praxis_test
    
    
    
      praxis_test,
      a MATLAB code which 
      calls praxis(), which
      minimizes a scalar function of a vector argument,
      without needing derivative information.
    
    
      Licensing:
    
    
      The information on this web page is distributed under the MIT license.
    
    
      Related Data and Programs:
    
    
      
      praxis,
      a MATLAB code which
      minimizes a scalar function of several variables, without
      requiring derivative information,
      by Richard Brent.
    
    
      Source Code:
    
    
      
    
    
      
        - 
          beale_f.m, 
          evaluates the Beale function.
        
- 
          beale_test.m
        
- 
          box_f.m, 
          evaluates the Box function.
        
- 
          box_test.m
        
- 
          chebyquad_f.m, 
          evaluates the Chebyquad function.
        
- 
          chebyquad_test.m
        
- 
          cube_f.m, 
          evaluates the Cube function.
        
- 
          cube_test.m
        
- 
          helix_f.m, 
          evaluates the Helix function.
        
- 
          helix_test.m
        
- 
          hilbert_f.m, 
          evaluates the Hilbert function.
        
- 
          hilbert_test.m
        
- 
          minfit_test.m
        
- 
          powell3d_f.m, 
          evaluates the Powell3d function.
        
- 
          powell3d_test.m
        
- 
          rosenbrock_f.m, 
          evaluates the Rosenbrock function.
        
- 
          rosenbrock_test.m
        
- 
          singular_f.m, 
          evaluates the Singular function.
        
- 
          singular_test.m
        
- 
          svsort-test.m
        
- 
          tridiagonal_f.m, 
          evaluates the Tridiagonal function.
        
- 
          tridiagonal_test.m
        
- 
          watson_f.m, 
          evaluates the Watson function.
        
- 
          watson_test.m
        
- 
          wood_f.m, 
          evaluates the Wood function.
        
- 
          wood_test.m
        
    
      Last revised on 03 March 2019.