

tic;

while N <= Nmax

spoptions = spset('MinPoints', N, 'MaxPoints', N, 'PrevResults', z, ...

'GridType', 'Chebyshev', 'DimensionAdaptive', 'on', ...

'KeepFunctionValues', 'on');

z = spvals(f,2,range,spoptions);

N = round(z.nPoints .* 1.5);

[xopt, fval, exitflag, output] = spcgsearch(z,range);

disp([' grid pnts: ' sprintf('%3d', z.nPoints) ...

' | optim fevals: ' sprintf('%3d', output.nFEvals) ...

' | fval: ' sprintf('%+5f', fval) ...

' | abs. error: ' num2str(abs(f_exact-fval))]);

end

toc;

warning('on', 'MATLAB:spinterp:maxPointsReached');

grid pnts: 5 | optim fevals: 1 | fval: +0.000000 | abs. error: 1.0316

grid pnts: 11 | optim fevals: 9 | fval: +0.000000 | abs. error: 1.0316

grid pnts: 17 | optim fevals: 20 | fval: -0.537875 | abs. error: 0.49375

grid pnts: 29 | optim fevals: 29 | fval: -1.031628 | abs. error: 1.9e-11

grid pnts: 53 | optim fevals: 30 | fval: -1.031628 | abs. error: 1.9e-11

grid pnts: 85 | optim fevals: 30 | fval: -1.031628 | abs. error: 1.9e-11

Elapsed time is 1.146093 seconds.

A high-dimensional example

Let us look at the optimization of a higher-dimensional function. We consider again the func-
tion trid.m that was already used to illustrate the dimension- adaptive algorithm:

type('trid.m');

function y = trid(x)

% TRID Quadratic function with a tridiagonal Hessian.

% Y = TRID(X) returns the function value Y for a D-

% dimensional input vector X.

%

% The test function is due to Arnold Neumaier, listed

% on the global optimization Web page at

% http://www.mat.univie.ac.at/~neum/glopt/

d = length(x);

y = sum((x-1).^2) - sum(x(2:d).*x(1:d-1));

We letd = 100, and compute the known exact minimal value for comparison:

d = 100;

range = repmat([-d^2 d^2],d,1);

f_exact = -d*(d+4)*(d-1)/6

39

2 Advanced Topics

f_exact =

-171600

For high-dimensional problems, it is important to use dimensional adaptivity. Note that here,
as well as in the examples above, we use theKeepFunctionValues property to indicate that
the function values obtained during the sparse grid construction should be retained in order to
save time when selecting a good start point for the search.

options = spset('DimensionAdaptive', 'on', ...

'DimadaptDegree', 1, ...

'FunctionArgType', 'vector', ...

'RelTol', 1e-3, ...

'GridType', 'Chebyshev', ...

'KeepFunctionValues', 'on');

Nmax = 40000;

N = 2*d;

z = [];

warning('off', 'MATLAB:spinterp:maxPointsReached');

tic;

xopt = [];

fval = [];

while N <= Nmax

spoptions = spset(options, 'MinPoints', N, ...

'MaxPoints', N, 'PrevResults', z);

z = spvals(@trid,d,range,spoptions);

z = sppurge(z);

spoptoptions = spoptimset('TolFun',1e-6);

[xopt,fval,exitflag,output] = spcgsearch(z,range,spoptoptions);

N = round(z.nPoints .* 2);

disp([' grid pnts: ' sprintf('%5d', z.nPoints) ...

' | optim fevals: ' sprintf('%4d', output.nFEvals) ...

' | fval: ' sprintf('%+9.1f', fval) ...

' | abs. error: ' num2str(abs(f_exact-fval))]);

end

toc;

warning('on', 'MATLAB:spinterp:maxPointsReached');

grid pnts: 201 | optim fevals: 11 | fval: -0 | abs. error: 171600

grid pnts: 443 | optim fevals: 29 | fval: -18 | abs. error: 171582

grid pnts: 923 | optim fevals: 48 | fval: -132 | abs. error: 171468

grid pnts: 1883 | optim fevals: 93 | fval: -537 | abs. error: 171063

grid pnts: 3899 | optim fevals: 117 | fval: -1202 | abs. error: 170398

grid pnts: 7889 | optim fevals: 188 | fval: -3293 | abs. error: 168307

grid pnts: 16043 | optim fevals: 248 | fval: -10725 | abs. error: 160874

grid pnts: 32477 | optim fevals: 305 | fval:-171600 | abs. error: 5.6e-08

Elapsed time is 188.371965 seconds.

40

2.6 Improving performance

Using third-party optimization algorithms

Instead of using the optimization algorithms provided with the Sparse Grid Interpolation Tool-
box, you can also use third-party optimization methods. In the following example, we use
fmincon from The Mathwork’s Optimization Toolbox onspsurfun to optimize the sparse
grid interpolant obtained in the last step of the loop from the example above.

optimsetoptions = optimset('GradObj','on', ...

'LargeScale','off');

[xopt,fval,exitflag,output] = fmincon(@(x) spsurfun(x,z), ...

range(:,1)+range(:,2))/2,[],[],[],[],range(:,1),range(:,2), ...

[], optimsetoptions);

disp([' grid pnts: ' sprintf('%5d', z.nPoints) ...

' | optim fevals: ' sprintf('%4d', output.funcCount) ...

' | fval: ' sprintf('%+9.1f', fval) ...

' | abs. error: ' num2str(abs(f_exact-fval))]);

Optimization terminated: magnitude of directional derivative in search

direction less than 2*options.TolFun and maximum constraint violation

is less than options.TolCon.

No active inequalities

grid pnts: 32477 | optim fevals: 5711 | fval:-171600 | abs. error: 1.1e-07

2.6 Improving performance

The aim of this section is to provide an overview on how to optimize the performance of the
Sparse Grid Interpolation Toolbox.

Vectorizing the objective function

Vectorizing the objective function is most beneficial if the function evaluations are very cheap,
in the order of less than 1/100 s. In this case, providing a vectorized function can improve the
performance of thespvals function. Consider the following function

f (x1,x2) = (x1 +x2)2

and the following two m-files implementing it:

function y = fun(x1, x2)

y = x1 * x2;

y = y^2;

function y = fun_vec(x1, x2)

y = x1 .* x2; % Use '.' before any '^', '*' or '/' to enable

y = y.^2; % vectorized evaluation of expressions

41

2 Advanced Topics

The first m-file allows for evaluation at a single real-valued point only, the second one permits
vectorized evaluation. Since in case of cheap functions, the function calls in Matlab represent
a significant overhead, the function evaluation part of thespvals algorithm is much slower if
the non-vectorized form is used. This is demonstrated by the following code.

tic, z1 = spvals('fun',2); toc;

tic, z2 = spvals('fun_vec',2,[],spset('Vectorized','on')); toc;

z1.fevalTime

z2.fevalTime

Elapsed time is 0.112452 seconds.

Elapsed time is 0.069006 seconds.

ans =

0.1021

ans =

0.0480

Reusing previous results

An important feature of the toolbox is that you do not have to discard previously computed re-
sults. A "best practice" is, therefore, to embed the interpolant construction in a loop. Proceed-
ing in this way has two advantages: First, it gives the user a maximum of control in monitoring
the decay of the estimated interpolation error. Second, it makes it possible to start with a low
number of required points, and to increase this number slowly if the targeted accuracy is not
yet achieved. There are several examples on how to implement such a loop in the provided de-
mos. See, for instance,spadaptanim.m or spcompare.m in theexamples directory. A small
example on implementing dimension-adaptive interpolant construction in a loop is provided
below.

np = 2;

z = [];

options = spset('Vectorized', 'on', 'DimensionAdaptive', 'on', ...

'RelTol', inf);

while np < 4000

options = spset(options, 'PrevResults', z, 'MinPoints', np, ...

'MaxPoints', np);

z = spvals('fun_vec',2,[],options);

np = z.nPoints;

disp(['np = ' num2str(np) ', e_rel = ', num2str(z.estRelError)]);

np = np * 2;

end

np = 5, e_rel = 0.75

np = 13, e_rel = 0.5625

np = 29, e_rel = 0.046875

np = 73, e_rel = 0.011719

np = 177, e_rel = 0.0029297

42

2.6 Improving performance

np = 417, e_rel = 0.00073242

np = 897, e_rel = 6.1035e-05

np = 1921, e_rel = 4.5776e-05

np = 4097, e_rel = 3.8147e-06

Purging interpolant data

Since version v3.2 of the toolbox, a new function calledsppurge is available. This func-
tion serves to "purge" or "clean up" the interpolant data from sub-grids that do not contribute
significantly to the result. This is done by introducing a drop tolerance that is applied to the
hierarchical surpluses. Sub-grids where the absolute value of all hierarchical surpluses fall
below this drop tolerance are marked and neglected during the interpolation process. By de-
fault, very conservative purging parameters are used, guaranteeing that the accuracy of the
interpolation will not be affected up to about the 12th significant digit. However, if the accu-
racy requirements are lower, the user may use higher drop tolerances, and thus, trade improved
interpolation speed against lower accuracy. This is illustrated by the following example. We
assume that an interpolant was computed for the functionfun_vec by the code above with
4097 points, using piecewise multilinear basis functions. The following code generates a plot
that shows the time required to compute 1000 randomly sampled points for different drop toler-
ances. The maximum absolute error is shown for comparison. This example only uses absolute
drop tolerances (the relative drop tolerance is set to zero).

% Define drop tolerances

dropTols = [1e-5, 1e-4, 1e-3];

% Generate 1000 random points

rand('state',0);

x = rand(1000,1); y = rand(1000,1);

% Compute exact function values

f_exact = fun_vec(x,y);

e = zeros(3,1); t = zeros(3,1);

for k = 1:3

% Purge interpolant with drop tolerance

z = sppurge(z,spset('DropTol', [dropTols(k), 0]));

% Interpolate and measure time

tic, ip = spinterp(z, x, y); t(k) = toc;

% Compute maximum error

e(k) = max(abs(f_exact - ip));

end

% Plot results

subplot(1,2,1);

bar(t, 'b');

set(gca,'XTickLabel', {'1e-5','1e-4','1e-3'})

43

2 Advanced Topics

xlabel('Abs. drop tolerance');

ylabel('Computing time [s]');

subplot(1,2,2);

bar(log10(e), 'r');

set(gca,'XTickLabel', {'1e-5','1e-4','1e-3'})

set(gca,'YDir','reverse');

set(gca,'YLim', [-6 -2]);

set(gca,'YTick',[-5 -4 -3]);

set(gca,'YTickLabel', {'1e-5','1e-4','1e-3'})

xlabel('Abs. drop tolerance');

ylabel('Max. absolute error');

For another example using the default relative drop tolerance, seesppurge in the function
reference.

Vectorized interpolant evaluation

Thespinterp function is designed for vectorized evaluation. Since the sparse grid algorithm
involves more computational overhead than other, simpler interpolation methods, and due to
the fact that MATLAB is relatively slow if many function calls are performed (since it is an
interpreted language), it is recommended to evaluate as many interpolation points at a time
as possible. The following code illustrates non-vectorized vs. vectorized evaluation at 1000
points for the interpolant from above.

% Non-vectorized interpolation

tic

for k = 1:1000

ip = spinterp(z,x(k),y(k));

44

2.7 Interfacing concepts

end

toc

% Vectorized interpolation

tic, ip = spinterp(z,x,y); toc

Elapsed time is 2.526127 seconds.

Elapsed time is 0.045744 seconds.

2.7 Interfacing concepts

Applying thespvals method to construct interpolants sometimes requires a small interface
function. In this section, we show the most important categories of Matlab function headers
and (if necessary) how to design an appropriate interface function for them. Tables 2.1, 2.2
show the basic function header types discussed here. Combinations of those are of course also
possible and can be derived from the treated cases. In the tables, the objective interpolation
variables (all must be real-valued scalars) are denoted byx1, . . . ,xn. Examples of the presented
cases are provided below.

Table 2.1:Interface function NOT required.

header variable types
1 out = fun(x1,x2, . . . ,xn) x1, . . . ,xn are real scalars
2 out =

fun(x1,x2, . . . ,xn, p1, p2, . . . , pm)
x1, . . . ,xn are real scalars,p1, . . . , pm are parameters of ar-
bitrary type (double array, cell array, structure, etc.)

3 out = fun(x1, . . . ,xi1, p1, . . . , p j1,
xi1+1, . . . ,xi2, p j1+1, . . . , p j2, . . .)

x1, . . . ,xn are real scalars,p1, . . . , pm are parameters of ar-
bitrary type (double array, cell array, structure, etc.)

4 out = fun(v) v is a row or column vector with the entriesx1, . . . ,xn

5 out = fun(v, p1, p2, . . . , pm) v is a row or column vector with the real scalar entries
x1, . . . ,xn, and p1, . . . , pm are parameters of arbitrary type
(double array, cell array, structure, etc.)

6 [out1,out2, . . . ,outn] = fun(. . .) out1, . . . ,outn are real scalar output parameters, input pa-
rameters the same as one of the above

7 varargout = fun(. . .) varargout is a cell array of real scalar output parameters
out1, . . . ,outn, input parameters the same as one of the
above

Table 2.2:Interface function REQUIRED (only some exemplary cases).

header variable types
8 out = fun(A, p1, p2, . . . , pm) A is a matrix where some of its entries are the objective

interpolation parametersx1, . . . ,xn, and p1, . . . , pm are pa-
rameters of arbitrary type as above

9 vout = fun(x1,x2, . . . ,xn) vout is a row or column vector with real scalar outputs

45

2 Advanced Topics

Examples

Type 1: out = fun(x1,x2, . . . ,xn)

Objective function:

function y = fun1(x1, x2)

y = x1 .* x2; % Use '.' before any '^', '*' or '/' to enable

y = y.^2; % vectorized evaluation of expressions

Example for call tospvals:

options = spset('Vectorized', 'on');

range = [0,2; 0,2];

z = spvals(@fun1, 2, range, options);

Type 2: out = fun(x1,x2, . . . ,xn, p1, p2, . . . , pm)

Objective function:

function y = fun2(x1, x2, c, params)

y = c .* (params.p1 .* x1 + length(params.p2) .* x2);

Example for call tospvals:

options = spset('Vectorized', 'on');

range = []; % use default range [0,1]^d

c = 2;

params = struct('p1', 3, 'p2', 'hello');

z = spvals(@fun2, 2, range, options, c, params);

Type 3: out = fun(x1, . . . ,xi1, p1, . . . , p j1,xi1+1, . . . ,xi2, p j1+1, . . . , p j2, . . .)

Objective function:

function y = fun3(p1, x1, p2, x2)

y = p1 .* x1 + p2 .* x2;

Example for call tospvals:

options = spset('VariablePositions', [2 4], 'Vectorized', 'on');

range = [0,1; -1,2];

p1 = 2; p2 = 3;

z = spvals(@fun3, 2, range, options, p1, p2);

Type 4: out = fun(v)

Objective function:

function y = fun4(x)

y = prod(x);

46

2.7 Interfacing concepts

Example for call tospvals:

options = spset('FunctionArgType', 'vector');

range = [0 1; 1 2; 2 3; 3 4; 4 5];

z = spvals(@fun4, 5, range, options);

Type 5: out = fun(v, p1, p2, . . . , pm)

Objective function:

function y = fun5(x,p);

y = x(:)'*p; % Compute dot product

Example for call tospvals:

options = spset('FunctionArgType', 'vector');

range = []; % use default range [0,1]^d

p = rand(3,1);

z = spvals(@fun5, 3, range, options, p);

Type 6: [out1,out2, . . . ,outn] = fun(. . .)

Objective function:

function [y1, y2] = fun6(x1, x2);

y1 = 2*x1 + 3*x2;

y2 = 4*x1 - 1*x2;

Example for call tospvals:

options = spset('NumberOfOutputs', 2);

range = []; % use default range [0,1]^d

z = spvals(@fun6, 2, range, options);

To compute interpolated values of functions with multiple output parameters, see Section 2.2.

Type 7: varargout = fun(. . .)

Objective function:

function varargout = fun7(x1,x2,nout);

for k = 1:nout

varargout{k} = x1.^k + k.*x2;

end

Example for call tospvals:

nout = 4;

options = spset('NumberOfOutputs', nout, 'Vectorized', 'on');

range = []; % use default range [0,1]^d

z = spvals(@fun7, 2, range, options, nout);

To compute interpolated values of functions with multiple output parameters, see Section 2.2.

47

2 Advanced Topics

Type 8: out = fun(A, p1, p2, . . . , pm)

Objective function:

function y = fun8(A, f);

y = A\f;

Assume that the diagonal entries ofA, i.e. a11,a22, . . . ,ann vary in some given range. An
interpolant of fun8 is sought for these varying diagonal entries of A:

d = 3;

A = magic(d); f = ones(d,1);

range = [diag(A)-0.5 diag(A)+0.5];

nout = d;

options = spset('NumberOfOutputs', nout, 'FunctionArgType', 'vector');

z = spvals(@interface_fun8, d, range, options, A, f);

The interface functioninterface_fun8 looks like this:

function varargout = interface_fun8(a, A, f);

% Interface function to fun8

% Write the modifiable entries into A

for k = 1:length(a);

A(k,k) = a(k);

end

% Call objective function fun8

y = fun8(A,f);

% Put the results in cell array (outputs must be cell row vector

% of scalars to be treated by spvals)

varargout = num2cell(y)';

Note that the original output, a column vector from the solution of the linear equation system
is transformed into a cell array with a single row to match one of the admissible output vari-
ants. The original input is also modified to contain the interpolation parameters as a vector,
which is permitted byspvals. The original Matrix as well as the right-hand sidef are passed
as additional parameters. To compute interpolated values of functions with multiple output
parameters, see Section 2.2.

Type 9: vout = fun(x1,x2, . . . ,xn)

Objective function:

function y = fun9(x1, x2)

y = [x2 .* cos(x1); ...

x2 .* sin(x1); ...

x2];

48

2.8 Approximating ODEs

Assume that the output offun9 is not a list of real scalars or avarargout cell array. In this
case, a conversion of the output is required. The interface function uses Matlab’snum2cell

function to achieve this.

function varargout = interface_fun9(x1, x2);

y = fun9(x1, x2);

varargout = num2cell(y)';

Example for call to spvals:

nout = 3;

options = spset('NumberOfOutputs', nout);

z = spvals(@interface_fun9, 2, [], options);

To compute interpolated values of functions with multiple output parameters, see Section 2.2.

2.8 Approximating ODEs

As an example for a more complex function with multiple input- and output arguments, we
show how to handle an ordinary differential equation. The model considered is a second order
differential equation

Q′′(t)+aQ′(t)+b = 50cos(t)

from [11, pp. 145–162] simulating an electrical circuit.

The ODE model in Matlab

Rewriting this second-order equation as a system of first order equations, we can define the
ODE file in Matlab format as follows:

function [out1, out2, out3] = circuit(t, u, flag, a, b);

% CIRCUIT definition of the electrical circuit ODE.

switch flag

case ''

out1 = [u(2); 50*cos(t) - a*u(2) - b*u(1)];

case 'init'

out1 = [0; 5]; % tspan

out2 = [5; 1]; % initial conditions

out3 = odeset('RelTol', 1e-6);

end

We can solve this ODE fora = 2, b = 4, and the default initial conditions and time span as
defined in the ODE file using the MATLAB solverode45.

[t,Q] = ode45('circuit', [], [], [], 2, 4);

plot(t,Q)

xlabel('t');

grid on;

legend('Q(t)', 'Q''(t)');

49

2 Advanced Topics

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

15

t

Q(t)
Q’(t)

Interpolation problem statement and possible applications

We now consider the initial conditions and the parametersa,b to vary in some range, that is
we assume intervals forQ(0), Q′(0), a, andb, and compute an error-controlled sparse grid
interpolant for the ODE model at each time step. The interpolant can then be used to do
several useful analyses, for instance, perform a Monte Carlo simulation with random variables,
optimize the model for the given range of parameters and initial conditions, e.g. minimize or
maximize the amplitude, or compute an envelope of the result using fuzzy calculus or interval
analysis. In many cases, this can be done considerably faster than by using the original ODE
directly, since the construction and evaluation of the interpolant is very fast.

The interface function

We proceed as follows. First of all, we write an interface function of the ODE model to enable
its evaluation by the spvals function.

function varargout = interface_circuit(Q0, Q0prime, a, b, tspan, nsteps)

% Definition of the complete model as a function of the uncertain

% input parameters.

% The time steps must be at fixed steps such that the number of

% outputs and time steps stay the same for each parameter

% variation.

t = linspace(tspan(1), tspan(2), nsteps);

50

2.8 Approximating ODEs

% Call the ODE solver

[t, Q] = ode45('circuit', t, [Q0 Q0prime], [], a, b);

% Convert result vector to parameter list. This conversion is

% necessary, since the output arguments of the objective function

% to SPVALS must all be scalar. In this case, we assume that only

% the first column (i.e. Q, not Q') is of interest and thus

% returned.

varargout = num2cell(Q(:,1)');

Interpolant construction

Next, we construct the interpolant, simultaneously for all time steps. Here, we use the intervals
[Q(0)] = [4,6], [Q′(0)] = [0,2], [a] = [1,3], and[b] = [3,5].

% Problem dimension

d = 4;

% Define the time span considered

tspan = [0 5];

% Define the number of steps to consider

nsteps = 101;

% Define the objective range of the initial conditions and the

% parameters

range = [4 6; % [Q(0)]

0 2; % [Q'(0)]

1 3; % [a]

3 5]; % [b]

% Maximum number of sparse grid levels to compute

nmax = 3;

% Initialize z

z = [];

% Turn insufficient depth warning off, since it is anticipated.

warning('off', 'MATLAB:spinterp:insufficientDepth');

% Compute increasingly accurate interpolants; use previous results;

% display estimated maximum relative error over all time steps at

% each iteration.

for n = 1:nmax

options = spset('Vectorized', 'off', 'MinDepth', n, 'MaxDepth', ...

51

2 Advanced Topics

n, 'NumberOfOutputs', nsteps, 'PrevResults', z);

z = spvals('interface_circuit', d, range, options, tspan, nsteps);

disp(['Current (estimated) maximum relative error over all time' ...

'steps: ', num2str(z.estRelError)]);

end

% Turn insufficient depth warning back on

warning('on', 'MATLAB:spinterp:insufficientDepth');

Current (estimated) maximum relative error over all timesteps: 0.64844

Current (estimated) maximum relative error over all timesteps: 0.34119

Current (estimated) maximum relative error over all timesteps: 0.057381

Computing interpolated values

We can now compute interpolated values at each time step, for any combination of parameters
within the range that the interpolant was computed for. The structurez contains all the required
information. We only need to select the desired output parameter (i.e. the time step in this
example). To compute 10 randomly distributed values at timet = 5 (which is step #101 with
the chosen discretization) within the box[Q(0)]× [Q′(0)]× [a]× [b], we would simply use the
following commands:

% Compute 10 randomly distributed points in [0,1] and re-scale them to

% the objective range

x = cell(1,4);

for k = 1:d

x{k} = range(k,1) + rand(1,10) .* (range(k,2) - range(k,1));

end

% Select output parameter #101

z.selectOutput = 101;

% Compute and display interpolated values

y = spinterp(z, x{:})

y =

Columns 1 through 7

-2.7824 -1.3367 -1.8990 -3.4497 -1.9133 -4.1978 -0.1284

Columns 8 through 10

-4.9939 -8.1073 -3.3928

2.9 External models

Through system calls available in Matlab, one can easily execute external programs computing
external models. The results from the external program can either be passed as an output stream

52

2.9 External models

(requires subsequent parsing of the stream to retrieve the results in usable format), or by saving
the results to a file and reading the results from Matlab.

By embedding the system calls, reading/parsing of the result, etc., in Matlab functions, one
can obtain wrapper functions that are treatable like regular Matlab functions, and thus, easily
accessible to the spvals algorithm. In the following, we present Matlab pseudo-code for a
possible approach.

function [varargout] = external_model(external_config, x1, ..., xd)

try

store permutation (x1,...xd) to external_config.inputfile

% Start external program, pass input file name to program, pass

% output file name to program.

system([external_config.program ' -i ' external_config.inputfile ...

' -o ' external_config.outputfile]);

read result from external_config.outputfile into varargout

catch

Do some error handling

end

In the presented case, the call to spvals would look like this:

external_config.program = 'myprog.exe';

external_config.inputfile = 'in.txt';

external_config.outputfile = 'out.txt';

options = spset('VariablePositions', [1 + 1:d], 'NumberOfOutputs', nout);

z = spvals(@external_model, d, range, options, external_config);

53

3 Functions – Alphabetical List

cmpgrids

Compare the available sparse grid types.

Syntax

cmpgrids

cmpgrids(N)

cmpgrids(N,D)

Description

cmpgrids Compares the maximum-norm-based grid, the no-boundary-nodes grid, the Clen-
shaw-Curtis grid, the Chebyshev-Gauss-Lobatto grid, and the Gauss-Patterson grid in dimen-
sionD = 2 and levelN = 3.

cmpgrids(N) Compares the grids for levelN.

cmpgrids(N,D) Compares the grids in dimensionD. Permitted are only the valuesD = 2 or
D = 3.

Examples

The following statement plots the four available sparse grids with level N = 3 in two dimen-
sions, producing the following graph.

cmpgrids(3,2);

55

3 Functions – Alphabetical List

See Also plotgrid, plotindices, spgrid.

plotgrid

Plots a sparse grid.

Syntax

plotgrid(N,D)

plotgrid(N,D,OPTIONS)

H = plotgrid(...)

Description

plotgrid(N,D) Plots the sparse grid of levelN and dimensionD. By default, the Clenshaw-
Curtis sparse grid type is selected.

plotgrid(N,D,OPTIONS) Plots the sparse grid, but with the grid type as specified inOPTIONS.
OPTIONS must be a structure created with thespset function. H = PLOTGRID(...) Returns
a vector of handles to the grid points (useful for changing the look of the plotted grid).

56

Examples

The following statements can be used to plot the Chebyshev-Gauss-Lobatto sparse grid of level
N = 4 in three dimensions, highlighting the grid points of the levels in different colors:

options = spset('GridType', 'Chebyshev');

n = 4;

h = plotgrid(n,3,options);

cols = brighten(jet(n+1),-1);

legendstr = cell(1,n+1);

for k = 0:n

set(h(k+1), 'Color', cols(k+1,:), 'MarkerSize', 20);

legendstr{k+1} = ['n = ' num2str(k)];

end

grid on;

legend(legendstr);

0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

n = 0
n = 1
n = 2
n = 3
n = 4

See Also cmpgrids, plotindices, spgrid.

plotindices

Visualizes the index sets of a two-dimensional dimension-adaptive sparse grid.

Syntax

plotindices(Z)

57

3 Functions – Alphabetical List

Description

plotindices(Z) Plots the set of multi-indicesSk of a two-dimensional dimension-adaptive
sparse grid interpolantASk(f). Z must be the sparse grid data as returned byspvals. spvals
must be called with the option'DimensionAdaptive' switched'on' (this can be done using
spset).

Examples

The following code constructs a dimension-adaptive sparse grid interpolant of the function

f (x,y) = sin(10x2)+y2

using greedy grid refinement (the degree of dimensional adaptivity is set to 1). The default
interpolation box isrange= [0,1]2.

f = inline('sin(10.*x)+y.^2');

options = spset('DimensionAdaptive', 'on', 'DimAdaptDegree', 1);

z = spvals(f, 2, [], options)

z =

vals: {[149x1 double]}

gridType: 'Clenshaw-Curtis'

d: 2

range: []

estRelError: 0.0018

estAbsError: 0.0039

fevalRange: [-0.9589 1.2500]

minGridVal: [0.5000 0]

maxGridVal: [0.1562 0.5000]

nPoints: 149

fevalTime: 0.3286

surplusCompTime: 0.0089

indices: [1x1 struct]

maxLevel: [7 4]

activeIndices: [3x1 uint32]

activeIndices2: [13x1 uint32]

E: [1x13 double]

G: [13x1 double]

G2: [13x1 double]

maxSetPoints: 7

dimAdapt: 1

The resulting interpolant is plotted using Matlab’sezmesh command and an anonymous func-
tion containing the call tospinterp. Plotting the multi-index sets used by the interpolant
reveals that the refinement is more dense in the x-direction, since more points are required to
resolve the oscillation of the sine curve. Due to the greedy refinement, only a single index (2,2)

58

is computed in joint dimensions, since the error indicator of the multi-index (2,2) is equal to
zero (f is a separable function).

subplot(1,2,1);

ezmesh(@(x,y) spinterp(z,x,y), [0 1]);

axis square;

subplot(1,2,2);

plotindices(z);

See Also plotgrid, plotindices, spgrid.

spcgsearch

Optimizes the sparse grid interpolant using the CG method. Recommended for optimizing
polynomial sparse grids (Chebyshev grid). It is discouraged to apply this method to piecewise
linear sparse grids since they are not smooth enough for the algorithm to perform well (use
spcompsearch instead for these grid types).

Syntax

X = spcgsearch(Z)

X = spcgsearch(Z,XBOX)

X = spcgsearch(Z,XBOX,OPTIONS)

59

3 Functions – Alphabetical List

[X,FVAL] = spcgsearch(...)

[X,FVAL,EXITFLAG] = spcgsearch(...)

[X,FVAL,EXITFLAG,OUTPUT] = spcgsearch(...)

Description

X = spcgsearch(Z) Starts the search at the best available sparse grid point and attempts to
find a local minimizer of the sparse grid interpolantZ. The entire range of the sparse grid in-
terpolant is searched.

X = spcgsearch(Z,XBOX) Uses the search boxXBOX = [a1, b1; a2, b2; ...]. The
size of search boxXBOX must be smaller than or equal to the range of the interpolant.

X = spcgsearch(Z,XBOX,OPTIONS) Minimizes with the default optimization parameters re-
placed by values in the structureOPTIONS, created with thespoptimset function. Seesp-
optimset for details.

[X,FVAL] = spcgsearch(...) Returns the value of the sparse grid interpolant atX.

[X,FVAL,EXITFLAG] = spcgsearch(...) Returns anEXITFLAG that describes the exit con-
dition of spcgsearch. Possible values ofEXITFLAG and the corresponding exit conditions are

• 1 –spcgsearch converged to a solutionX.

• 0 – Maximum number of function evaluations or iterations reached.

[X,FVAL,EXITFLAG,OUTPUT] = spcgsearch(...) Returns a structureOUTPUT with the
number of function evaluations inOUTPUT.nFEvals, the number of gradients in.nGradEvals,
and the computing time in.time.

Examples

Usually, the objective function will be expensive to evaluate. Here, we just consider the well-
known the six-hump camel-back for function simplicity.

f = @(x,y) (4-2.1.*x.^2+x.^4./3).*x.^2+x.*y+(-4+4.*y.^2).*y.^2;

Before applying thespcgsearch algorithm, we need to create a sparse grid interpolant of the
objective function. This is done as usual using thespvals algorithm.
In preparation to callingspvals, we first set up the interpolant construction with adequate
parameters. A conjugate gradient (CG) line search algorithm uses derivatives to determine the
search direction, it best to use the smooth Chebyshev grid in order to obtain an interpolant with
accurate, smooth derivatives. Furthermore, it is useful to keep the function values as they can
be used by the optimization algorithm to select good starting values for the optimization.

options = spset('keepFunctionValues','on', 'GridType', 'Chebyshev', ...

'DimensionAdaptive', 'on', 'DimAdaptDegree', 1, 'MinPoints', 10);

We construct the interpolant for the range that we are interested in optimizing the objective
function for.

60

range = [-3 3; -2 2];

Now, we are ready to construct the sparse grid interpolant.

z = spvals(f, 2, range, options)

z =

vals: {[37x1 double]}

gridType: 'Chebyshev'

d: 2

range: [2x2 double]

estRelError: 6.7208e-16

estAbsError: 1.1013e-13

fevalRange: [-0.9706 162.9000]

minGridVal: [0.5000 0.6913]

maxGridVal: [0 0]

nPoints: 37

fevalTime: 0.0690

surplusCompTime: 0.3137

indices: [1x1 struct]

maxLevel: [4 3]

activeIndices: [4x1 uint32]

activeIndices2: [11x1 uint32]

E: [Inf 108.9000 48 48.6000 10.7392 6 16.0000 7.1054e-15

1.1013e-13 7.1054e-15 1.4211e-14]

G: [11x1 double]

G2: [11x1 double]

maxSetPoints: 4

dimAdapt: 1

fvals: {[37x1 double]}

Having obtained the interpolant, we can now search for the minimizer usingspcgsearch. This
is achieved by simply calling

[xopt, fval] = spcgsearch(z)

xopt =

-0.0898

0.7127

fval =

-1.0316

There are multiple ways of configuring the search using an options structure defined with
spoptimset. For instance, you can display information at each iteration. Additional infor-
mation on the optimization can be obtained by specifying optional left-hand parameters:

optoptions = spoptimset('Display', 'iter');

[xopt, fval, exitflag, output] = spcgsearch(z, [], optoptions)

61

3 Functions – Alphabetical List

Iteration Func-count Grad-count f(x) Procedure

0 1 1 -0.970563 start point

1 10 1 -1.024 line search

2 17 2 -1.03161 line search

3 24 3 -1.03163 line search

4 29 4 -1.03163 line search

xopt =

-0.0898

0.7127

fval =

-1.0316

exitflag =

1

output =

nFEvals: 29

nGradEvals: 4

time: 0.2737

See Also spoptimset.

spcompsearch

Optimizes the sparse grid interpolant using the compass (coordinate) search method. Best-
suited for piecewise multilinear sparse grids.

Syntax

X = spcompsearch(Z)

X = spcompsearch(Z,XBOX)

X = spcompsearch(Z,XBOX,OPTIONS)

[X,FVAL] = spcompsearch(...)

[X,FVAL,EXITFLAG] = spcompsearch(...)

[X,FVAL,EXITFLAG,OUTPUT] = spcompsearch(...)

Description

X = spcompsearch(Z) Starts the search at the best available sparse grid point and attempts
to find a local minimizer of the sparse grid interpolantZ. The entire range of the sparse grid
interpolant is searched.

X = spcompsearch(Z,XBOX) Uses the search boxXBOX = [a1, b1; a2, b2; ...]. The
size of search boxXBOX must be smaller than or equal to the range of the interpolant.

X = spcompsearch(Z,XBOX,OPTIONS) Minimizes with the default optimization parameters

62

replaced by values in the structureOPTIONS, created with thespoptimset function. See
spoptimset for details.

[X,FVAL] = spcompsearch(...) Returns the value of the sparse grid interpolant atX.

[X,FVAL,EXITFLAG] = spcompsearch(...) Returns anEXITFLAG that describes the exit
condition ofspcompsearch. Possible values ofEXITFLAG and the corresponding exit condi-
tions are

• 1 –spcompsearch converged to a solutionX.

• 0 – Maximum number of function evaluations or iterations reached.

[X,FVAL,EXITFLAG,OUTPUT] = spcompsearch(...) Returns a structureOUTPUT with the
number of function evaluations inOUTPUT.nFEvals and the computing time in.time.

Examples

A compass search algorithm is a direct search method that does not need derivatives, so it is
well-suited to optimize a piecewise multilinear sparse grid interpolant computed for the grid
types Maximum, NoBoundary, or Clenshaw- Curtis.
As with the example presented forspcgsearch, we consider the six-hump camel- back func-
tion.

f = @(x,y) (4-2.1.*x.^2+x.^4./3).*x.^2+x.*y+(-4+4.*y.^2).*y.^2;

We create the sparse grid interpolant usingspvals as follows. Note that it is useful to keep
the function values as they can be used by the optimization algorithm to select good starting
values for the optimization without having to evaluate the interpolant.

options = spset('keepFunctionValues','on', 'GridType', 'Clenshaw-Curtis', ...

'DimensionAdaptive', 'on', 'DimAdaptDegree', 1, 'MinPoints', 10);

The next steps are setting the interpolation range (the optimization range will be the same by
default), constructing the interpolant, providing additional (optional) optimization parameters,
and finally, the call to thespcompsearch algorithm.

range = [-3 3; -2 2];

z = spvals(f, 2, range, options)

optoptions = spoptimset('Display', 'iter');

[xopt, fval] = spcompsearch(z, [], optoptions)

z =

vals: {[205x1 double]}

gridType: 'Clenshaw-Curtis'

d: 2

range: [2x2 double]

estRelError: 0.0037

estAbsError: 0.6031

fevalRange: [-0.9970 162.9000]

63

3 Functions – Alphabetical List

minGridVal: [0.5000 0.3281]

maxGridVal: [0 0]

nPoints: 205

fevalTime: 0.1031

surplusCompTime: 0.0077

indices: [1x1 struct]

maxLevel: [7 6]

activeIndices: [4x1 uint32]

activeIndices2: [17x1 uint32]

E: [Inf 108.9000 48 52.2844 45.8547 6 24 12.7500 22.3788

4.3594 7.6817 0 0 1.2568 2.2379 0.3364 0.6031]

G: [17x1 double]

G2: [17x1 double]

maxSetPoints: 7

dimAdapt: 1

fvals: {[205x1 double]}

Iteration Func-count Grad-count f(x) Procedure

0 0 0 -0.997009 start point

1 4 0 -0.997009 contract step

2 8 0 -0.997009 contract step

3 12 0 -0.997009 contract step

4 16 0 -1.02647 coordinate step

5 20 0 -1.02647 contract step

6 24 0 -1.02647 contract step

xopt =

0.0938

-0.6875

fval =

-1.0265

See Also spoptimset.

spdim

Computes the number of sparse grid points.

Syntax

P = spdim(N,D)

P = spdim(N,D,OPTIONS)

64

Description

P = spdim(N,D) Computes the number of points of the sparse grid of dimensionD and level
N.

P = spdim(N,D,OPTIONS) Computes the number of points as above, but with the default
grid type replaced by the grid type specified inOPTIONS, an argument created withspset. See
spset for details.

Examples

Compute the number of support nodes of the 10-dimensional sparse grid of level 7 for the
Clenshaw-Curtis (default) grid with the following command:

spdim(7,10)

ans =

652065

For comparison, compute the number of nodes of the maximum-norm-based sparse grid:

options = spset('GridType','Maximum');

spdim(7,10,options)

ans =

1.8317e+09

spfminsearch

Optimizes the sparse grid interpolant using MATLAB’sfminsearch method.

Syntax

X = spfminsearch(Z)

X = spfminsearch(Z,XBOX)

X = spfminsearch(Z,XBOX,OPTIONS)

[X,FVAL] = spfminsearch(...)

[X,FVAL,EXITFLAG] = spfminsearch(...)

[X,FVAL,EXITFLAG,OUTPUT] = spfminsearch(...)

Description

X = spfminsearch(Z) Starts the search at the best available sparse grid point and attempts
to find a local minimizer of the sparse grid interpolantZ. The entire range of the sparse grid
interpolant is searched.

65

3 Functions – Alphabetical List

X = spfminsearch(Z,XBOX) Uses the search boxXBOX = [a1, b1; a2, b2; ...]. The
size of search boxXBOX must be smaller than or equal to the range of the interpolant.

X = spfminsearch(Z,XBOX,OPTIONS) Minimizes with the default optimization parameters
replaced by values in the structureOPTIONS, created with thespoptimset function. See
spoptimset for details.

[X,FVAL] = spfminsearch(...) Returns the value of the sparse grid interpolant atX.

[X,FVAL,EXITFLAG] = spfminsearch(...) Returns anEXITFLAG that describes the exit
condition ofspfminsearch. Possible values ofEXITFLAG and the corresponding exit condi-
tions are

• 1 –spfminsearch converged to a solutionX.

• 0 – Maximum number of function evaluations or iterations reached.

[X,FVAL,EXITFLAG,OUTPUT] = spfminsearch(...) Returns a structureOUTPUT with the
number of function evaluations inOUTPUT.nFEvals and the computing time in.time. The
OUTPUT result from thefminsearch call is returned asOUTPUT.fminsearchOutput.

Examples

spfminsearch internally calls MATLAB’s fminsearch function to perform the search. The
sparse grid interpolant is modified by a penalty function such that the search is restricted to the
provided search box.
spfminsearch is a derivative-free method that is suitable for all sparse grid types. However,
it is usually outperformed byspcompsearch for the grid typesMaximum, NoBoundary, or
Clenshaw-Curtis, and byspcgsearch for the grid typeChebyshev.
As with the example presented forspcgsearch, we consider the six-hump camel- back func-
tion (see that example for further details).

f = @(x,y) (4-2.1.*x.^2+x.^4./3).*x.^2+x.*y+(-4+4.*y.^2).*y.^2;

Interpolant creation and setting optional parameters:

options = spset('keepFunctionValues','on', 'GridType', 'Chebyshev', ...

'DimensionAdaptive', 'on', 'DimAdaptDegree', 1, 'MinPoints', 10);

range = [-3 3; -2 2];

z = spvals(f, 2, range, options);

optoptions = spoptimset('Display', 'iter');

Performing the optimization:

[xopt, fval] = spfminsearch(z, [], optoptions)

Iteration Func-count min f(x) Procedure

0 1 -0.970563

1 3 -0.970563 initial simplex

2 5 -0.997137 expand

3 7 -0.99731 reflect

66

4 9 -0.99731 contract inside

5 11 -0.999861 contract inside

6 13 -1.00004 reflect

7 15 -1.00004 contract inside

8 17 -1.00004 contract inside

9 19 -1.00004 contract inside

10 21 -1.0002 expand

11 23 -1.00055 expand

12 25 -1.00087 expand

13 27 -1.00192 expand

14 29 -1.00227 expand

15 31 -1.00483 expand

16 32 -1.00483 reflect

17 34 -1.00771 expand

18 36 -1.01172 expand

19 38 -1.01615 expand

20 40 -1.02567 expand

21 41 -1.02567 reflect

22 43 -1.03063 reflect

23 44 -1.03063 reflect

24 46 -1.03083 reflect

25 48 -1.03119 contract inside

26 50 -1.03155 contract inside

27 52 -1.03155 contract inside

28 54 -1.03155 contract inside

29 56 -1.03162 contract inside

30 58 -1.03162 contract inside

31 60 -1.03162 contract inside

32 62 -1.03162 reflect

33 64 -1.03163 contract inside

34 66 -1.03163 contract inside

35 68 -1.03163 contract inside

36 70 -1.03163 contract inside

37 72 -1.03163 contract inside

38 74 -1.03163 contract inside

39 76 -1.03163 contract inside

40 78 -1.03163 contract inside

41 80 -1.03163 contract inside

42 82 -1.03163 reflect

43 84 -1.03163 contract inside

Optimization terminated:

the current x satisfies the termination criteria using OPTIONS.TolX of

1.000000e-04

and F(X) satisfies the convergence criteria using OPTIONS.TolFun of

1.000000e-04

67

3 Functions – Alphabetical List

xopt =

-0.0899

0.7127

fval =

-1.0316

See Also spoptimset.

spget

Get sparse grid interpolationOPTIONS parameters.

Syntax

VAL = spget(OPTIONS, 'NAME')

VAL = spget(OPTIONS, 'NAME', DEFAULT)

Description

VAL = spget(OPTIONS, 'NAME') Extracts the value of the propertyNAME from the sparse
grid options structureOPTIONS, returning an empty matrix if the property value is not specified
in OPTIONS. It is sufficient to type only the leading characters that uniquely identify the prop-
erty. Case is ignored for property names.[] is a validOPTIONS argument.

VAL = spget(OPTIONS, 'NAME', DEFAULT) Extracts the named property as above, but re-
turnsVAL = DEFAULT if the named property is not specified inOPTIONS.

Examples

Assume that an options structure has been created using the spset command:

options = spset('GridType', 'Maximum', 'MaxDepth', 4)

options =

GridType: 'Maximum'

RelTol: []

AbsTol: []

Vectorized: []

MinDepth: []

MaxDepth: 4

VariablePositions: []

NumberOfOutputs: []

PrevResults: []

68

FunctionArgType: []

KeepFunctionValues: []

KeepGrid: []

DimensionAdaptive: []

MinPoints: []

MaxPoints: []

DimadaptDegree: []

SparseIndices: []

Using spget, we can extract the contents of the structure:

gridType = spget(options, 'GridType')

gridType =

Maximum

By using the third argument, we can set a default in case the according property of the structure
is empty:

minDepth = spget(options, 'MinDepth')

minDepth = spget(options, 'MinDepth', 2)

minDepth =

[]

minDepth =

2

Note that the default argument has no effect if the accessed property contains a value.

gridType = spget(options, 'GridType', 'Clenshaw-Curtis')

gridType =

Maximum

See Also spset.

spgrid

Compute the sparse grid point coordinates.

Syntax

X = spgrid(N,D)

X = spgrid(N,D,OPTIONS)

69

3 Functions – Alphabetical List

Description

X = spgrid(N,D) Computes the sparse grid points of levelN and problem dimensionD. The
coordinate value of dimensioni = 1. . .d is stored in columni of the matrixX. One row of the
matrixX represents one grid point.

X = spgrid(N,D,OPTIONS) computes the sparse grid points as above, but with default grid
type replaced by the grid type specified inOPTIONS, an argument created with thespset func-
tion.

Remark Note that spgrid only computes the grid points that are added to the interpolant at
levelN.

Examples

Compute the grid points of the Clenshaw-Curtis (default) grid for the first 3 levels (n= 0. . .2),
dimensiond = 2, and display them:

d = 2;

for n = 0:2

x = spgrid(n,d)

end

x =

0.5000 0.5000

x =

0 0.5000

1.0000 0.5000

0.5000 0

0.5000 1.0000

x =

0.2500 0.5000

0.7500 0.5000

0 0

1.0000 0

0 1.0000

1.0000 1.0000

0.5000 0.2500

0.5000 0.7500

See Also cmpgrids, plotgrid, spset.

70

spinit

Initialize the Sparse Grid Interpolation toolbox.

Syntax

spinit

Description

spinit Simply adds the sparse grid toolbox directories to the Matlab path. This ensures that
the sparse grid routines are found when working in other directories.

Remark To run the sparse grid interpolation demos from the help browser,spinit must be
started first.

spinterp

Evaluation of the sparse grid interpolant.

Syntax

IP = spinterp(Z,Y1,...,YD)

[IP,IPGRAD] = spinterp(Z,Y1,...,YD)

Description

IP = spinterp(Z,Y1,...,YD)Computes the interpolated valuesIP at the point(s)(Y1,...,
YD) over the sparse grid. The input parametersYimay be double arrays of equal size for vector-
ized processing. The sparse grid data must be given as a structureZ containing the hierarchical
surpluses (computed withspvals).

[IP,IPGRAD] = spinterp(Z,Y1,...,YD) Computes interpolated valuesIP and derivatives
IPGRAD at the specified points. The derivatives are returned asD×1 gradient vectors inside of a
cell array that has equal size as the double arrayIP. See Section 2.3 for additional information.

Examples

Assume a sparse grid interpolant of the Matlab peaks function has been computed for the
domain[0,2]2 using the following command:

z = spvals(@(x,y) peaks(x,y), 2, [0,2; 0,2]);

Then, we can evaluate z at a single point, e.g. the point (0.5, 0.5), simply like this:

71

3 Functions – Alphabetical List

ip = spinterp(z, 0.5, 0.5);

ip =

0.3754

If multiple evaluations of the interpolant are required, it is best to use a vectorized call to
spinterp for fast processing. For example, to evaluate the interpolant at the full grid[0,2]× [0,2]
at 50×50 points (equidistant spacing), we can proceed as follows:

x = linspace(0,2,50); y = linspace(0,2,50);

[xmat,ymat] = meshgrid(x,y);

tic; ip = spinterp(z, xmat, ymat); toc

Elapsed time is 0.202514 seconds.

Note that the output size of ip matches the size of the input matrices:

size(xmat)

size(ip)

ans =

50 50

ans =

50 50

We could visualize the result using the surf command:

surf(xmat, ymat, ip);

axis tight;

72

See Also spvals.

spmultistart

Attemps to find a global optimizer of the sparse grid interpolant by performing multiple local
searches starting from random start points.

Syntax

X = spmultistart(Z)

X = spmultistart(Z,XBOX)

X = spmultistart(Z,XBOX,OPTIONS)

[X,FVAL] = spmultistart(...)

[X,FVAL,EXITFLAG] = spmultistart(...)

[X,FVAL,EXITFLAG,OUTPUT] = spmultistart(...)

Description

X = spmultistart(Z) Attemps to find a global optimizerX of the sparse grid interpolantZ
by performing multiple local searches starting from random start points. The entire range of
the sparse grid interpolant is searched. Using the default settings, the first start point is not ran-
dom but the best available sparse grid point. By default,spcompsearch is used for the local
searches if the grid type is not of typeChebyshev. If it is, spcgsearch is used.

X = spmultistart(Z,XBOX) Uses the search boxXBOX = [a1, b1; a2, b2; ...]. The
size of search boxXBOX must be smaller than or equal to the range of the interpolant.

X = spmultistart(Z,XBOX,OPTIONS) Minimizes with the default optimization parameters
replaced by values in the structureOPTIONS, created with thespoptimset function. For in-
stance, the local optimization method can be selected. Seespoptimset for details.

[X,FVAL] = spmultistart(...) Returns the value of the sparse grid interpolant atX.

[X,FVAL,EXITFLAG] = spmultistart(...) Returns anEXITFLAG that describes the exit
condition ofspmultistart. Possible values ofEXITFLAG and the corresponding exit condi-
tions are

• 1 –spmultistart converged to at least one solutionX.

• 0 – Maximum number of function evaluations or iterations reached for all local searches.

[X,FVAL,EXITFLAG,OUTPUT] = spmultistart(...) Returns a structureOUTPUT with the
total computing time in.time, and a cell array of all local search results.allResults.

73

3 Functions – Alphabetical List

Examples

The following example demonstrates the usage ofspmultistart with its default options.
Many parameters can be modified usingspoptimset. Here, we optimize Branin’s function, a
function with three global optimizers.

f = inline(['(5/pi*x-5.1/(4*pi^2)*x.^2+y-6).^2 +' ...

'10*(1-1/(8*pi))*cos(x)+10']);

Interpolant creation:

range = [-5 10; 0 15];

options = spset('keepFunctionValues','on', 'GridType', 'Chebyshev', ...

'DimensionAdaptive', 'on', 'DimAdaptDegree', 1, ...

'MinPoints', 10);

z = spvals(f, 2, range, options);

Performing the optimization:

[xopt, fval, exitflag, output] = spmultistart(z)

xopt =

-3.1416

12.2751

fval =

0.3978

exitflag =

1

output =

time: 4.0003

allResults: [1x1 struct]

All local optimization results are available from the output structure:

output.allResults.x

output.allResults.fval

ans =

3.1416 9.4248 3.1416 9.4248 3.1416 9.4248 -3.1416

9.4248 -3.1416 9.4248

2.2750 2.4750 2.2750 2.4750 2.2750 2.4750 12.2751

2.4750 12.2751 2.4750

ans =

0.3980 0.3979 0.3980 0.3979 0.3980 0.3979 0.3978

0.3979 0.3978 0.3979

See Also spoptimset.

74

spoptimget

Get sparse grid optimization OPTIONS parameters.

Syntax

VAL = spoptimget(OPTIONS, 'NAME')

VAL = spoptimget(OPTIONS, 'NAME', DEFAULT)

Description

VAL = spoptimget(OPTIONS, 'NAME') Extracts the value of the propertyNAME from the
sparse grid optimization options structureOPTIONS, returning an empty matrix if the prop-
erty value is not specified inOPTIONS. It is sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names.[] is a validOPTIONS
argument.

VAL = spoptimget(OPTIONS, 'NAME', DEFAULT) Extracts the named property as above,
but returnsVAL = DEFAULT if the named property is not specified inOPTIONS.

Examples

Assume that an options structure has been created using thespoptimset command:

options = spoptimset('TolFun', 1e-4, 'MaxIter', 200)

options =

Minimize: []

Maximize: []

TolFun: 1.0000e-04

TolX: []

MaxIter: 200

StartPoint: []

TestCorners: []

PrevResult: []

Method: []

NumStarts: []

OptimsetOptions: []

Display: []

Usingspoptimget, we can extract the contents of the structure:

tolFun = spoptimget(options, 'TolFun')

tolFun =

1.0000e-04

By using the third argument, we can set a default in case the according property of the structure
is empty:

75

3 Functions – Alphabetical List

startPoint = spoptimget(options, 'StartPoint')

startPoint = spoptimget(options, 'StartPoint', 'best')

startPoint =

[]

startPoint =

best

Note that the default argument has no effect if the accessed property contains a value.

maxIter = spoptimget(options, 'MaxIter', 500)

maxIter =

200

See Also spoptimset.

spoptimset

Create/alter a sparse grid optimization OPTIONS structure.

Syntax

OPTIONS = spoptimset('NAME1',VALUE1,'NAME2',VALUE2,...)

OPTIONS = spoptimset(OLDOPTS,'NAME1',VALUE1,...)

OPTIONS = spoptimset(OLDOPTS,NEWOPTS)

Description

spoptimset with no input arguments displays all property names and their possible values.

OPTIONS = spoptimset('NAME1',VALUE1,'NAME2',VALUE2,...) creates options struc-
tureOPTIONS in which the named properties have the specified values. Any unspecified prop-
erties have default values. It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = spoptimset(OLDOPTS,'NAME1',VALUE1,...) alters an existing options struc-
tureOLDOPTS.

OPTIONS = spoptimset(OLDOPTS,NEWOPTS) combines an existing options structureOLD-
OPTS with a new options structureNEWOPTS. Any new properties overwrite corresponding old
properties.

Properties

The properties configurable withspoptimset are listed in Table 3.1.

76

Table 3.1:Properties configurable withspoptimset.
Property Value {default} Description

Minimize {on} | off If set to on, the optimization algorithm will search for a minimizer.

Maximize on | {off} If set to on, the optimization algorithm will search for a maximizer
(searching for the minimizer and the maximizer at the same time
is allowed). Note that searching for a maximizer is currently not
supported byspcgsearch.

TolX positive scalar
{1e-4}

Termination tolerance onX. Note that the tolerance onX is taken
with respect to the problem being re-scaled to the unit interval in
each coordinate direction. That is, for instance, a sparse grid inter-
polant defined for the box[0,1e6]x[0,1e-6] with TolX = 0.1

would mean a break tolerance of1e5 in x1 and a tolerance of1e-7
in x2-direction. This parameter does not apply tospcgsearch.

TolFun positive scalar
{1e-6}

The search is terminated when the change of the function value from
one iteration to the next is smaller thanTolFun.

MaxIter integer {100} Maximum number of allowed iterations.

StartPoint {best} | random
| Dx1 vector

Start search from best available, random, or specified start point.

TestCorners on | {off} Specifically includes the 2D corner points of the search box as po-
tential start points of the search.

PrevResult (d+1)x{1|2}

double array
Specifies a possible best start point, such as from a previous
search over a subdomain of the current search box. Format:
[xoptmin;ymin xoptmax;ymax], wherexoptmin and xoptmax

are column vectors. Depending on the contents of theMinimize

and Maximize fields, minima and/or maxima information should
be provided. PrevResult is only considered as a start point if
StartPoint is set tobest.

Method {spcgsearch} |
{spcompsearch}
| spfminsearch

Specifies the method used by the multiple random start search
spmultistart. spcgsearch is the default for the Chebyshev grid,
otherwise, it isspcompsearch.

NumStarts integer {10} Number of local searches to perform for the multiple random start
methodspmultistart. The following points are considered: (best)
+ (NumStarts-1 random points).

Optimset

Options

struct {[]} This feature is useful if additional configuration of
the fminsearch algorithm used by spfminsearch

is required beyond the parameters available through
spoptimset. Example: opions = spoptimset('Optimset',

optimset('FunValCheck','on'));

Display {off} | iter Optionally, displays information at each iteration.

77

3 Functions – Alphabetical List

Examples

As a preliminary to the following example, we construct a sparse grid interpolant of a test
function (Branin’s function) as follows.

f = inline(['(5/pi*x-5.1/(4*pi^2)*x.^2+y-6).^2 +' ...

'10*(1-1/(8*pi))*cos(x)+10']);

range = [-5 10; 0 15];

options = spset('keepFunctionValues','on', 'GridType', 'Chebyshev', ...

'DimensionAdaptive', 'on', 'DimAdaptDegree', 1, 'MinPoints', 10, ...

'RelTol', 1e-6);

z = spvals(f, 2, range, options);

A typical case of a modification of the sparse grid optimization options structure is given by
the need to specify a more stringent error tolerance on the function value to be used by the
spcgsearch algorithm.

optoptions = spoptimset('TolFun', 1e-10);

format long e;

[xopt, fval] = spcgsearch(z, [], optoptions)

format short e;

xopt =

3.141592655097273e+00

2.274999997132531e+00

fval =

3.978873577297303e-01

See Also spoptimget.

sppurge

Purge sparse grid data.

Syntax

Z = sppurge(Z)

Z = sppurge(Z,OPTIONS)

Description

Z = sppurge(Z) Marks indices that have corresponding hierarchical surplus values larger
than the default drop tolerance[0, 100*eps]. Thesppurge function returns the same sparse
grid interpolant dataZ, but enhanced by a fieldpurgeData that is used byspinterp to only
consider the marked indices in the interpolation process, thus saving computing time.

78

Z = sppurge(Z,OPTIONS) The parameterOPTIONS must be an options structure generated
with spset. Only the value of theDropTol property is used, which enables the user to set any
absolute and relative drop tolerance to be used by the purging algorithm.

Examples

We consider the quadratic test function

f (x) = [
d

∑
i=1

(xi −1)2]− [
d

∑
i=2

xixi−1],

implemented in Matlab by the following code:

function y = trid(x)

% TRID Quadratic function with a tridiagonal Hessian.

% Y = TRID(X) returns the function value Y for a D-

% dimensional input vector X.

%

% The test function is due to Arnold Neumaier, listed

% on the global optimization Web page at

% http://www.mat.univie.ac.at/~neum/glopt/

d = length(x);

y = sum((x-1).^2) - sum(x(2:d).*x(1:d-1));

During the construction of the interpolant, many sub-grids are encountered that do no con-
tribute to the interpolant, i.e., they have hierarchical surpluses that are all zero (up to floating
point accuracy). An adaptive algorithm cannot know these non-contributing sub-grids in ad-
vance. However, using theDropTol feature, we can tell the interpolation functionspinterp to
neglect the sub-grids that do not contribute, and thus, save a significant amount of computing
time. We consider the high-dimensional cased = 100. With the dimension-adaptive algorithm,
the problem structure is automatically detected, and the function is successfully recovered us-
ing just O(d2) function evaluations. For the interpolation domain, we use[−d2,d2] in each
dimension.

d = 100;

range = repmat([-d^2 d^2],d,1);

options = spset('DimensionAdaptive', 'on', ...

'DimadaptDegree', 1, ...

'FunctionArgType', 'vector', ...

'RelTol', 1e-3, ...

'MaxPoints', 40000);

z = spvals('trid',d,range,options);

We now evaluate the obtained interpolant, first without, and thereafter, with theDropTol fea-
ture set to the default value of[0,100∗ eps] (absolute drop tolerance is zero, relative drop
tolerance is 100∗ eps). We evaluate the interpolant at 100 random points, measure the time,
the absolute error, and compare the timing results in a plot.

79

3 Functions – Alphabetical List

% Compute 100 randomly sampled points

p = 100;

rand('state', 0);

x = -d^2 + 2*d^2*rand(p,d);

% Compute exact function values

y = zeros(p,1);

for k = 1:p

y(k) = trid(x(k,:));

end

xcell = num2cell(x,1);

tic;

% Compute interpolated function values, no dropped indices

ip1 = spinterp(z, xcell{:});

t1 = toc

% Perform purging of interpolant data

tic;

z = sppurge(z);

t2 = toc

tic;

% Compute interpolated function values

% Some indices dropped according to drop tolerance

ip2 = spinterp(z, xcell{:});

t3 = toc

% Compute relative errors

err_ndt = max(abs(y-ip1))/(z.fevalRange(2)-z.fevalRange(1))

err_wdt = max(abs(y-ip2))/(z.fevalRange(2)-z.fevalRange(1))

t1 =

2.1393

t2 =

0.0128

t3 =

0.2933

err_ndt =

0.0061

err_wdt =

0.0061

80

The result is quite impressing: Without losing accuracy (which is no surprise considering the
very low drop tolerance of 100∗ eps compared to the relative error tolerance 1e−3), for the
100 sampled points, a speedup by a factor of about 7 is achieved (including the cost of the
sppurge function).

bar([NaN t1; t2 t3],'stacked');

legend('spurge', 'spinterp');

set(gca,'XTickLabel',{'without','with purging'});

ylabel('time [s]');

See Also spset.

spquad

Compute integral value of sparse grid interpolant.

Syntax

Q = spquad(Z)

Description

Q = spquad(Z) Computes the integral over the sparse grid domain. The sparse grid data must
be given as a structureZ containing the hierarchical surpluses (computed with withspvals).

The following additional option is available with spquad that is set by adding a field to the
structureZ:

81

3 Functions – Alphabetical List

• selectOutput [integer {1}] Set the output variable number if an interpolant with
multiple output variables was constructed withspvals. This determines which ouput
variable the integral is computed for.

Examples

Assume a sparse grid interpolant of the Matlab peaks function has been computed for the
domain[0,2]2 using the following commands:

options = spset('DimensionAdaptive', 'on', 'RelTol', 1e-4, ...

'GridType', 'Chebyshev');

z = spvals(@(x,y) peaks(x,y), 2, [0,2; 0,2], options);

Then, we can compute the integral for this domain simply like this:

spquad(z)

ans =

9.9553

For comparison, let us compute the integral value with Matlab’sdblquad:

dblquad(@(x,y) peaks(x,y), 0, 2, 0, 2)

ans =

9.9553

See Also spvals.

spset

Create/alter a sparse grid interpolationOPTIONS structure.

Syntax

OPTIONS = spset('NAME1',VALUE1,'NAME2',VALUE2,...)

OPTIONS = spset(OLDOPTS,'NAME1',VALUE1,...)

OPTIONS = spset(OLDOPTS,NEWOPTS)

Description

spset with no input arguments displays all property names and their possible values.

OPTIONS = spset('NAME1',VALUE1,'NAME2',VALUE2,...) creates an options structure
OPTIONS in which the named properties have the specified values. Any unspecified properties
have default values. It is sufficient to type only the leading characters that uniquely identify the

82

property. Case is ignored for property names.

OPTIONS = spset(OLDOPTS,'NAME1',VALUE1,...) alters an existing structureOLDOPTS.

OPTIONS = spset(OLDOPTS,NEWOPTS) combines an existing options structureOLDOPTS with
a new options structureNEWOPTS. Any new properties overwrite corresponding old properties.

The properties configurable withspset are listed in Table 3.2 and Table 3.3.

Examples

Sincespset offers many possibilities to alter the behavior of the sparse grid interpolant con-
struction, we provide several typical examples in the following.

Example 1: Basic usage of spset

As an example for a typical task requiring the modification of the sparse grid options structure.
we construct an interpolant with a specified number of function evaluations. The dimension-
adaptive approach permits to do this in an elegant manner. The following code constructs an
interpolant with about 100 nodes, since bothMinPoints as well asMaxPoints are set to 100.

f = @(x,y) exp(x+y);

z = spvals(f, 2, [], spset('DimensionAdaptive', 'on', ...

'MinPoints', 100, 'MaxPoints', 100))

z =

vals: {[129x1 double]}

gridType: 'Clenshaw-Curtis'

d: 2

range: []

estRelError: 8.3520e-04

estAbsError: 0.0053

fevalRange: [1 7.3891]

minGridVal: [0 0]

maxGridVal: [1 1]

nPoints: 129

fevalTime: 0.0546

surplusCompTime: 0.0058

indices: [1x1 struct]

maxLevel: [5 5]

activeIndices: [5x1 uint32]

activeIndices2: [13x1 uint32]

E: [1x19 double]

G: [19x1 double]

G2: [19x1 double]

maxSetPoints: 5

dimAdapt: 1

83

3 Functions – Alphabetical List

Table 3.2:Properties configurable withspset (part I).
Property Value {default} Description

GridType {Clenshaw-
Curtis} |
Maximum |
NoBoundary |
Chebyshev |
Gauss-Patterson

Sparse grid type and basis functions to use byspvals. For an illus-
tration of the grid types, runcmpgrids.

RelTol positive scalar
{1e-2}

A relative error tolerance that applies to all hierarchical surpluseswn

of the current deepest leveln of the sparse grid interpolation formula.
The grid is further refined until all hierarchical surpluses are less than
max(RelTol · (max(fevalRange)−min(fevalRange)) ,AbsTol).
fevalRange contains all results evaluatingFUN up to that point.

AbsTol positive scalar
{1e-6}

Absolute error tolerance, used by the error criterion stated under the
propertyRelTol.

Vectorized on | {off} Indicates if FUN is available for vectorized evaluation. Vectorized
coding ofFUN can significantly reduce the computation time used by
spvals. For an example using a vectorized function, seespdemo.

MinDepth integer {2} Minimum interpolation depth, specifies the minimum number of hi-
erarchical interpolation levelsN to compute.
Remark: MinDepth has no effect if the dimension-adaptive grid re-
finement is switched on. An example is provided below.

MaxDepth integer {8} Maximum interpolation depth, specifies the maximum number of hi-
erarchical interpolation levelsN to compute.
Remark: Since version 5.0,MaxDepth also applies to the
dimension-adaptive algorithm. IfMaxDepth is reached with respect
to a coordinate direction, this direction is no longer refined further.

Variable

Positions

1xD vector {[]} Position of the ranges in the argument list whenFUN is evaluated.
By settingVariablePositions, spvals will evaluateFUN with re-
spect to some of its input parameters, but not necessarily the firstD

ones. The actual position is assigned by providing the number in
the input argument list of the functionFUN. This number must be
provided for each interpolation dimension. Therefore, the value of
VariablePositions must be a1xD array. Also see example below.

NumberOf

Outputs

integer {1} If FUN produces multiple outputs (where all must be scalar), indicate
this here to perform the sparse grid computation for many output
variables at once. Also see the examplespdemovarout.m.

PrevResults struct {[]} Previous sparse grid data. An existing result structure obtained from
spvals may be provided to further refine an existing sparse grid.
Also see example below.

Function

ArgType

{list} | vector Indicates whether the objective function takes the input parameters
as a comma-separated list (default) or as a vector.

KeepFunction

Values

{off} | on If this parameter is set, a structure field fvals is returned, containing
a cell array with the function values at the sparse grid points.

KeepGrid {off} | on If this parameter is set, a structure field grid is returned, containing a
cell array with the the sparse grid points.

84

Table 3.3:Properties configurable withspset (part II).
Property Value {default} Description

Dimension

Adaptive

{off} | on Dimension-adaptive grids try to adaptively find important dimensions
and adjust the sparse grid structure accordingly. Especially in case of
higher-dimensional problems, a dimension-adaptive strategy can signif-
icantly reduce the number of nodes required to get a good interpolant.

Dimadapt

Degree

positive scalar
{0.9}

Fine-tuning parameter to alter the degree of dimensional adaptivity. A
value of 1 places strong emphasis on the error estimates, and thus leads
to strong dimensional adaptivity. A value of 0 disregards the error es-
timates, and constructs a conventional sparse grid based on the amount
of work involved.

Degree

Strategy

{balancing} |
depth

The balancing strategy balances the number of grid points generated
according to the greedy, error estimate-based refinement rule compared
to the number of points generated by the regular sparse grid refinement
rule. E.g., aDimadaptDegree value of 0.9 results in around 90% of the
grid points generated by the error estimate-based rule.
The depth strategy ensures that the maximum depth reached by the
error estimate-based refinement in one dimension does not get too deep
compared to the depth reached in other dimensions. This strategy was
used by default prior to v5.1 of the toolbox, and is described [3, ch. 3].

MinPoints integer {100} This parameter only applies to dimension-adaptive sparse grids, and
indicates the minimum number of support nodes (i.e., function evalua-
tions to perform). An example is provided below.

MaxPoints integer
{10000}

This parameter only applies to dimension-adaptive sparse grids. The
dimension-adaptive algorithm is aborted once the function evaluation
count exceeds this number.

Sparse

Indices

{auto} | off | on Manually turn the efficient sparse storage scheme (new feature since
version 3.0) of the multi-index arrays on or off. The default switch
auto uses the new scheme for theClenshawCurtis, theChebyshev,
and theGauss-Patterson grid, and the old (full) storage scheme from
spinterp version 2.x for theMaximum and theNoBoundary grid (the
sparse grid storage scheme is not supported for these two grid types).

DropTol {auto} | off |
1x2 vector

During the sparse grid construction progress, thespvals algorithm
may add sub-grids with hierarchical surpluses that are all close to 0 or
of negligible magnitude compared to the surpluses of other sub-grids.
In particular, this occurs when additive structure is present in the ob-
jective function. To increase performance of thespinterp algorithm,
run thesppurge algorithm to mark sub-grids to be neglected where
all (absolute) hierarchical surpluses are less than max(relDropTol ∗
(max(fevalRange) − min(fevalRange),absDropTol)). You may
specify the absolute and the relative drop tolerance as a vector
[absDropTol, relDropTol], or turn it off completely (= behav-
ior of version 3.0 and earlier). The switchauto uses the values
absDropTol = 0, relDropTol = 100∗ eps, that is, by default, only
a relative drop tolerance is used.

EnableDCT {on} | off Enables/disables the DCT-based algorithm when constructing the
Chebyshev-Gauss-Lobatto type sparse grid.

85

3 Functions – Alphabetical List

Note that theMinPoints andMaxPoints properties only work for dimension-adaptive grids.
If we want to construct a non-adaptive grid of a certain depth, theMinDepth andMaxDepth
options can be used. Recall that the number of points of a regular sparse grid can be determined
a priori with thespdim function.

n = 4; d=2;

z = spvals(f, 2, [], spset('MinDepth', n, 'MaxDepth', n))

z =

vals: {[65x1 double]}

gridType: 'Clenshaw-Curtis'

d: 2

range: []

maxLevel: 4

estRelError: 0.0031

estAbsError: 0.0201

fevalRange: [1 7.3891]

minGridVal: [0 0]

maxGridVal: [1 1]

nPoints: 65

fevalTime: 0.1066

surplusCompTime: 0.0029

indices: [1x1 struct]

Example 2: Providing previous results

After computing an interpolant with a certain accuracy, it is often required to improve it further
later on. Due to the hierarchical construction scheme, the previous results are not lost but can
be passed tospvals for further refinement, as the following code illustrates.

f = @(x,y) exp(x+y);

z = [];

for n = 1:4

z = spvals(f, 2, [], spset('MinDepth', n, 'MaxDepth', n, ...

'PrevResults', z));

disp(['n = ' num2str(z.maxLevel) ', estimated rel. error: ', ...

num2str(z.estRelError)]);

end

Warning: MaxDepth = 1 reached before accuracies

RelTol = 0.01 or AbsTol = 1e-06 were achieved.

The current estimated relative accuracy is 0.62246.

n = 1, estimated rel. error: 0.62246

Warning: MaxDepth = 2 reached before accuracies

RelTol = 0.01 or AbsTol = 1e-06 were achieved.

The current estimated relative accuracy is 0.17905.

n = 2, estimated rel. error: 0.17905

86

Warning: MaxDepth = 3 reached before accuracies

RelTol = 0.01 or AbsTol = 1e-06 were achieved.

The current estimated relative accuracy is 0.011133.

n = 3, estimated rel. error: 0.011133

n = 4, estimated rel. error: 0.0031415

Example 3: Using the VariablePositions property

Consider the case of a function of four parameters, e.g.

f (a,b,x,y) = a(x2 +y2)+bexp(x+y).

Suppose that the parametersa andb are fixed toa= 0.5 andb= 0.2, and we wish to compute an
approximation off for x,y∈ [0,1]2. The default syntax of spvals would require the interpolated
parameters to appear at the start of the argument list, i.e. would require an argument list
(x,y,a,b) to enable the callspvals(f,2,[],[],a,b).
By usingVariablePositions, we can use the function as it is defined above, as the following
code shows.

f = inline('a.*(x.^2+y.^2) + b.*exp(x+y)','a','b','x','y')

a = 0.5; b = 0.2;

options = spset('VariablePositions', [3 4]);

z = spvals(f,2,[],options,a,b)

f =

Inline function:

f(a,b,x,y) = a.*(x.^2+y.^2) + b.*exp(x+y)

z =

vals: {[29x1 double]}

gridType: 'Clenshaw-Curtis'

d: 2

range: []

maxLevel: 3

estRelError: 0.0062

estAbsError: 0.0142

fevalRange: [0.2000 2.4778]

minGridVal: [0 0]

maxGridVal: [1 1]

nPoints: 29

fevalTime: 0.0508

surplusCompTime: 0.0015

indices: [1x1 struct]

Since the interpolation problem is two-dimensional, we assign a 1×2 vector to theVariable-
Positions property, indicating that the first parameter an interpolation of which is required
is located at position 3 of the argument list off , and the second one at position 4. Note that
since the functionf takes four input parameters, the remaining parameters are appended to the
argument list ofspvals after the options argument.

87

3 Functions – Alphabetical List

See Also spget, spvals.

spsurfun

Evaluate the sparse grid interpolant at a single point.
spsurfun is provided for conveniece to be used as an alternative tospinterp, where the point
Y to be evaluated is given as a row or column vector. This functional form is often adopted by
multivariate optimization algorithms in Matlab.
Note that this form allows the evaluation of the sparse grid interpolant at a single point only.
Therefore, It is recommended to usespinterp instead if multiple evaluations of the interpolant
can be performed simultaneously.

Syntax

IP = spsurfun(Y,Z)

[IP,IPGRAD] = spsurfun(Y,Z)

Description

IP = spsurfun(Y,Z) Computes the interpolated valueIP at the single point[Y1, ..., YD]

for the sparse grid interpolantZ.

[IP,IPGRAD] = spsurfun(...) Computes the interpolated valueIP and the gradient vector
IPGRAD.

Two additional options are available withspsurfun that are set by adding a field to the struc-
tureZ:

• selectOutput [integer 1] Set the output variable number if an interpolant with
multiple output variables was constructed withspvals.

• continuousDerivatives ['on' | 'off']Enable augmented continuous deriva-
tives for the Clenshaw-Curtis grid.

Examples

The following code shows how to usespsurfun. Note that as opposed to thespinterp syntax,
the second argument is the sparse grid interpolant, not the first one.

f = inline('x.^2 + y.^2 - 2.*z');

z = spvals(f,3,[],spset('GridType','Chebyshev'));

[ip,ipgrad] = spinterp(z, 0.5, 0.2, 0.2)

[ip,ipgrad] = spsurfun([0.5, 0.2, 0.2], z)

88

in =

-0.1100

ipgrad =

[3x1 double]

ip =

-0.1100

ipgrad =

1.0000

0.4000

-2.0000

See the help page on sparse grid optimization for an example wherespsurfun is used with an
optimization method from Mathwork’s Optimization Toolbox.

See Also spinterp.

spvals

Construct a sparse grid interpolant.

Syntax

Z = spvals(FUN,D)

Z = spvals(FUN,D,RANGE)

Z = spvals(FUN,D,RANGE,OPTIONS)

Z = spvals(FUN,D,RANGE,OPTIONS,P1,P2, ...)

Description

Z = spvals(FUN,D) Compute the sparse grid representationZ for multi-linear sparse grid in-
terpolation of the functionFUN. The grid is computed over thed-dimensional unit cube[0,1]D.

Z = spvals(FUN,D,RANGE) In addition to the syntax above, the interpolation box dimensions
may be specified.RANGE is a 2xD array, e.g. to compute the sparse grid representation over
the domain[0,1]× [2,4]× [1,5] of FUN, RANGE must be[0,1; 2,4; 1,5]. If RANGE is empty
(=[]), it is assumed to be[0,1]D.

Z = spvals(FUN,D,RANGE,OPTIONS) Computes the sparse grid representation as above, but
with default interpolation properties replaced by values inOPTIONS, an argument created with
spset.

Z = spvals(FUN,D,RANGE,OPTIONS,P1,P2, ...) Passes the parametersP1,P2,... to
the objective functionFUN.

89

3 Functions – Alphabetical List

Examples

The following examples demonstrate the generation of sparse grid interpolants under a variety
of different parameters. The extensive configurability of spvals is achieved via thespset

function. Additional examples of constructing interpolants of external functions, models with
several output parameters, ODEs, etc. are provided in the Advanced Topics section of this
document.
We first define the test function. In the examples below, we use Branin’s test function:

fBR(x1,x2) =
(5

π
x1−

5.1
4π2 x2

1 +x2−6
)2 +10

(
1− 1

8π

)
cosx1 +10.

We set the dimension tod = 2, and the interpolation domain torange = [-5,10; 0,15].

fun = inline(['(5/pi*x-5.1/(4*pi^2)*x.^2+y-6).^2 + ' ...

'10*(1-1/(8*pi))*cos(x)+10']);

d = 2;

range = [-5, 10; 0, 15];

Now, we compute a regular (i.e. non-adaptive) sparse grid interpolant of fun using the de-
fault settings of the Sparse Grid Interpolation toolbox. This will compute a piecewise linear
interpolant at the Clenshaw-Curtis sparse grid.

z1 = spvals(fun, d, range)

z1 =

vals: {[145x1 double]}

gridType: 'Clenshaw-Curtis'

d: 2

range: [2x2 double]

maxLevel: 5

estRelError: 0.0087

estAbsError: 2.6622

fevalRange: [1.3697 308.1291]

minGridVal: [0.1250 0.7500]

maxGridVal: [0 0]

nPoints: 145

fevalTime: 0.2437

surplusCompTime: 0.0040

indices: [1x1 struct]

For comparison, we now compute two additional interpolants, one being a regular Chebyshev-
Gauss-Lobatto grid, the other one being a dimension-adaptive sparse grid interpolant of the
same grid type. To do this, we must pass an according options structure to thespvals routine.
We do not have to store this options structure- it is possible to pass a structure generated on-
the-fly to the function.

z2 = spvals(fun, d, range, spset('GridType', 'Chebyshev'))

z3 = spvals(fun, d, range, spset('GridType', 'Chebyshev', ...

'DimensionAdaptive', 'on', ...

90

'DimAdaptDegree', 1, ...

'MinPoints', 20))

z2 =

vals: {[65x1 double]}

gridType: 'Chebyshev'

d: 2

range: [2x2 double]

maxLevel: 4

estRelError: 0.0095

estAbsError: 2.9017

fevalRange: [2.5620 308.1291]

minGridVal: [0.5000 0.2222]

maxGridVal: [0 0]

nPoints: 65

fevalTime: 0.1211

surplusCompTime: 0.0225

indices: [1x1 struct]

z3 =

vals: {[29x1 double]}

gridType: 'Chebyshev'

d: 2

range: [2x2 double]

estRelError: 0.0095

estAbsError: 2.9017

fevalRange: [2.7065 308.1291]

minGridVal: [0.5000 0.1464]

maxGridVal: [0 0]

nPoints: 29

fevalTime: 0.0468

surplusCompTime: 0.0094

indices: [1x1 struct]

maxLevel: [4 2]

activeIndices: [3x1 uint32]

activeIndices2: [9x1 uint32]

E: [1x9 double]

G: [9x1 double]

G2: [9x1 double]

maxSetPoints: 4

dimAdapt: 1

The following code generates a plot comparing the three interpolants. Furthermore, the error
is plotted compared to the original function.

z = {z1, z2, z3};

for k = 1:3

f_z = @(x,y) spinterp(z{k}, x, y);

91

3 Functions – Alphabetical List

error_z = @(x,y) fun(x,y) - spinterp(z{k}, x, y);

subplot(2,3,k);

ezmesh(f_z, [range(1,:),range(2,:)]);

title(['interpolant z_' num2str(k)]);

view(20,30);

subplot(2,3,k+3);

ezmesh(error_z, [range(1,:),range(2,:)]);

title(['error of z_' num2str(k)]);

view(20,30);

end

See Also spinterp, spset.

92

License

SPARSE GRID INTERPOLATION TOOLBOX - LICENSE
Copyright (c) 2006 W. Andreas Klimke, Universitaet Stuttgart. Copyright (c) 2007-2008 W.
A. Klimke. All Rights Reserved. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

93

Bibliography

[1] H.-J. Bungartz and M. Griebel. Sparse grids.Acta Numerica, 13:147–269, 2004. 11

[2] Andreas Klimke and Barbara Wohlmuth. Algorithm 847: spinterp: Piecewise multilinear
hierarchical sparse grid interpolation in matlab.ACM Transactions on Mathematical
Software, 31(4), 2005. 11

[3] Andreas Klimke. Uncertainty modeling using fuzzy arithmetic and sparse grids. PhD
thesis, Universität Stuttgart, Shaker Verlag, Aachen, 2006. 11, 14, 16, 19, 85

[4] Volker Barthelmann, Erich Novak, and Klaus Ritter. High dimensional polynomial inter-
polation on sparse grids.Adv. Comput. Math., 12(4):273–288, 2000. 12, 13, 14

[5] Hans-Joachim Bungartz.Finite Elements of Higher Order on Sparse Grids. Shaker
Verlag, Aachen, 1998. 12, 16

[6] T.N.L. Patterson. The optimum addition of points to quadrature formulae.Mathematics
of Computation, 22(104):847–856+s21–s31, 1968. 14

[7] T. Gerstner and M. Griebel. Numerical integration using sparse grids.Numerical Algo-
rithms, 18(3–4):209–232, 1998. 14, 32

[8] Andreas Klimke. Efficient construction of hierarchical polynomial sparse grid in-
terpolants using the fast discrete cosine transform. Technical Report IANS Preprint
2006/007, Universität Stuttgart, 2006. 14

[9] Markus Hegland. Adaptive sparse grids. In K. Burrage and Roger B. Sidje, editors,
Proceedings of the 2001 International conference on Computational Techniques and Ap-
plications, University of Queensland, volume 44 ofANZIAM Journal, pages C335–C353,
2003. 15

[10] T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature.Computing,
71(1):65–87, 2003. 15, 16, 19

[11] James J. Buckley, Esfandiar Eslami, and Thomas Feuring.Fuzzy Mathematics in Eco-
nomics and Engineering. Physica-Verlag, Heidelberg, Germany, 2002. 49

95

Keyword Index

AbsTol, 84

cmpgrids, 55, 55
continuousDerivatives, 27

DegreeStrategy, 85
DimadaptDegree, 85
DimensionAdaptive, 85
Display, 77
DropTol, 85

EnableDCT, 85

FunctionArgType, 84

GridType, 84

KeepFunctionValues, 84
KeepGrid, 84

MaxDepth, 84
Maximize, 77
MaxIter, 77
MaxPoints, 85
Method, 77
MinDepth, 84
Minimize, 77
MinPoints, 85

NumberOfOutputs, 84
NumStarts, 77

OptimsetOptions, 77

plotgrid, 10,56, 57
plotindices, 21,57, 59

PrevResult, 77
PrevResults, 84

RelTol, 84

selectOutput, 23, 52
SparseIndices, 85
spcgsearch, 39, 40,59, 60, 61, 78
spcompsearch, 38,62, 63
spdim, 64, 65
spfminsearch, 65, 66
spget, 68, 69
spgrid, 69, 70
spinit, 71
spinterp, 9, 10, 18, 23, 26–28, 43–45, 52,

59,71, 72, 80, 88, 91, 92
spmultistart, 73, 74
spoptimget, 75, 75, 76
spoptimset, 40, 61, 63, 66, 75,76, 78
sppurge, 40, 43,78, 80
spquad, 33, 36,81, 82
spset, 17, 20–23, 25, 28, 33, 35, 38–40,

42, 43, 46–49, 51, 53, 57, 58, 60,
63, 65, 66, 68, 74, 78, 79,82, 82,
83, 86–88, 90

spsurfun, 41,88, 88
spvals, 9, 17, 20–23, 25, 28, 33, 35, 38–

40, 42, 46–49, 52, 53, 58, 61, 63,
66, 71, 74, 78, 79, 82, 83, 86–88,
89, 90

StartPoint, 77

TestCorners, 77
TolFun, 77

97

Keyword Index

TolX, 77

VariablePositions, 84
Vectorized, 84

98

	Getting Started
	What is the Sparse Grid Interpolation Toolbox?
	Initialization of the toolbox
	A first example
	Piecewise linear basis functions
	Polynomial basis functions
	Dimensional adaptivity

	Advanced Topics
	Degree of Dimensional Adaptivity
	Multiple output variables
	Derivatives
	Numerical Integration (Quadrature)
	Optimization
	Improving performance
	Interfacing concepts
	Approximating ODEs
	External models

	Functions -- Alphabetical List
	cmpgrids
	plotgrid
	plotindices
	spcgsearch
	spcompsearch
	spdim
	spfminsearch
	spget
	spgrid
	spinit
	spinterp
	spmultistart
	spoptimget
	spoptimset
	sppurge
	spquad
	spset
	spsurfun
	spvals

	License
	Bibliography
	Keyword Index

