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Schrodinger (Schr̈odinger) equation with a cubic nonlinearity.Here,w is a complex functions
of real variablesx andt; k is a real number,i2 = −1. This equation occurs in various chapters of
physics, including nonlinear optics, superconductivity, and plasma physics.

1◦. Solutions:
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,
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,
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4t
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]
,

whereA, B, C1, C2, andC3 are arbitrary real constants. The second and third solutions are valid
for k > 0. The third solution describes the motion of a soliton in a rapidly decaying case.

2◦. N -soliton solutions fork > 0:

w(x, t) =
√

2
k

detR(x, t)
detM (x, t)

.

Here,M (x, t) is anN × N matrix with entries

Mn,k(x, t) =
1 + gn(x, t)gn(x, t)

λn − λk

, gn(x, t) = γnei(λnx−λ2
nt), n, k = 1, . . . , N ,

where theλn andγn are arbitrary complex numbers that satisfy the constraints Imλn > 0 (λn ≠ λk

if n ≠ k) andγn ≠ 0; the bar over a symbol denotes the complex conjugate. The square matrix
R(x, t) is of orderN + 1; it is obtained by augmentingM (x, t) with a column on the right and a row
at the bottom. The entries ofR are defined as

Rn,k(x, t) = Mn,k(x, t) for n,k = 1, . . . , N (bulk of the matrix),

Rn,N+1(x, t) = gn(x, t) for n = 1, . . . , N (rightmost column),

RN+1,n(x, t) = 1 for n = 1, . . . , N (bottom row),

RN+1,N+1(x, t) = 0 (lower right diagonal entry).

The above solution can be represented, fort → ±∞, as the sum ofN single-soliton solutions.

4◦. For other exact solutions, see theSchrodinger equation with a power-law nonlinearitywith
n = 1 and thenonlinear Schrodinger equation of general formwith f (u) = ku2.

5◦. The Schrodinger equation with a cubic nonlinearity is integrable by the inverse scattering
method.
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