![]() | Name | Last modified | Size | Description |
---|---|---|---|---|
![]() | Parent Directory | - | ||
![]() | pent5x6.csv | 2018-06-19 11:48 | 6.2K | |
![]() | pent5x6.txt | 2018-06-19 11:48 | 5.3K | |
![]() | reid.csv | 2018-06-19 11:48 | 378 | |
![]() | reid.txt | 2018-06-19 11:48 | 260 | |
![]() | polyomino_multihedra..> | 2018-06-19 14:32 | 1.0K | |
![]() | polyomino_multihedra..> | 2018-06-19 14:32 | 535 | |
![]() | polyomino_multihedra..> | 2018-06-19 14:32 | 1.4K | |
![]() | 2x4_solution.xml | 2018-06-19 14:37 | 3.9K | |
![]() | l_triomino_solution.xml | 2018-06-19 14:37 | 2.1K | |
![]() | pent5x6_solution.xml | 2018-06-19 14:37 | 118K | |
![]() | pent20x36_solution.xml | 2018-06-19 14:37 | 2.0M | |
![]() | pentomino_solution.xml | 2018-06-19 14:37 | 82K | |
![]() | pent5x6_gurobi.sol | 2018-06-19 14:38 | 1.3K | |
![]() | pent5x6_gurobi.txt | 2018-06-19 14:38 | 704 | |
![]() | pent18x30_gurobi.sol | 2018-06-19 14:38 | 267K | |
![]() | reid_gurobi.sol | 2018-06-19 14:38 | 111 | |
![]() | reid_gurobi.txt | 2018-06-19 14:38 | 80 | |
![]() | reid_input.txt | 2018-06-20 08:54 | 189 | |
![]() | reid_output.txt | 2018-06-20 08:54 | 735 | |
![]() | polyomino_monohedral..> | 2018-06-20 09:00 | 1.4K | |
![]() | rectangle01.jpg | 2018-06-20 09:16 | 28K | |
![]() | rectangle02.jpg | 2018-06-20 09:16 | 28K | |
![]() | rectangle03.jpg | 2018-06-20 09:16 | 28K | |
![]() | rectangle04.jpg | 2018-06-20 09:16 | 28K | |
![]() | rectangle05.jpg | 2018-06-20 09:16 | 28K | |
![]() | rectangle06.jpg | 2018-06-20 09:16 | 28K | |
![]() | polyomino_multihedra..> | 2018-06-20 09:34 | 2.2K | |
![]() | octomino_solution.xml | 2018-06-20 09:39 | 825K | |
![]() | polyomino_multihedra..> | 2018-06-20 09:40 | 1.7K | |
![]() | polyomino_multihedra..> | 2018-06-20 09:40 | 2.0K | |
![]() | polyomino_multihedra..> | 2018-06-20 09:40 | 5.3K | |
![]() | pent18x30_gurobi.txt | 2018-06-20 09:43 | 111K | |
![]() | polyomino_multihedra..> | 2018-06-20 09:44 | 427 | |
![]() | hex60x60_solution.xml | 2018-06-21 08:18 | 1.6M | |
![]() | hex60x60.txt | 2018-06-21 09:21 | 105K | |
![]() | hex60x60.fig | 2018-06-23 11:38 | 896K | |
![]() | 4x5_solution.xml | 2018-06-28 09:41 | 4.6K | |
![]() | diary | 2018-06-28 10:27 | 3.7K | |
![]() | rectangle01.fig | 2018-06-29 10:09 | 14K | |
![]() | rectangle02.fig | 2018-06-29 10:09 | 14K | |
![]() | rectangle03.fig | 2018-06-29 10:09 | 14K | |
![]() | rectangle04.fig | 2018-06-29 10:09 | 14K | |
![]() | rectangle05.fig | 2018-06-29 10:09 | 14K | |
![]() | rectangle06.fig | 2018-06-29 10:09 | 14K | |
![]() | 2x4_solution.txt | 2018-07-05 15:51 | 260 | |
![]() | 4x5_solution.txt | 2018-07-05 15:51 | 248 | |
![]() | l_triomino_solution.txt | 2018-07-05 15:51 | 1.0K | |
![]() | octomino_solution.txt | 2018-07-05 15:51 | 42K | |
![]() | pent5x6_solution.txt | 2018-07-05 15:51 | 5.3K | |
![]() | pent20x36_solution.txt | 2018-07-05 15:51 | 152K | |
![]() | pentomino_solution.txt | 2018-07-05 15:51 | 6.1K | |
![]() | reid_solution.xml | 2018-09-16 11:46 | 7.5K | |
![]() | reid.lp | 2021-12-11 10:07 | 329 | |
![]() | 2x4.lp | 2021-12-11 10:08 | 751 | |
![]() | 4x5.lp | 2021-12-11 10:08 | 2.9K | |
![]() | matrix.lp | 2021-12-11 10:08 | 321 | |
![]() | octomino.lp | 2021-12-11 10:09 | 138K | |
![]() | pent18x30.lp | 2021-12-11 10:09 | 1.9M | |
![]() | pentomino.lp | 2021-12-11 10:09 | 90K | |
![]() | LPmake_Figure9a.m | 2023-11-17 20:16 | 1.5K | |
![]() | LPmake_Figure9b.m | 2023-11-17 20:16 | 1.9K | |
![]() | LPmake_Figure10a.m | 2023-11-17 20:16 | 3.0K | |
![]() | LPmake_Figure10b.m | 2023-11-17 20:16 | 2.0K | |
![]() | LPmake_Figure11.m | 2023-11-17 20:16 | 1.6K | |
![]() | LPmake_Figure12.m | 2023-11-17 20:16 | 1.9K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.2K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.1K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 3.0K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.6K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.1K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.1K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.8K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 3.1K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 3.3K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 3.1K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.9K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.7K | |
![]() | LPmake_polyominoes_F..> | 2023-11-17 20:16 | 2.7K | |
![]() | cell_ij_fill.m | 2023-11-17 20:16 | 1.0K | |
![]() | file_line_count.m | 2023-11-17 20:16 | 1.5K | |
![]() | filename_inc.m | 2023-11-17 20:16 | 1.8K | |
![]() | grid_add.m | 2023-11-17 20:16 | 1.5K | |
![]() | grid_display.m | 2023-11-17 20:16 | 841 | |
![]() | hex60x60_define.m | 2023-11-17 20:16 | 934 | |
![]() | hex60x60_tiling_plot.m | 2023-11-17 20:16 | 1.0K | |
![]() | i4_log_10.m | 2023-11-17 20:16 | 1.1K | |
![]() | i4_modp.m | 2023-11-17 20:16 | 1.6K | |
![]() | i4_wrap.m | 2023-11-17 20:16 | 1.0K | |
![]() | i4mat_indicator.m | 2023-11-17 20:16 | 855 | |
![]() | i4mat_is_binary.m | 2023-11-17 20:16 | 603 | |
![]() | i4mat_print.m | 2023-11-17 20:16 | 534 | |
![]() | i4mat_print_some.m | 2023-11-17 20:16 | 1.4K | |
![]() | i4row_neighbors.m | 2023-11-17 20:16 | 1.0K | |
![]() | i4row_sorted_insert.m | 2023-11-17 20:16 | 1.2K | |
![]() | i4row_sorted_minus.m | 2023-11-17 20:16 | 865 | |
![]() | i4row_sorted_search.m | 2023-11-17 20:16 | 1.2K | |
![]() | i4row_take_random.m | 2023-11-17 20:16 | 1.3K | |
![]() | i4vec2_print.m | 2023-11-17 20:16 | 671 | |
![]() | i4vec_compare.m | 2023-11-17 20:16 | 896 | |
![]() | i4vec_transpose_print.m | 2023-11-17 20:16 | 1.0K | |
![]() | pentomino_display.m | 2023-11-17 20:16 | 1.7K | |
![]() | pentomino_matrix.m | 2023-11-17 20:16 | 2.0K | |
![]() | pentomino_name.m | 2023-11-17 20:16 | 934 | |
![]() | pentomino_pack.m | 2023-11-17 20:16 | 778 | |
![]() | pentomino_print.m | 2023-11-17 20:16 | 739 | |
![]() | plot_mono.m | 2023-11-17 20:16 | 2.4K | |
![]() | plot_multi.m | 2023-11-17 20:16 | 2.6K | |
![]() | polyomino_area.m | 2023-11-17 20:16 | 744 | |
![]() | polyomino_condense.m | 2023-11-17 20:16 | 2.4K | |
![]() | polyomino_display.m | 2023-11-17 20:16 | 1.4K | |
![]() | polyomino_embed_list.m | 2023-11-17 20:16 | 2.0K | |
![]() | polyomino_embed_numb..> | 2023-11-17 20:16 | 1.8K | |
![]() | polyomino_embed_peri..> | 2023-11-17 20:16 | 1.9K | |
![]() | polyomino_enumerate_..> | 2023-11-17 20:16 | 2.0K | |
![]() | polyomino_enumerate_..> | 2023-11-17 20:16 | 2.0K | |
![]() | polyomino_enumerate_..> | 2023-11-17 20:16 | 2.0K | |
![]() | polyomino_equal.m | 2023-11-17 20:16 | 1.1K | |
![]() | polyomino_index.m | 2023-11-17 20:16 | 862 | |
![]() | polyomino_lp_write.m | 2023-11-17 20:16 | 3.1K | |
![]() | polyomino_lpa_write.m | 2023-11-17 20:16 | 4.8K | |
![]() | polyomino_matrixspan.m | 2023-11-17 20:16 | 3.7K | |
![]() | polyomino_monohedral.m | 2023-11-17 20:16 | 8.9K | |
![]() | polyomino_monohedral..> | 2023-11-17 20:16 | 1.4K | |
![]() | polyomino_monohedral..> | 2023-11-17 20:16 | 2.9K | |
![]() | polyomino_monohedral..> | 2023-11-17 20:16 | 3.1K | |
![]() | polyomino_monohedral..> | 2023-11-17 20:16 | 9.3K | |
![]() | polyomino_monohedral..> | 2023-11-17 20:16 | 5.6K | |
![]() | polyomino_monohedral..> | 2023-11-17 20:16 | 2.8K | |
![]() | polyomino_multihedral.m | 2023-11-17 20:16 | 7.7K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 8.7K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 1.6K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 1.5K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 4.3K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 3.7K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 4.0K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 1.0K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 1.2K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 2.2K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 1.5K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 1.5K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 3.5K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 3.5K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 11K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 5.8K | |
![]() | polyomino_multihedra..> | 2023-11-17 20:16 | 2.6K | |
![]() | polyomino_parity.m | 2023-11-17 20:16 | 708 | |
![]() | polyomino_periodic_m..> | 2023-11-17 20:16 | 3.2K | |
![]() | polyomino_periodic_v..> | 2023-11-17 20:16 | 2.8K | |
![]() | polyomino_periodicit..> | 2023-11-17 20:16 | 1.5K | |
![]() | polyomino_print.m | 2023-11-17 20:16 | 948 | |
![]() | polyomino_random.m | 2023-11-17 20:16 | 3.1K | |
![]() | polyomino_random_old.m | 2023-11-17 20:16 | 1.5K | |
![]() | polyomino_reflect.m | 2023-11-17 20:16 | 1.1K | |
![]() | polyomino_sparse_to_..> | 2023-11-17 20:16 | 889 | |
![]() | polyomino_transform.m | 2023-11-17 20:16 | 1.5K | |
![]() | polyominoes_print.m | 2023-11-17 20:16 | 1.0K | |
![]() | r8mat_rref.m | 2023-11-17 20:16 | 2.2K | |
![]() | r8mat_rref_solve_bin..> | 2023-11-17 20:16 | 2.7K | |
![]() | r8mat_rref_solve_bin..> | 2023-11-17 20:16 | 4.2K | |
![]() | r8mat_u_solve.m | 2023-11-17 20:16 | 846 | |
![]() | r8vec_binary_next.m | 2023-11-17 20:16 | 1.1K | |
![]() | r8vec_identity_row.m | 2023-11-17 20:16 | 588 | |
![]() | r8vec_is_binary.m | 2023-11-17 20:16 | 671 | |
![]() | rectangle_3x20_plot.m | 2023-11-17 20:16 | 5.0K | |
![]() | reid_plot.m | 2023-11-17 20:16 | 2.6K | |
![]() | s_len_trim.m | 2023-11-17 20:16 | 604 | |
![]() | s_word_count.m | 2023-11-17 20:16 | 789 | |
![]() | s_word_extract_first.m | 2023-11-17 20:16 | 1.2K | |
![]() | xml2struct.m | 2023-11-17 20:16 | 7.3K | |
![]() | polyomino_monohedral..> | 2024-04-17 10:40 | 7.3K | |
![]() | polyominoes.html | 2024-05-05 07:18 | 23K | |
![]() | ksub_next4.m | 2025-01-31 17:00 | 2.3K | |