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1.8. Schrodinger Equation ih̄∂w
∂t

= – h̄2

2m
∂2w
∂x2 + U (x)w

1.8-1. Eigenvalue problem. Cauchy problem for the Schrodinger’s equation.

The Schrodinger’s (Schrödinger’s) equation is the basic equation of quantum mechanics;w is the
wave function,i2 = −1, h̄ is Planck’s constant,m is the mass of the particle, andU (x) is the potential
energy of the particle in the force field.

1◦. In discrete spectrum problems, the particular solutions are sought in the form

w(x, t) = exp

(
−

iEn

h̄
t

)
ψn(x),

where the eigenfunctionsψn and the respective energiesEn have to be determined by solving the
eigenvalue problem

d2ψn

dx2 +
2m

h̄2

[
En − U (x)

]
ψn = 0,

ψn → 0 atx → ±∞,
∫ ∞

−∞
|ψn|2 dx = 1.

(1)

The last relation is the normalizing condition forψn.

2◦. In the cases where the eigenfunctionsψn(x) form an orthonormal basis inL2(R), the solution
of the Cauchy problem for Schrodinger’s equation with the initial condition

w = f (x) at t = 0 (2)

is given by

w(x, t) =
∫ ∞

−∞
G(x, ξ, t)f (ξ) dξ, G(x, ξ, t) =

∞∑

n=0

ψn(x)ψn(ξ) exp

(
−

iEn

h̄
t

)
.

Various potentialsU (x) are considered below and particular solutions of the boundary value
problem (1) or the Cauchy problem for Schrodinger’s equation are presented.

1.8-2. Free particle:U (x) = 0.

The solution of the Cauchy problem for the Schrodinger’s equation with the initial condition (2) is
given by

w(x, t) =
1

2
√

iπτ

∫ ∞

−∞
exp

[
−

(x − ξ)2

4iτ

]
f (ξ) dξ, τ =

h̄t

2m
,

√
ia =

{
eπi/4√|a| if a > 0,
e−πi/4√|a| if a < 0.

1.8-3. Linear potential (motion in a uniform external field): U (x) = ax.

Solution of the Cauchy problem for the Schrodinger’s equation with the initial condition (2):

w(x, t) =
1

2
√

iπτ
exp

(
−ibτx− 1

3 ib2τ 3)
∫ ∞

−∞
exp

[
−

(x + bτ 2 − ξ)2

4iτ

]
f (ξ) dξ, τ =

h̄t

2m
, b =

2am

h̄2 .
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1.8-4. Linear harmonic oscillator: U (x) = 1
2 mω2x2.

Eigenvalues:
En = h̄ω

(
n + 1

2

)
, n = 0, 1, . . .

Normalized eigenfunctions:

ψn(x) =
1

π1/4
√

2nn! x0
exp

(
− 1

2 ξ2)Hn(ξ), ξ =
x

x0
, x0 =

√
h̄

mω
,

whereHn(ξ) are the Hermite polynomials. The functionsψn(x) form an orthonormal basis in
L2(R).

1.8-5. Isotropic free particle: U (x) = a/x2.

Here, the variablex ≥ 0 plays the role of the radial coordinate, anda > 0. The equation with
U (x) = a/x2 results from Schrodinger’s equation for a free particle withn space coordinates if one
passes to spherical (cylindrical) coordinates and separates the angular variables.

The solution of Schrodinger’s equation satisfying the initial condition (2) has the form

w(x, t) =
exp

[
− 1

2 iπ(µ + 1) signt
]

2|τ |

∫ ∞

0

√
xy exp

(
i
x2 + y2

4τ

)
Jµ

(
xy

2|τ |

)
f (y) dy,

τ =
h̄t

2m
, µ =

√
2am

h̄2 +
1
4

≥ 1,

whereJµ(ξ) is the Bessel function.

1.8-6. Morse potential:U (x) = U0(e–2x/a – 2e–x/a).

Eigenvalues:

En = −U0

[
1 −

1
β

(n + 1
2 )

]2

, β =
a
√

2mU0

h̄
, 0 ≤ n < β − 2.

Eigenfunctions:

ψn(x) = ξse−ξ/2Φ(−n, 2s + 1, ξ), ξ = 2βe−x/a, s =
a
√

−2mEn

h̄
,

whereΦ(a, b, ξ) is the degenerate hypergeometric function.
In this case the number of eigenvalues (energy levels)En and eigenfunctionsψn is finite:

n = 0, 1, . . . , nmax.
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