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Preface

Consider a system in some application, where the dynamics are captured by
a model, whether it be ordinary differential equations (ODEs), partial differ-
ential equations (PDEs), or discrete difference equations. Suppose also this
system has a variable, or variables, which can be controlled from the outside.
The question which naturally arises is how exactly to control this element in
order to produce the “best” outcome, as measured by some predetermined
goal or goals. The mathematical theory behind answering these questions,
often called optimal control theory or dynamic optimization, has found ap-
plication in a myriad of fields, from the biological sciences, to economics, to
business and management, to physics and engineering.

The goal of this text is two fold. First, we wish to present the reader with
an introductory, but thorough, development of the mathematical aspects of
optimal control theory. This is done in a “graded” way, as the most basic prob-
lem, with a continuous time ODE, is examined in Chapter 1, and increasingly
more complicated problems are handled as the book progresses. This includes
variations of the initial conditions, imposed bounds on the control, multiple
states and controls, linear dependence on the control, and free terminal time.
Optimal control of discrete systems and optimal control of partial differential
equations are also introduced.

The second goal is to give the reader an insight into application of optimal
control theory to biological models. Several different kinds of applications
are presented here, including disease models of immunology and epidemic
types, management decisions in harvesting and resource allocation models,
and more. These are presented in the interactive “lab” sections, which we
feel is a novel feature of this text. The MATLAB codes on which the labs are
based are included, in addition to a user-friendly interface, which will allow
everyone, even those with no prior MATLAB knowledge, to access them. The
underlying numerical methods are also developed in the text.

This book is designed for use as a textbook for advanced undergraduate or
beginning graduate students. It would be suitable for a one-semester course.
It can also be used by anyone who wants to learn optimal control theory for
application to specific models. Mathematically, only a basic knowledge of
multi-variable calculus and simple ordinary differential equations is needed
for the bulk of the text. Some prior knowledge of PDEs is required for the
(optional) chapter on this subject. The reader should also be familiar with
mathematical models and how they are used. This book is not intended as a
course in mathematical modeling.



xii

Each so-called “theory” chapter has several fully-worked examples and ends
with a group of exercises. There are also, throughout the book, more open-
ended and thought provoking questions dealing with specific models or appli-
cations. The reader is advised to take advantage of both kinds of exercises.

We view this book as an introduction; the last chapter provides some infor-
mation about more advanced topics. We have also tried to provide references
for further reading. This includes papers and other texts where one can find
additional information on theoretical, numerical, or biological questions.

We recall the impact of the tools of dynamic programming on the field of
behavioral ecology resulting from the work of Clark, Mangel, Houston, and
McNamara [34, 86, 136]. We hope that some biologists will consider using the
tools introduced here for new applications.

The idea for this book came while working on materials for the short course
Optimal Control Theory in Application to Biology. This short course, spon-
sored by the National Institutes of Health, took place at the University of
Tennessee in the summer of 2003.

The authors would like to take this opportunity to thank several people who
have helped immensely during the preparation of this book: Chuck Collins,
for his numerical guidance and all our chats; Mike Saum and Hem Raj Joshi,
for their technical expertise; Elsa Schaefer and Lou Gross, for their helpful
suggestions; and Peter Andreae, Wandi Ding, Renee Fister, Elizabeth Martin,
Vladimir Protopopescu, and Raj Soni for their help in various ways. We
would also like to acknowledge the many authors, on whose work several of
the examples and labs are based.

To download the MATLAB m-files needed for the labs, go to www.math.
utk.edu/∼lenhart/mfiles.d. Send any questions or comments about this
book to lenhart@math.utk.edu.

Suzanne Lenhart
University of Tennessee

Oak Ridge National Laboratory

and

John T. Workman
Cornell University



Chapter 1

Basic Optimal Control Problems

We present a motivating idea of optimal control theory in a classic applica-
tion from King and Roughgarden [104] on allocation between vegetative and
reproductive growth for annual plants. This plant growth model formulated
by Cohen [36] divides the plant into two parts: the vegetative part, consist-
ing of leaves, stems, and roots, and the reproductive part. The products of
photosynthesis (growth) are partitioned into these parts, and the rate of pho-
tosynthesis is assumed to be proportional to the weight of the vegetative part.
Let x1(t) be the weight of the vegetative part at time t and x2(t) the weight
of the reproductive part. Consider the following ordinary differential equation
model:

x′1(t) = u(t)x1(t),
x′2(t) = (1− u(t))x2(t),

0 ≤ u(t) ≤ 1,

x1(0) > 0, x2(0) ≥ 0,

where the function u(t) is the fraction of the photosynthate partitioned to
vegetative growth. The natural evolution of the plant should encourage max-
imal growth of the reproductive part in order to ensure effective reproduction.
Therefore, the goal is to find a partitioning pattern control u(t) which maxi-
mizes the functional

∫ T

0

ln(x2(t)) dt.

The maximum season length is the upper bound T on the time interval, and
it is assumed that all season lengths from zero to a fixed maximum have equal
probability of occurrence. The natural logarithm appears here because it is
believed the evolution of the plant favors reproduction in a nonlinear way.

This type of problem is called an optimal control problem, because we are
charged with finding an optimal control, i.e., a control which optimizes some
objective functional. We would say that this problem has two states, x1 and
x2, and one control, u. King and Roughgarden used optimal control theory
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to solve this problem. Figure 1.1 gives an example of an optimal control for
the case T = 5.

0 5

t

x
1

*
(t) 

x
2

*
(t) 

u
*
(t) 

1 

0 

t 

5 

FIGURE 1.1: The optimal photosynthate u∗ is shown on the left, and the
optimal vegetative and reproductive weights, x∗1 and x∗2, are on the right.

Analyzing such a problem with a variety of T values can give interesting
conclusions. Their analysis leads to the prediction that annual plants experi-
encing variable length seasons will exhibit graded strategies, with vegetative
and reproductive growth occurring simultaneously during part of the life cycle.
In other words, the plant will use all of its photosynthate for vegetative growth
and later will split it into some vegetative and some reproductive growth.

The goal of this book is to give an introduction to optimal control theory
as applied to biological models. Using optimal control theory, one can ad-
just controls in a system to achieve a goal, where the underlying system can
include:

• Ordinary differential equations

• Partial differential equations

• Discrete equations

• Stochastic differential equations
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• Integro-difference equations

• Combination of discrete and continuous systems.

Our primary focus in this text is optimal control theory of ordinary differential
equations with time as the underlying variable. Optimal control of discrete
equations and PDEs is discussed in Chapters 23 and 25, respectively. For
other types of systems, see [10, 11, 128, 129, 182].

Optimal control theory is a powerful mathematical tool that can be used
to make decisions involving complex biological situations. For example, what
percentage of the population should be vaccinated as time evolves in a given
epidemic model to minimize the number of infected and the cost of imple-
menting the vaccination strategy? The desired outcome, or goal, depends
on the particular situation. Many times, the problem will include tradeoffs
between two competing factors. For another example, consider minimizing
a certain harmful virus population while keeping the level of the toxic drug
administered low. In such a case, we could model the levels of virus and drug
as functions of time appearing together in a system of ordinary differential
equations.

The behavior of the underlying dynamical system is described by a state
variable(s). We assume that there is a way to steer the state by acting upon it
with a suitable control function(s). The control enters the system of ordinary
differential equations and affects the dynamics of the state system. The goal
is to adjust the control in order to maximize (or minimize) a given objective
functional. A functional, for this text, refers to a map from a certain set of
functions to the real numbers (an integral, for example). Often, this functional
will balance judiciously the desired goal with the required cost to reach it.
Here, the cost may not always represent money but may include side effects
or damages caused by the control. In general, the objective functional depends
on one or more of the state and the control variables. Frequently the objective
functional is given by an integral of the state and/or control variables. Other
types of functionals will be considered as well.

Many applications have several state variables and multiple control vari-
ables. The plant problem above has two state variables and one control vari-
able, and is a bit unusual in that the objective functional does not depend on
the control. Note that the control variables have imposed bounds of 0 and
1 and that the system and objective functional depend on the control u in a
linear way. Problems without control constraints (bounds) are usually easier
than those with bounds. Also, problems linear in the control are sometimes
trickier than those with a reasonable nonlinearity in the control dependence.

We will treat all these wrinkles, and more, in this book. First, we will
concentrate on the case of one control and one state, in which the controls do
not have any constraints on them. We will also initially focus on problems
in which the control enters the problem in a simple nonlinear way, mostly
quadratic.
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1.1 Preliminaries

Before beginning, we establish some definitions and concepts from analysis
and advanced calculus used throughout the book. It is also advantageous to
quickly review a few fundamental results. Wade [177] is an excellent source
for these and other basic analytical concepts. Biological terminology will be
presented as needed. For some background on models from an undergraduate
viewpoint, see the book by Mooney and Swift [146]. Mathematical biology
modelling for undergraduates (or graduate students totally new to this topic)
is covered in the classic book by Edelstein or the book by Jones and Slee-
man [53, 89]. For a beginning graduate student viewpoint, see the books by
Kot and Murray [107, 150].

DEFINITION 1.1 Let I ⊆ R be an interval (finite or infinite). We say
a finite-valued function u : I → R is piecewise continuous if it is continuous
at each t ∈ I, with the possible exception of at most a finite number of t, and
if u is equal to either its left or right limit at every t ∈ I.

t*

FIGURE 1.2: The graph to the left is an example of a piecewise continuous
function. The graph to the right is not, because the value of the function at
t∗ is not the left or right limit.
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Although somewhat nonstandard terminology, requiring piecewise contin-
uous functions to equal their left or right limits eliminates a great many
headaches farther down the road. In words, a piecewise continuous function
can have finitely many “jump discontinuities” from one continuous segment
to another. It cannot have a value that is an isolated single point (Figure 1.2).

Suppose u : I → R is piecewise continuous. Let g : R3 → R be continuous
in three variables. Then, by the solution x of the differential equation

x′(t) = g(t, x(t), u(t)) (1.1)

it is meant a continuous function x : I → R which is differentiable, with x′

satisfying the above expression, wherever u is continuous. Equivalently, if
I = [a, b], then x satisfies

x(t) = x(a) +
∫ t

a

g(s, x(s), u(s)) ds.

An initial condition for x(a) will normally be specified.

DEFINITION 1.2 Let x : I → R be continuous on I and differentiable
at all but finitely points of I. Further, suppose that x′ is continuous wherever
it is defined. Then, we say x is piecewise differentiable.

Note, if u is piecewise continuous, and x satisfies (1.1), then x is piecewise
differentiable. Also, the actual value of u at its discontinuities is irrelevant in
determining x. Throughout this text, all controls considered will be piecewise
continuous, and we will not be concerned with values at discontinuities.

DEFINITION 1.3 Let k : I → R. We say k is continuously differentiable
if k′ exists and is continuous on I.

DEFINITION 1.4 A function k(t) is said to be concave on [a, b] if

αk(t1) + (1− α)k(t2) ≤ k
(
αt1 + (1− α)t2

)

for all 0 ≤ α ≤ 1 and for any a ≤ t1, t2 ≤ b

A function k is said to be convex on [a, b] if it satisfies the reverse inequality,
or equivalently, if−k is concave. The second derivative of a twice differentiable
concave function is non-positive; relating this to terminology used in calculus,
concave here is “concave down” and convex is “concave up.” If k is concave
and differentiable, then we have a tangent line property

k(t2)− k(t1) ≥ (t2 − t1)k′(t2)
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for all a ≤ t1, t2 ≤ b. In words, the slope of the secant line joining two points
is less than the slope of the tangent line at the left point, and greater than
the slope of the tangent line at the right point. See Figure 1.3.

a b

t

t
1
 

t
2
 

k(t) 

FIGURE 1.3: The graph of a concave function k(t). The secant line and
tangent lines for two points t1 and t2 are shown.

Analogously, a function k(x, y) in two variables is said to be concave if

αk(x1, y1) + (1− α)k(x2, y2) ≤ k(αx1 + (1− α)x2, αy1 + (1− α)y2)

for all 0 ≤ α ≤ 1 and all (x1, y1), (x2, y2) in the domain of k. If k is such
a function and has partial derivatives everywhere, then the analogue to the
tangent line property is

k(x1, y1)− k(x2, y2) ≥ (x1 − x2)kx(x1, y1) + (y1 − y2)ky(x1, y1)

for all pairs of points (x1, y1), (x2, y2) in the domain of k.

DEFINITION 1.5 A function k is called Lipschitz if there exists a con-
stant c (particular to k) such that |k(t1)− k(t2)| ≤ c|t1 − t2| for all points t1,
t2 in the domain of k. The constant c is called the Lipschitz constant of k.
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THEOREM 1.1 (Mean Value Theorem)

Let k be continuous on [a, b] and differentiable on (a, b). Then, there is some
x0 ∈ (a, b) such that k(b)− k(a) = k′(x0)(b− a).

Note that a Lipschitz function is automatically continuous and, in fact,
uniformly continuous. As such, this property is sometimes referred to as
Lipschitz continuity. It follows from an application of the mean value theorem
that if a function k : I → R is piecewise differentiable on a bounded interval
I, then k is Lipschitz.

1.2 The Basic Problem and Necessary Conditions

In our basic optimal control problem for ordinary differential equations, we
use u(t) for the control and x(t) for the state. The state variable satisfies a
differential equation which depends on the control variable:

x′(t) = g(t, x(t), u(t)).

As the control function is changed, the solution to the differential equation
will change. Thus, we can view the control-to-state relationship as a map
u(t) 7→ x = x(u) (of course, x is really a function of the independent variable
t; we write x(u) simply to remind us of the dependence on u). Our basic
optimal control problem consists of finding a piecewise continuous control
u(t) and the associated state variable x(t) to maximize the given objective
functional, i.e.,

max
u

∫ t1

t0

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x(t), u(t))
x(t0) = x0 and x(t1) free.

(1.2)

Such a maximizing control is called an optimal control. By x(t1) free, it is
meant that the value of x(t1) is unrestricted. For our purposes, f and g will
always be continuously differentiable functions in all three arguments. Thus,
as the control(s) will always be piecewise continuous, the associated states
will always be piecewise differentiable.

The principle technique for such an optimal control problem is to solve a
set of “necessary conditions” that an optimal control and corresponding state
must satisfy. It is important to understand the logical difference between
necessary conditions and sufficient conditions of solution sets.
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Necessary Conditions : If u∗(t), x∗(t) are optimal, then the following
conditions hold ...

Sufficient Conditions : If u∗(t), x∗(t) satisfy the following conditions ...,
then u∗(t), x∗(t) are optimal.

We will discuss sufficient conditions in the next chapter. For now, let us
derive the necessary conditions. Express our objective functional in terms of
the control:

J(u) =
∫ t1

t0

f(t, x(t), u(t)) dt,

where x = x(u) is the corresponding state.
The necessary conditions that we derive were developed by Pontryagin and

his co-workers in Moscow in the 1950’s [158]. Pontryagin introduced the idea
of “adjoint” functions to append the differential equation to the objective
functional. Adjoint functions have a similar purpose as Lagrange multipliers
in multivariate calculus, which append constraints to the function of several
variables to be maximized or minimized. Thus, we begin by finding appro-
priate conditions that the adjoint function should satisfy. Then, by differen-
tiating the map from the control to the objective functional, we will derive
a characterization of the optimal control in terms of the optimal state and
corresponding adjoint. So do not feel as if we are “pulling a rabbit out of the
hat” when we define the adjoint equation.

FIGURE 1.4: Pulling the adjoint out of the hat.
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FIGURE 1.5: The optimal control u∗ and state x∗ (in solid) plotted to-
gether with uε and xε (dashed).

Assume a (piecewise continuous) optimal control exists, and that u∗ is such
a control, with x∗ the corresponding state. Namely, J(u) ≤ J(u∗) < ∞ for all
controls u. Let h(t) be a piecewise continuous variation function and ε ∈ R a
constant. Then

uε(t) = u∗(t) + εh(t)

is another piecewise continuous control.
Let xε be the state corresponding to the control uε, namely, xε satisfies

d

dt
xε(t) = g(t, xε(t), uε(t)) (1.3)

wherever uε is continuous. Since all trajectories start at the same position,
we take xε(t0) = x0 (Figure 1.5).

It is easily seen that uε(t) → u∗(t) for all t as ε → 0. Further, for all t

∂uε(t)
∂ε

∣∣∣∣
ε=0

= h(t).

In fact, something similar is true for xε. Because of the assumptions made on
g, it follows that

xε(t) → x∗(t)
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for each fixed t. Further, the derivative

∂

∂ε
xε(t)

∣∣∣∣
ε=0

exists for each t. The actual value of quantity will prove unimportant. We
need only to know that it exists.

The objective functional at uε is

J(uε) =
∫ t1

t0

f(t, xε(t), uε(t)) dt.

We are now ready to introduce the adjoint function or variable λ. Let λ(t)
be a piecewise differentiable function on [t0, t1] to be determined. By the
Fundamental Theorem of Calculus,

∫ t1

t0

d

dt
[λ(t)xε(t)] dt = λ(t1)xε(t1)− λ(t0)xε(t0),

which implies

∫ t1

t0

d

dt
[λ(t)xε(t)] dt + λ(t0)x0 − λ(t1)xε(t1) = 0.

Adding this 0 expression to our J(uε) gives

J(uε) =
∫ t1

t0

[
f(t, xε(t), uε(t)) +

d

dt
(λ(t)xε(t))

]
dt

+ λ(t0)x0 − λ(t1)xε(t1)

=
∫ t1

t0

[
f(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)g(t, xε(t), uε(t))

]
dt

+ λ(t0)x0 − λ(t1)xε(t1),

where we used the product rule and the fact that g(t, xε, uε) = d
dtx

ε at all but
finitely many points. Since the maximum of J with respect to the control u
occurs at u∗, the derivative of J(uε) with respect to ε (in the direction h) is
zero, i.e.,

0 =
d

dε
J(uε)

∣∣∣∣
ε=0

= lim
ε→0

J(uε)− J(u∗)
ε

.

This gives a limit of an integral expression. A version of the Lebesgue Domi-
nated Convergence Theorem [162, 163, 171] allows us to move the limit (and
thus the derivative) inside the integral. This is due to the compact interval of
integration and the piecewise differentiability of the integrand. Therefore,
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0 =
d

dε
J(uε)

∣∣∣∣
ε=0

=
∫ t1

t0

∂

∂ε

[
f(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)g(t, xε(t), uε(t) dt

]∣∣∣∣
ε=0

− ∂

∂ε
λ(t1)xε(t1)

∣∣∣∣
ε=0

.

Applying the chain rule to f and g, it follows

0 =
∫ t1

t0

[
fx

∂xε

∂ε
+ fu

∂uε

∂ε
+ λ′(t)

∂xε

∂ε
+ λ(t)

(
gx

∂xε

∂ε
+ gu

∂uε

∂ε

)] ∣∣∣∣∣
ε=0

dt

− λ(t1)
∂xε

∂ε
(t1)

∣∣∣∣∣
ε=0

,

(1.4)

where the arguments of the fx, fu, gx, and gu terms are (t, x∗(t), u∗(t)).
Rearranging the terms in (1.4) gives

0 =
∫ t1

t0

[(
fx + λ(t)gx + λ′(t)

)∂xε

∂ε
(t)

∣∣∣∣∣
ε=0

+ (fu + λ(t)gu)h(t)

]
dt

− λ(t1)
∂xε

∂ε
(t1)

∣∣∣∣∣
ε=0

.

(1.5)

We want to choose the adjoint function to simplify (1.5) by making the coef-
ficients of

∂xε

∂ε
(t)

∣∣∣∣
ε=0

vanish. Thus, we choose the adjoint function λ(t) to satisfy

λ′(t) = −[fx(t, x∗(t), u∗(t)) + λ(t)gx(t, x∗(t), u∗(t))] (adjoint equation),

and the boundary condition

λ(t1) = 0 (transversality condition).

Now (1.5) reduces to

0 =
∫ t1

t0

(
fu(t, x∗(t), u∗(t)) + λ(t)gu(t, x∗(t), u∗(t))

)
h(t) dt.
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As this holds for any piecewise continuous variation function h(t), it holds for

h(t) = fu(t, x∗(t), u∗(t)) + λ(t)gu(t, x∗(t), u∗(t)).

In this case

0 =
∫ t1

t0

(
fu(t, x∗(t), u∗(t)) + λ(t)gu(t, x∗(t), u∗(t))

)2

dt,

which implies the optimality condition

fu(t, x∗(t), u∗(t)) + λ(t)gu(t, x∗(t), u∗(t)) = 0 for all t0 ≤ t ≤ t1.

These equations form a set of necessary conditions that an optimal control
and state must satisfy. In practice, one does not need to rederive the above
equations in this way for a particular problem. In fact, we can generate
the above necessary conditions from the Hamiltonian H, which is defined as
follows,

H(t, x, u, λ) = f(t, x, u) + λ g(t, x, u)
= integrand + adjoint ∗ RHS of DE.

We are maximizing H with respect to u at u∗, and the above conditions can
be written in terms of the Hamiltonian:

∂H

∂u
= 0 at u∗ ⇒ fu + λgu = 0 (optimality condition),

λ′ = −∂H

∂x
⇒ λ′ = −(fx + λgx) (adjoint equation),

λ(t1) = 0 (transversality condition).

We are given the dynamics of the state equation:

x′ = g(t, x, u) =
∂H

∂λ
, x(t0) = x0.

1.3 Pontryagin’s Maximum Principle

These conclusions can be extended to a version of Pontryagin’s Maximum
Principle [158].



Basic Optimal Control Problems 13

THEOREM 1.2

If u∗(t) and x∗(t) are optimal for problem (1.2), then there exists a piecewise
differentiable adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)),

and

λ′(t) = −∂H(t, x∗(t), u∗(t), λ(t))
∂x

,

λ(t1) = 0.

We have already shown with this adjoint and Hamiltonian, Hu = 0 at u∗ for
each t. Namely, the Hamiltonian has a critical point, in the u variable, at u∗ for
each t. It is not surprising that this critical point is a maximum considering
the optimal control problem. However, the proof of this theorem is quite
technical and difficult, and we omit it here. We refer the interested reader to
Pontryagin’s original text [158] and to Clarke’s book for extensions [35]. The
earlier requirement of controls being everywhere equal to either their left or
right limits plays a pivotal role in the proof. Here, we state and prove the
result for a very specific case, for illustrative purposes.

THEOREM 1.3

Suppose that f(t, x, u) and g(t, x, u) are both continuously differentiable func-
tions in their three arguments and concave in u. Suppose u∗ is an optimal
control for problem (1.2), with associated state x∗, and λ a piecewise differ-
entiable function with λ(t) ≥ 0 for all t. Suppose for all t0 ≤ t ≤ t1

0 = Hu(t, x∗(t), u∗(t), λ(t)).

Then for all controls u and each t0 ≤ t ≤ t1, we have

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)).

PROOF Fix a control u and a point in time t0 ≤ t ≤ t1. Then,
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H(t,x∗(t), u∗(t), λ(t))−H(t, x∗(t), u(t), λ(t))

=
[
f(t, x∗(t), u∗(t)) + λ(t)g(t, x∗(t), u∗(t))

]

−
[
f(t, x∗(t), u(t)) + λ(t)g(t, x∗(t), u(t))

]

=
[
f(t, x∗(t), u∗(t))− f(t, x∗(t), u(t))

]

+ λ(t)
[
g(t, x∗(t), u∗(t))− g(t, x∗(t), u(t))

]

≥ (
u∗(t)− u(t)

)
fu(t, x∗(t), u∗(t)) + λ(t)

(
u∗(t)− u(t)

)
gu(t, x∗(t), u∗(t))

=
(
u∗(t)− u(t)

)
Hu(t, x∗(t), u∗(t), λ(t)) = 0.

The transition from line 3 to line 4 is attained from applying the tangent line
property to f and g, and because λ(t) ≥ 0.

An identical argument generates the same necessary conditions when the
problem is minimization rather than maximization. In a minimization prob-
lem, we are minimizing the Hamiltonian pointwise, and the inequality in Pon-
tryagin’s Maximum Principle in reversed. Indeed, for a minimization problem
with f , g being convex in u, we can derive

H(t, x∗(t), u(t), λ(t)) ≥ H(t, x∗(t), u∗(t), λ(t))

by the same argument as in Theorem 1.3.
We have converted the problem of finding a control that maximizes (or

minimizes) the objective functional subject to the differential equation and
initial condition, to maximizing the Hamiltonian pointwise with respect to the
control. Thus to find the necessary conditions, we do not need to calculate
the integral in the objective functional, but only use the Hamiltonian. Later,
we will see the usefulness of the property that the Hamiltonian is maximized
pointwise by an optimal control.

We can also check concavity conditions to distinguish between controls that
maximize and those that minimize the objective functional [62]. If

∂2H

∂u2
< 0 at u∗,

then the problem is maximization, while

∂2H

∂u2
> 0 at u∗.

goes with minimization.
We can view our optimal control problem as having two unknowns, u∗ and

x∗, at the start. We have introduced an adjoint variable λ, which is similar to
a Lagrange multiplier. It attaches the differential equation information onto
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the maximization of the objective functional. The following is an outline of
how this theory can be applied to solve the simplest problems.

1. Form the Hamiltonian for the problem.

2. Write the adjoint differential equation, transversality boundary condi-
tion, and the optimality condition. Now there are three unknowns, u∗,
x∗, and λ.

3. Try to eliminate u∗ by using the optimality equation Hu = 0, i.e., solve
for u∗ in terms of x∗ and λ.

4. Solve the two differential equations for x∗ and λ with two boundary con-
ditions, substituting u∗ in the differential equations with the expression
for the optimal control from the previous step.

5. After finding the optimal state and adjoint, solve for the optimal control.

If the Hamiltonian is linear in the control variable u, it can be difficult to
solve for u∗ from the optimality equation; we will treat this case in Chapter 17.
If we can solve for u∗ from the optimality equation, we are then left with two
unknowns x∗ and λ satisfying two differential equations with two boundary
conditions. We solve that system of differential equations for the optimal state
and adjoint and then obtain the optimal control. We will see in some simple
examples that the system can be solved analytically (by hand) and in other
examples that the system can be solved numerically.

When we are able to solve for the optimal control in terms of x∗ and λ, we
will call that formula for u∗ the characterization of the optimal control. The
state equations and the adjoint equations together with the characterization
of the optimal control and the boundary conditions are called the optimality
system. For now, let us try to better understand these ideas with a few
examples.

Example 1.1 (from [100])

min
u

∫ 1

0

u(t)2 dt

subject to x′(t) = x(t) + u(t), x(0) = 1, x(1) free.

Can we see what the optimal control should be? The goal of the problem is
to minimize this integral, which does not involve the state. Only the integral
of control (squared) is to be minimized. Therefore, we expect the optimal
control is 0. We verify with the necessary conditions.

We begin by forming the Hamiltonian H

H = u2 + λ(x + u).
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The optimality condition is

0 =
∂H

∂u
= 2u + λ at u∗ ⇒ u∗ = −1

2
λ.

We see the problem is indeed minimization as

∂2H

∂u2
= 2 > 0.

The adjoint equation is given by

λ′ = −∂H

∂x
= −λ ⇒ λ(t) = ce−t,

for some constant c. But, the transversality condition is

λ(1) = 0 ⇒ ce−1 = 0 ⇒ c = 0.

Thus, λ ≡ 0, so that u∗ = −λ/2 = 0. So, x∗ satisfies x′ = x and x(0) = 1.
Hence, the optimal solutions are

λ ≡ 0, u∗ ≡ 0, x∗(t) = et,

and the state function is plotted in Figure 1.6.

0  1  

1  

Time

x
*

FIGURE 1.6: Optimal state for Example 1.1 plotted as a function of time.
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Example 1.2

min
u

1
2

∫ 1

0

3x(t)2 + u(t)2 dt

subject to x′(t) = x(t) + u(t), x(0) = 1.

The 1
2 which appears before the integral will have no effect on the minimiz-

ing control and, thus, no effect on the problem. It is inserted in order to
make the computations slightly neater. You will see how shortly. Also, note
we have omitted the phrase “x(1) free” from the statement of the problem.
This is standard notation, in that a term which is unrestricted is simply not
mentioned. We adopt this convention from now on.

Form the Hamiltonian of the problem

H =
3
2
x2 +

1
2
u2 + xλ + uλ.

The optimality condition gives

0 =
∂H

∂u
= u + λ at u∗ ⇒ u∗ = −λ.

Notice 1
2 cancels with the 2 which comes from the square on the control u.

Also, the problem is a minimization problem as

∂2H

∂u2
= 1 > 0.

We use the Hamiltonian to find a differential equation of the adjoint λ,

λ′(t) = −∂H

∂x
= −3x− λ, λ(1) = 0.

Substituting the derived characterization for the control variable u in the
equation for x′, we arrive at

(
x
λ

)′
=

(
1 −1
−3 −1

)(
x
λ

)
.

The eigenvalues of the coefficient matrix are 2 and −2. Finding the eigenvec-
tors, the equations for x and λ are

(
x
λ

)
(t) = c1

(
1
−1

)
e2t + c2

(
1
3

)
e−2t.

Using x(0) = 1 and λ(1) = 0, we find c1 = 3c2e
−4 and c2 = 1

3e−4+1 . Thus,
using the optimality equation, the optimal solutions are
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u∗(t) =
3e−4

3e−4 + 1
e2t − 3

3e−4 + 1
e−2t,

x∗(t) =
3e−4

3e−4 + 1
e2t +

1
3e−4 + 1

e−2t,

which are illustrated in Figure 1.7.

0  1  

1  

Time

S
ta

te

0  1  

−3  

Time

C
o

n
tr

o
l

FIGURE 1.7: Optimal control and state for Example 1.2.

1.4 Exercises

In the following exercises, write out the necessary conditions for each prob-
lem, then solve the optimality system (unless otherwise stated) to find the
optimal control and state.

Exercise 1.1 Write out the necessary conditions for the following problem
to be treated in Lab 1. Do not attempt to solve the resulting optimality
system.
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max
u

∫ 1

0

Ax(t)−Bu(t)2 dt

subject to x′(t) = −1
2
x(t)2 + Cu(t), x(0) = x0 > −2,

A ≥ 0, B > 0.

Exercise 1.2 Solve

min
u

∫ 2

1

tu(t)2 + t2x(t) dt

subject to x′(t) = −u(t), x(1) = 1.

Exercise 1.3 (from [100]) Solve

max
u

∫ 5

1

u(t)x(t)− u(t)2 − x(t)2 dt

subject to x′(t) = x(t) + u(t), x(1) = 2.

Exercise 1.4 (from [100]) Solve

min
u

∫ 1

0

x(t)2 + x(t) + u(t)2 + u(t) dt

subject to x′(t) = u(t), x(0) = 0.

Exercise 1.5 Let y(t) = t + 1. Solve

min
u

1
2

∫ 1

0

(
x(t)− y(t)

)2 + u(t)2 dt

subject to x′(t) = u(t), x(0) = 1.

Exercise 1.6 Formulate an optimal control problem for a population with
an Allee effect growth term, in which the control is the proportion of the
population to be harvested. This means that differential equation has an
Allee effect term. Choose an objective functional which maximizes revenue
from the harvesting while minimizing the cost of harvesting. The revenue is
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the integral of amount harvested per time. Assume the cost of harvesting has
a quadratic format. See [107] for the terminology like “Allee.”



Chapter 2

Existence and Other Solution
Properties

In the last chapter, we developed necessary conditions to solve basic optimal
control problems. However, some difficulties can arise with this method. It is
possible that the necessary conditions could yield multiple solution sets, only
some of which are optimal controls. Further, recall that in the development
of the necessary conditions, we began by assuming an optimal control exists.
It is also possible that the necessary conditions could be solvable when the
original optimal control problem has no solution. We expect the objective
functional evaluated at the optimal state and control to give a finite answer.
If this objective functional value turns out to be ∞ or −∞, we would say the
problem has no solution. An example of this is given below.

Example 2.1 (from [100])

max
u

∫ 1

0

x(t) + u(t) dt

subject to x′(t) = 1− u(t)2, x(0) = 1.

The Hamiltonian and the optimality condition are:

H(t, x, u, λ) = x + u + λ(1− u2),
∂H

∂u
= 1− 2λu = 0 ⇒ u =

1
2λ

.

From the adjoint equation and its boundary condition,

λ′ = −∂H

∂x
= −1 and λ(1) = 0,

we can directly calculate

λ(t) = 1− t.

Note that the concavity with respect to the control u is correct for a maxi-
mization problem,
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Huu = −2λ ≤ 0,

as λ(t) ≥ 0. Next, we calculate the optimal state using the differential equa-
tion and its boundary condition

x′ = 1− u2 = 1− 1
4(1− t)2

and x(0) = 1,

and find that

x∗(t) = t− 1
4(1− t)

+
5
4

and u∗(t) =
1

2(1− t)
.
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FIGURE 2.1: The graph of u∗ from Example 2.1, plotted in logarithmic
scale. The value of u∗ tends to infinity as t approaches 1.

However, notice that when the objective functional is evaluated at the op-
timal control and state, we do not obtain a finite answer,

∫ 1

0

[x∗(t) + u∗(t)] dt =
∫ 1

0

t +
5
4

+
1

4(1− t)
dt = ∞.

There is not an “optimal control” in this case, since we are considering prob-
lems with finite maximum (or minimum) objective functional values, even
though the solutions we found satisfy the necessary conditions. In this simple
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example, the optimal control and state become unbounded at t = 1. See Fig-
ure 2.1. In most applications, we want the optimal control and state values to
remain bounded. Later we will consider the restriction of imposing a bound
on the control set in the setting of the problem.

What causes this unbounded difficulty in this example? One explanation
is the quadratic nonlinearity u2 in the differential equation. For example,
consider the simple differential equation

x′ = x2 with x(0) = 1,

which has a quadratic term. The solution is easily shown to be

x =
1

1− t
,

which become unbounded in finite time (at t = 1). This illustrates how
difficulty can arise with quadratic terms in differential equations.

2.1 Existence and Uniqueness Results

It should be clear now that simply solving the necessary conditions is not
enough to solve an optimal control problem. To completely justify the meth-
ods used in Chapter 1, some existence and uniqueness results should be exam-
ined. First, what conditions can guarantee the existence of a finite objective
functional value at the optimal control and state? We state some simple re-
sults for existence from Fleming and Rishel, Kamien and Schwartz, and Macki
and Strauss [62, 100, 135]. For more cases, see Cesari [29]. The following is
an example of a sufficient condition result.

THEOREM 2.1

Consider

J(u) =
∫ t1

t0

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0.

Suppose that f(t, x, u) and g(t, x, u) are both continuously differentiable func-
tions in their three arguments and concave in x and u. Suppose u∗ is a control,
with associated state x∗, and λ a piecewise differentiable function, such that
u∗, x∗, and λ together satisfy on t0 ≤ t ≤ t1:
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fu + λgu = 0,

λ′ = − (fx + λgx) ,

λ(t1) = 0,

λ(t) ≥ 0.

Then for all controls u, we have

J(u∗) ≥ J(u).

PROOF Let u be any control, and x its associated state. Note, as f(t, x, u)
is concave in both the x and u variable, we have by the tangent line property
(see Section 1.1)

f(t, x∗, u∗)− f(t, x, u) ≥ (x∗ − x)fx(t, x∗, u∗) + (u∗ − u)fu(t, x∗, u∗).

This gives

J(u∗)− J(u) =
∫ t1

t0

f(t, x∗, u∗)− f(t, x, u) dt

≥
∫ t1

t0

(x∗(t)− x(t))fx(t, x∗, u∗)

+ (u∗(t)− u(t))fu(t, x∗, u∗) dt.

(2.1)

Substituting

fx(t, x∗, u∗) = −λ′(t)− λ(t)gx(t, x∗, u∗) and
fu(t, x∗, u∗) = −λ(t)gu(t, x∗, u∗),

as given by the hypothesis, the last term in (2.1) becomes

∫ t1

t0

(x∗(t)− x(t))(−λ(t)gx(t, x∗, u∗)− λ′(t))

+ (u∗(t)− u(t))(−λ(t)gu(t, x∗, u∗)) dt.

Using integration by parts, and recalling λ(t1) = 0 and x(t0) = x∗(t0), we see

∫ t1

t0

−λ′(t)(x∗(t)− x(t)) dt =
∫ t1

t0

λ(t)(x∗(t)− x(t))′ dt =

∫ t1

t0

λ(t)
(
g(t, x∗(t), u∗(t))− g(t, x(t), u(t)

)
dt.
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Making this substitution,

J(u∗)− J(u) ≥
∫ t1

t0

λ(t)
[
g(t, x∗, u∗)− g(t, x, u)−

(x∗ − x)gx(t, x∗, u∗)− (u∗ − u)gu(t, x∗, u∗)
]
dt.

Taking into account λ(t) ≥ 0 and that g is concave in both x and u, this gives
the desired result J(u∗)− J(u) ≥ 0.

Note that the Example 2.1 satisfies the conditions for this theorem and this
conclusion, but J(u∗) is not a finite. A true existence result guarantees an
optimal control, with finite objective functional. Such results usually require
some restrictions on f and/or g. Here is an example of an existence result
from [62].

THEOREM 2.2
Let the set of controls for problem (1.2) be Lebesgue integrable functions (in-
stead of just piecewise continuous functions) on t0 ≤ t ≤ t1 with values in
R. Suppose that f(t, x, u) is convex in u, and there exist constants C4 and
C1, C2, C3 > 0 and β > 1 such that

g(t, x, u) = α(t, x) + β(t, x)u
|g(t, x, u)| ≤ C1(1 + |x|+ |u|)

|g(t, x1, u)− g(t, x, u)| ≤ C2|x1 − x|(1 + |u|)
f(t, x, u) ≥ C3|u|β − C4

for all t with t0 ≤ t ≤ t1, x, x1, u in R. Then there exists an optimal control
u∗ maximizing J(u), with J(u∗) finite.

For a minimization problem, g would have a concave property and the in-
equality on f would be reversed. Note that Example 2.1 does not satisfy the
first inequality assumption on g, nor the assumption on f .

You may be unfamiliar with the term Lebesgue integrable in the above the-
orem. This is a concept used in higher levels of analysis. It is sufficient here
for you to know that all Riemann integrable functions are also Lebesgue inte-
grable. There are many excellent sources pertaining to Lebesgue integration
and measure theory. Royden [162], Rudin [163], and Stein and Shakarchi [171]
are some of the widely-used textbooks. Further, note that the necessary con-
ditions developed to this point deal with piecewise continuous optimal con-
trols, while this existence theorem guarantees an optimal control which is only
Lebesgue integrable. This disconnect can be remedied by extending the nec-
essary conditions, in a meaningful way, to Lebesgue integrable functions [135],
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but we do not treat this idea here. See the existence of optimal control re-
sults in [58]. Convexity (or concavity, depending on the type of problem) in
the control set is frequently used, but there are some results without convex-
ity [16, 29, 58]. In addition, there are existence results for solutions of the
state equation [131].

Also of interest is the idea of uniqueness. Suppose an optimal control ex-
ists, i.e, there is u∗ such that J(u) ≤ J(u∗) < ∞ for all controls u (in the
maximization case). We say u∗ is unique if whenever J(u∗) = J(u), then
u∗ = u at all but finitely many points. In this case, the associated states will
be identical. We call this state, x∗, the unique optimal state.

Clearly, uniqueness of solutions of the optimality system implies uniqueness
of the optimal control, if one exists. We can frequently prove uniqueness of
the solutions of the optimality system, but only for a small time interval. This
small time condition is due to opposite time orientations of the state equation
and adjoint equation, meaning the state equation has an initial time condition
and the adjoint equation has a final time condition.

However, in general, uniqueness of the optimal control does not necessarily
guarantee uniqueness of the optimality system. To prove uniqueness of the
optimal control directly, strict concavity of the objective functional J(u, x(u))
must be established. Direct uniqueness results tend to be cumbersome and
difficult to state, and, as they will not be needed here, they will not be treated.

If f , g, and the right hand side of the adjoint equation are Lipschitz in the
state and adjoint variables, then the uniqueness of solutions of the optimality
system holds for small time. Sometimes, if the solutions of the optimality
system are bounded, then one can easily get the Lipschitz property and the
resulting uniqueness [60].

We have chosen lab problems and examples (with the exception of Exam-
ple 2.1) for this book that satisfy an existence result of some kind and have
optimality systems which guarantee uniqueness of solutions for small enough
time intervals. Therefore, it will be sufficient to solve only the necessary con-
ditions, as has been done in the previous examples and will continue to be
done.

2.2 Interpretation of the Adjoint

For an interpretation of the adjoint variable, we first define the value func-
tion V by

V (x0, t0) := max
u

∫ t1

t0

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x, u), x(t0) = x0.
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The value function gives the value of the integral when evaluated at the op-
timal control and state. The notation V (x0, t0) indicates the dependence on
the initial state and time. There is a relationship between the adjoint variable
and the derivative of the value function with respect to the state, which can
be stated as

∂V

∂x
(x0, t0) = lim

ε→0

V (x0 + ε, t0)− V (x0, t0)
ε

= λ(t0).

In the case that the objective functional represents profit or cost, then the
units of ∂V

∂x are money per unit item. Thus, the adjoint variable λ(t0) is equal
to the marginal variation in the value function with respect to the state at
time t0, and is commonly called the shadow price. One can view λ as the
additional money (profit/cost) associated with an additional increment of the
state variable. In fact, this interpretation is valid for all time t [100]:

∂V

∂x
(x∗(t), t) = λ(t) for all t0 ≤ t ≤ t1.

If a fishery harvest problem was being considered, the state would represent
the amount of fish and the objective functional represents the profit made at
the fishery. In this case, one would view the adjoint variables as giving: “If
one fish is added to the stock at time t0, how much is the value of the fishery
affected?” Using

∂V

∂x
(x0, t0) = λ(t0),

we can approximate the difference by

V (x0 + ε, t0)− V (x0, t0)
ε

≈ λ(t0) ⇒
V (x0 + ε, t0) ≈ V (x0, t0) + ελ(t0),

for all small ε > 0. Just for the idea, take ε = 1 and obtain

V (x0 + 1, t0) ≈ V (x0, t0) + λ(t0),

which means that the additional profit resulting from adding one more fish to
the stock at the initial time is given by λ(t0). This interpretation can help one
to know what sign (positive or negative) to expect from an adjoint variable
in particular applications.
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2.3 Principle of Optimality

An important result in both optimal control and dynamic programming is
the Principle of Optimality. It concerns optimizing a system over a subinterval
of the original time span, and in particular, how the optimal control over this
smaller interval relates to the optimal control on the full time period.

THEOREM 2.3
Let u∗ be an optimal control, and x∗ the resulting state, for the problem

max
u

J(u) = max
u

∫ t1

t0

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0. (2.2)

Let t̂ be a fixed point in time such that t0 < t̂ < t1. Then, the restricted
functions û∗ = u∗|[t̂,t1], x̂∗ = x∗|[t̂,t1], form an optimal pair for the restricted
problem

max
u

Ĵ(u) = max
u

∫ t1

t̂

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x(t), u(t)), x(t̂) = x∗(t̂). (2.3)

Further, if u∗ is the unique optimal control for (2.2), then û∗ is the unique
optimal control for (2.3).

PROOF This proof is done by contradiction. Suppose, to the contrary,
that û∗ is not optimal, i.e., there exists a control û1 on the interval [t̂, t1] such
that Ĵ(û1) > Ĵ(û∗). Construct a new control u1 on the whole interval [t0, t1]
as follows

u1(t) =

{
u∗(t) for t0 ≤ t ≤ t̂,

û1(t) for t̂ < t ≤ t1.

Let x1 be the state associated with control u1. Notice that u1 and u∗ agree
on [t0, t̂], so that x1 and x∗ will also agree there. Hence,

J(u1)− J(u∗) =

(∫ t̂

t0

f(t, x1, u1) dt + Ĵ(û1)

)
−

(∫ t̂

t0

f(t, x∗, u∗) dt + Ĵ(û∗)

)

= Ĵ(û1)− Ĵ(û∗)
> 0.
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However, this contradicts our initial assumption that u∗ was optimal for (2.2).
Thus, no such control û1 exists, and û∗ is optimal for (2.3).

The proof of the result concerning uniqueness follows in almost exactly the
same manner and is left as an exercise.

Note that this theorem also holds for minimization problems. Intuitively,
the theorem makes sense. If we have an optimal pair u∗, x∗ for an optimal
control problem and move along the optimal path to a time t̂, then one optimal
path for the remaining time should be to simply continue on the path already
begun. Notice, however, that when considering a time interval shortened by
truncating the end, i.e., [t0, t̂], we have no information on the new optimal
control. In fact, no relation between the controls is necessary, as you will see
in Example 2.3. First, let us study an example where the principle does apply.

Example 2.2

min
u

∫ 2

0

x(t) +
1
2
u(t)2 dt

subject to x′(t) = x(t) + u(t), x(0) =
1
2
e2 − 1.

First, we will solve this example on [0, 2], then solve the same problem on
a smaller interval [1, 2]. The Hamiltonian in this example is

H = x +
1
2
u2 + xλ + uλ.

The adjoint equation and transversality condition give

λ′ = −∂H

∂x
= −1− λ, λ(2) = 0 ⇒ λ(t) = e2−t − 1,

and the optimality condition leads to

0 =
∂H

∂u
= u + λ ⇒ u∗(t) = −λ(t) = 1− e2−t.

Finally, from the state equation, the associated state is

x∗(t) =
1
2
e2−t − 1.

Now, consider the same problem, except on the interval [1, 2], i.e.,

min
u

∫ 2

1

x(t) +
1
2
u(t)2 dt

subject to x′(t) = x(t) + u(t), x(1) =
1
2
e− 1



30 Optimal Control Applied to Biological Models

Clearly, the Principle of Optimality can be applied to find an optimal pair
immediately, namely, the pair found above. The original problem on the
interval [0, 2] has the same optimal control as the above problem on [1, 2]. Let
us solve this example by hand, though, to reinforce the power of the theorem.
The Hamiltonian will be the same, regardless of interval. Because the end
point remains fixed, the adjoint equation and transversality also remain the
same:

λ′ = −∂H

∂x
= −1− λ, λ(2) = 0 ⇒ λ(t) = e2−t − 1,

while the optimality is also unchanged,

0 =
∂H

∂u
= u + λ ⇒ u∗(t) = −λ(t) = 1− e2−t.

Using the new initial condition x(1) = 1
2e−1, we find the corresponding state

x∗(t) =
1
2
e2−t − 1.

Of course, we see the same optimal pair as above, as called for by the Principle
of Optimality.

Now, let us examine another variation of the same problem. This time,
we will consider the beginning of the interval [0, 1]. Notice that the original
initial condition is used.

Example 2.3

min
u

∫ 1

0

x(t) +
1
2
u(t)2 dt

subject to x′(t) = x(t) + u(t), x(0) =
1
2
e2 − 1.

Again, the Hamiltonian is the same, so that the adjoint and optimality con-
ditions are unchanged. However, the transversality condition is now different,

λ′(t) = −∂H

∂x
= −1− λ, λ(1) = 0 ⇒ λ(t) = e1−t − 1,

so that

u∗(t) = −λ(t) = 1− e1−t.

Using this in the state equation,

x∗(t) =
1
2
e1−t − 1 +

1
2
(e2 − e)et.
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FIGURE 2.2: Optimal controls for Examples 2.2 (dashed) and 2.3 (solid)
plotted together.

We notice that the optimal pair here is different from the optimal pair
found in the previous example (Figure 2.2). This illustrates the limitations
of Theorem 2.3. These examples also give an insight into the theorem via
Pontryagin’s Maximum Principle. When the initial time is increased, neither
the adjoint equation nor the transversality condition is altered, so that the
adjoint will remain the same. However, when the final time is decreased, the
transversality condition will change. Then, the adjoint could be different,
possibly changing the optimal pair u∗, x∗.

2.4 The Hamiltonian and Autonomous Problems

Recall that the Hamiltonian H(t, x, u, λ) is a function of four variables.
However, time t is the underlying variable as each of x, u, and λ is a function
of t. Therefore, H can be thought of implicitly as a function of t. Because x
and λ are continuous, and u is piecewise continuous, it follows H is a piecewise
continuous function of t. In fact, a much stronger property is true for u∗ and
x∗.
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THEOREM 2.4
The Hamiltonian is a Lipschitz continuous function of time t on the optimal
path.

PROOF Let u∗, x∗ be an optimal pair for (1.2), and λ the associated
adjoint. For t ∈ [t0, t1], write

M(t) = H(t, x∗(t), u∗(t), λ(t)).

As u∗ is piecewise continuous on a compact interval, there is some bounded
interval P such that u∗(t) ∈ P for all t ∈ [t0, t1]. Similarly, there exist bounded
intervals Q and R such that x∗(t) ∈ Q and λ(t) ∈ R for all t ∈ [t0, t1].

Consider the Hamiltonian as a function of four variables H(t, x, u, λ), where
we think of x, u, λ as only numbers for a moment. By the original choices of
f and g, H is continuously differentiable in all four arguments. Therefore, it
is possible to choose a constant K1 such that

|Ht(t, x, u, λ)| ≤ K1, |Hx(t, x, u, λ)| ≤ K1, and |Hλ(t, x, u, λ)| ≤ K1,

for all tuples (t, x, u, λ) in the compact set [t0, t1] × P × Q × R. Fix s, t ∈
[t0, t1]. For convenience, write xt = x∗(t) and xs = x∗(s). Define ut, us, λt, λs

similarly. Let τ ∈ P . By a few applications of the mean value theorem,

|H(t, xt, τ, λt)−H(s, xs, τ, λt)|
≤ |Ht(c1, xt, τ, λt)||t− s|+ |Hx(s, c2, τ, λt)||xt − xs|

+ |Hλ(s, xs, τ, c3)||λt − λs|
≤ K1|t− s|+ K1|xt − xs|+ K1|λt − λs|,

for some intermediary points c1 ∈ [t0, t1], c2 ∈ Q, and c3 ∈ R. On the
other hand, x∗ and λ are piecewise differentiable on a compact interval, thus
Lipschitz continuous. Let K2 be the maximum of the two Lipschitz constants.
Then we have

|H(t, xt, τ, λt)−H(s, xs, τ, λt)|
≤ K1|t− s|+ K1|xt − xs|+ K1|λt − λs|
≤ (K1 + 2K1K2)|t− s|.

(2.4)

Set K = K1 + 2K1K2 and note this holds for all τ ∈ P .
Now, M(t) = H(t, xt, ut, λt) and similarly for s. By Theorem 1.2, the

Hamiltonian is maximized pointwise by u∗, so

H(t, xt, us, λt) ≤ H(t, xt, ut, λt) and
H(s, xs, ut, λs) ≤ H(s, xs, us, λs).

(2.5)
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Applying (2.4) for τ = us and τ = ut, and combining with (2.5), we see

−K|t− s| ≤ H(t, xt, us, λt)−H(s, xs, us, λs)
≤ H(t, xt, ut, λt)−H(s, xs, us, λs)
= M(t)−M(s)
≤ H(t, xt, ut, λt)−H(s, xs, ut, λs)
≤ K|t− s|.

Namely, |M(t) − M(s)| ≤ K|t − s|. As t, s are arbitrary, M is Lipschitz
continuous.

In Exercise 1.2, we had a problem where f and g explicitly depend on t:

min
u

∫ 2

1

tu(t)2 + t2x(t) dt

subject to x′(t) = −u(t), x(1) = 1.

The optimal solution set is

u∗(t) =
1
2t

(
8
3
− t3

3

)
,

x∗(t) =
1
18

t3 − 4
3

ln(t) +
17
18

,

λ(t) =
8
3
− 1

3
t3.

So, we can write

H(t, x∗, u∗, λ) = tu∗(t)2 + t2x∗(t)− λ(t)u∗(t)

= − 1
4t

(
8
3
− 1

3
t3

)2

+ t2
(

1
18

t3 − 4
3

ln(t) +
17
18

)
,

giving us H as an explicit function of t. Similarly, for Example 1.2, we can
plug in the solved optimal solutions to find H as an explicit function of t.
Amazingly, in this case

H(t) ≡ 24e−4

(3e−4 + 1)2
,

a constant. This is not a coincidence. Before exploring this, we make a
definition.

If an optimal control problem has no explicit dependence on time t, we say
it is autonomous. In our notation, this means the function f (the integrand)



34 Optimal Control Applied to Biological Models

and g (the RHS of the state equation) are both functions of only x and u.
Namely,

max
u

∫ t1

t0

f(x(t), u(t)) dt

subject to x′(t) = g(x(t), u(t)), x(0) = x0. (2.6)

Examples 1.1 and 1.2 are both autonomous. Exercise 1.2 is not autonomous,
as the integrand f(t, x, u) = tu(t)2 + t2x(t) has explicit dependence on t.

THEOREM 2.5
If an optimal control problem is autonomous, then the Hamiltonian is a

constant function of time along the optimal path.

PROOF Let u∗, x∗ be the optimal pair for the control problem (2.6), and
λ the associated adjoint.

Let M(t) = H(x∗(t), u∗(t), λ(t)) be defined as in the proof of Theorem 2.4,
except now H is only a function of three variables. As M is Lipschitz continu-
ous, we have from measure theory that M is differentiable almost everywhere,
with respect to Lebesgue measure [163]. Let t ∈ (t0, t1) be any point where
M ′ exists.

Denote u∗(t) = τ . Note, for small enough δ > 0 so that t + δ ∈ [t0, t1],
the Maximum Principle gives M(t + δ) ≥ H(x∗(t + δ), u∗(t), λ(t + δ)) =
H(x∗(t + δ), τ, λ(t + δ)). So,

M(t + δ)−M(t) ≥ H(x∗(t + δ), τ, λ(t + δ))−H(x∗(t), τ, λ(t)).

Divide by δ and then let δ → 0. This shows

M ′(t) ≥ d

dt
H(x∗(t), τ, λ(t))

∣∣∣∣
t=t

= Hx(x∗(t), τ, λ(t)) (x∗)′(t) + Hλ(x∗(t), τ, λ(t)) λ′(t)
= −λ′(t) (x∗)′(t) + (x∗)′(t) λ′(t) = 0.

By the same argument,

M(t)−M(t− δ) ≤ H(x∗(t), τ, λ(t))−H(x∗(t− δ), τ, λ(t− δ)).

Dividing by δ and letting δ → 0, we see M ′(t) ≤ 0. Hence, M ′ = 0 almost
everywhere. Combined with the fact that M is continuous, we see M is
constant.

The results given in Theorems 2.4 and 2.5 remain true in later chapters,
even though the optimal control problems become more complicated (i.e.,
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states fixed at the final time, bounds on the control, multiples states and
controls). We do not reprove the results each time, as they follow in more
or less the same manner. The proof for one of the more complicated cases is
given in [158].

2.5 Exercises

Exercise 2.1 Complete the proof of Theorem 2.3 by proving the unique-
ness statement.

Exercise 2.2 Reconsider Example 1.2,

min
u

1
2

∫ t1

t0

3x(t)2 + u(t)2 dt

subject to x′(t) = x(t) + u(t), x(t0) = x0.

For what values of t0, t1, and x0 can we apply the Principle of Optimal-
ity to solve the problem using the solution to the original problem found in
Chapter 1?

Exercise 2.3 Consider

max
u

∫ t1

t0

(u(t)x(t)− u(t)2 − x(t)2) dt

subject to x′(t) = x(t) + u(t), x(t0) = x0.

Note that the t0 = 1, t1 = 5, x0 = 2 case is Exercise 1.3. Solve the problem
for t0 = 1, t1 = 3, x0 = 2 and note the results do not match the results from
Exercise 1.3 on the interval [1, 3]. For t0 = 3 and t1 = 5, what value of x0

does the Principle of Optimality guarantee agreement with the solutions from
Exercise 1.3 on [3, 5]?





Chapter 3

State Conditions at the Final Time

Up to this point, we have viewed the value of the state at the terminal time
to be immaterial, i.e., the objective functional (our goal) did not explicitly
depend on x(t1). However, there are situations where we might wish to take
it into consideration.

3.1 Payoff Terms

Many times, in addition to maximizing (or minimizing) terms over the entire
time interval, we will wish to also maximize a function value at one particular
point in time, specifically, the end of the time interval. For example, suppose
you want to minimize the tumor cells at the final time in a cancer model, or
the number of infected individuals at the final time in an epidemic model.
The necessary conditions must be appropriately altered. In general, consider
the following set-up,

max
u

[
φ(x(t1)) +

∫ t1

t0

f(t, x(t), u(t)) dt
]

subject to x′ = g(t, x(t), u(t)), x(t0) = x0,

where φ(x(t1)) is a goal with respect to the final position or population level,
x(t1). We call φ(x(t1)) a payoff term. It is sometimes referred to as the
salvage term. Consider the resulting change in the derivation of the necessary
conditions. Our objective functional becomes

J(u) =
∫ t1

t0

f(t, x(t), u(t)) dt + φ(x(t1)).

In the calculation of

0 = lim
ε→0

J(uε)− J(u∗)
ε

,

the only change occurs in the conditions at the final time,
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0 =
∫ t1

t0

[
(fx + λgx + λ′)

dxε

dε

∣∣∣∣∣
ε=0

+ (fu + λgu)h

]
dt

−
(
λ(t1)− φ′(x(t1))

)∂xε

∂ε
(t1)

∣∣∣∣∣
ε=0

.

(3.1)

So, if we choose the adjoint variable λ to satisfy the previous adjoint equation
and also

λ′(t) = −fx(t, x∗, u∗)− λ(t)gx(t, x∗, u∗),
λ(t1) = φ′(x∗(t1)),

then (3.1) reduces to

0 =
∫ t1

t0

(fu + λgu)h dt,

and the optimality condition

fu(t, x∗, u∗) + λgu(t, x∗, u∗) = 0

follows as before. So, the only change in the necessary conditions is in the
transversality condition

λ(t1) = φ′(x∗(t1)).

To clarify how to calculate this adjoint final time condition, consider the
following examples.

Example 3.1

max
u

∫ T

0

f(t, x(t), u(t)) dt + 5x(T )3

subject to x′(t) = g(t, x(t), u(t)), x(0) = x0.

Here we have

φ(s) = 5s3 ⇒ φ′(s) = 15s2,

so that the transversality condition is

λ(T ) = 15x∗(T )2.
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Example 3.2 (from [100])

min
u

1
2

∫ 1

0

u(t)2 dt + x(1)2

subject to x′(t) = x(t) + u(t), x(0) = 1.

Note, this problem is identical to Example 1.1, except for the addition of
the payoff term. So now, our goal includes minimizing the term x(1)2, in
addition to the square integral of the control. We can view this as minimizing
a population, with exponential growth, at the end of a time frame. We should
expect u to be negative, in order to decrease x, but |u| cannot be too large
because of the integral. In this example,

H =
1
2
u2 + λx + λu.

The optimality condition gives

0 =
∂H

∂u
= u + λ ⇒ u∗(t) = −λ(t).

Also, the adjoint equation is

λ′(t) = −∂H

∂x
= −λ ⇒ λ(t) = Ce−t,

for some constant C. Hence,

u∗(t) = −λ(t) = −Ce−t.

So,

x′(t) = x− Ce−t, x(0) = 1,

which gives

x∗(t) =
C

2
e−t + Ket,

where K is a constant. Recall, the transversality condition here is

λ(1) = φ′(x(1)) = (x2(1))′ = 2x(1).

We have the system of linear equations

1 = x(0) =
C

2
+ K

Ce−1 = λ(1) = 2x(1) = Ce−1 + 2Ke1,

which can be solved to give C = 2, K = 0. Thus,
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x∗(t) = e−t, u∗(t) = −2e−t,

and u∗ is negative as expected.
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FIGURE 3.1: The optimal state for Example 3.2 (solid) and Example 1.1
(dashed).

If we plug these variables back into the objective functional, we find J(u∗) =
1. In the original Example 1.1, without the x(1)2 term, J(u∗) = 0. The two
optimal states are plotted in Figure 3.1.

Example 3.3 Let x(t) represent the number of tumor cells at time t (with
exponential growth factor α), and u(t) the drug concentration. We wish to
simultaneously minimize the number of tumor cells at the end of the treatment
period and the accumulated harmful effects of the drug on the body. So, the
problem is

min
u

x(T ) +
∫ T

0

u(t)2 dt

subject to x′(t) = αx(t)− u(t), x(0) = x0 > 0.

This model is very simple and unrealistic; we use it for illustrative purposes
only. A more sophisticated and interesting model is used in Lab 5.
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Note that φ(s) = s here, so that φ′(s) = 1. First, we construct the Hamil-
tonian and then calculate the necessary conditions:

H = u2 + λ(αx− u),
∂H

∂u
= 2u− λ = 0 at u∗ ⇒ u∗ =

λ

2
,

λ′ = −∂H

∂x
= −αλ ⇒ λ = Ce−αt,

λ(T ) = 1.

This gives the adjoint variable,

λ(t) = eα(T−t).

Hence, we obtain the optimal control

u∗(t) =
eα(T−t)

2
,

and we can then solve for the optimal state

x′ = αx− u = αx− eα(T−t)

2
, x(0) = x0.

This ODE can be solved using an integration factor to find

x∗(t) = x0e
αt + eαT e−αt − eαt

4α
.

3.2 States with Fixed Endpoints

There are various possibilities of fixing the position of the state at the
beginning or at the end of the time interval or both. The objective functional
could depend on the final or initial position. Consider the problem

max
u

∫ t1

t0

f(t, x(t), u(t)) dt + φ(x(t0))

subject to x′(t) = g(t, x(t), u(t)),
x(t0) free, x(t1) = x1 fixed.

This is different than the problems we have been examining, as the state is
fixed at the end of the time interval, not at the beginning. However, the same
argument we used in Chapter 1, with the adjoint chosen appropriately, shows
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that the necessary conditions for an optimal pair u∗, x∗ will be as before, with
only the transversality condition changed. Specifically,

λ(t0) = φ′(x(t0)).

See Exercise 3.4. This suggests there may exist a simple duality between the
state and adjoint boundary conditions.

Consider the problem below, where the state is fixed at both the beginning
and end of the time interval,

max
u

∫ t1

t0

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x(t), u(t))
x(t0) = x0, x(t1) = x1 both fixed.

(3.2)

The maximization here is over all admissible controls. That is, the set of
controls which adhere to all stated restrictions (explicit and implicit). In the
case of (3.2), this would mean all controls which steer the state from the
fixed initial condition to the fixed final condition. A slight modification of the
necessary conditions is needed to solve such a problem. We give the following
theorem.

THEOREM 3.1
If u∗(t) and x∗(t) are optimal for problem (3.2), then there exists a piecewise
differentiable adjoint variable λ(t) and a constant λ0, equal to either 0 or 1,
such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all admissible controls u at each time t, where the Hamiltonian H is

H = λ0f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

and

λ′(t) = −∂H(t, x∗(t), u∗(t))
∂x

.

The proof of this result is somewhat different from the proof technique we have
used for necessary conditions so far. It is also more difficult, as the state is now
overdetermined, i.e., a first order ODE with two boundary conditions. Only
controls yielding the required state boundary conditions can be considered.
So, we refrain from giving the proof here. For more information see [62, 100].
Note, as x now has both boundary conditions, λ has none.

The constant λ0 arises here to adjust for degenerate problems, or problems
where the objective functional is immaterial. Namely, all admissible controls
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yield the same objective functional value. To motivate this, recall the original
proof of the necessary conditions given in Chapter 1. We start with an optimal
control and form a family of controls u∗ + εh. We cannot do something this
simple minded here, as any control must also satisfy the constraints on the
state. We can use a similar technique (albeit more complicated) so long as we
have an optimal control and a different control which yield distinct objective
functional values. If this cannot be done, we are forced into the λ0 = 0 case.
Consider the following example.

Example 3.4 (from [55])

min
u

∫ 1

0

u(t) dt

subject to x′(t) = u(t)2, x(0) = 0, x(1) = 0.

If we examine the differential equation, it is clear that u ≡ 0 is the only control
which produces a state x satisfying the boundary conditions. Therefore, it
is automatically the optimal control. However, let us examine the necessary
conditions. First, suppose we are in the λ0 = 1 case. Then,

H = u + u2λ,

λ′ = −∂H

∂x
= 0.

This shows that λ ≡ c for some constant c. Now, the condition that H is
maximized at u∗ gives the familiar condition 0 = ∂H

∂u . Namely,

0 = 1 + 2λu∗ = 1 + 2cu∗ ⇒ u∗ ≡ −1/2c.

Hence, x′ = 1/4c2. But, this is incompatible with the boundary conditions.
Thus, λ0 6= 1.

On the other hand, it is easily checked that u = 0 satisfies all conditions of
Theorem 3.1 when λ0 = 0.

Of course, in application, objective functionals which are immaterial would
not be chosen. As all further problems presented here will be nondegenerate,
we assume λ0 = 1. In this case, the conditions of Theorem 3.1 appear similar
to the necessary conditions we have seen so far, except the terminal boundary
condition is now on x. The following examples illustrate how to solve such
problems.
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Example 3.5

min
u

∫ 4

0

u(t)2 + x(t) dt

subject to x′(t) = u(t), x(0) = 0, x(4) = 1.

We begin by forming the Hamiltonian

H = u2 + x + λu.

We have no transversality condition, as x has both boundary conditions, but
we make use of the adjoint condition,

λ′(t) = −∂H

∂x
= −1 ⇒ λ(t) = k − t

for some constant k. Then, the optimality condition gives

0 =
∂H

∂u
= 2u + λ ⇒ u∗ = −λ

2
=

t− k

2
.

Solving the state equation with this control gives

x∗(t) =
t2

4
− kt

2
+ c

for some constant c. Using the boundary conditions, x(0) = 0 implies c = 0,
and x(4) = 1 gives k = 3

2 . So,

u∗(t) =
2t− 3

4
and x∗(t) =

t2 − 3t

4
.

Example 3.6 (from [100])

min
u

1
2

∫ 1

0

u2(t) dt

subject to x′(t) = x(t) + u(t), x(0) = 1, x(1) = 0.

This is another variation on Examples 1.1 and 3.2. The objective functional
once again does not depend on x, but we must choose a control that moves x
from 1 to 0. Again, we expect a negative u. The Hamiltonian is

1
2
u2 + λx + λu.

As before, the optimality condition gives



State Conditions at the Final Time 45

0 =
∂H

∂u
= u + λ ⇒ u∗ = −λ.

Also,

λ′(t) = −∂H

∂x
= −λ ⇒ λ(t) = Ce−t,

for some constant C. Thus,

u∗(t) = −λ(t) = −Ce−t,

so that

x′(t) = x− Ce−t ⇒ x∗(t) =
C

2
e−t + Ket.

Enforcing the boundary conditions on x, we find

1 = x(0) =
C

2
+ K

0 = x(1) =
C

2
e−1 + Ke,

which gives C = 2e2

e2−1 and K = 1
1−e2 , so that

x∗(t) =
1

e2 − 1
(e2−t − et), u∗(t) =

2
1− e2

e2−t.

Note, in Example 3.2 we wanted to minimize the value of x(1)2 and the
cumulative effect of the control. So, we wanted to push x(1) close to 0. Here,
we choose the control with the smallest cumulative effect that forces the state
to 0. If we plug the optimal control from this example into the objective
functional, we find J(u∗) = 2(1 − e−2)−1, whereas the value of J(u∗) in
Example 3.2 was 1. Not fixing the final state allows more freedom in the
choice of controls, and the objective functional can be reduced further. The
two optimal states are shown in Figure 3.2.



46 Optimal Control Applied to Biological Models

0  1  

1  

Time

S
ta

te
s

FIGURE 3.2: The optimal state from Example 3.6 (solid) is forced to 0.
The optimal state from Example 3.2 (dashed) is not.

3.3 Exercises

Exercise 3.1 Solve

min
u

1
2

∫ 1

0

u(t)2 dt + x(1)

subject to x′(t) = −u(t), x(0) = 1.

Exercise 3.2 (from [169]) Let d, S, x0, T > 0 be positive constants. Solve

max
u

∫ T

0

(x(t)− 1
2
u(t)2) dt + Sx(T )

subject to x′(t) = −dx(t) + u(t), x(0) = x0.

Exercise 3.3 Solve
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min
u

1
2

∫ b

a

u(t)2 dt

subject to x′(t) = u(t)− x(t), x(a) = 1, x(b) = 2.

Exercise 3.4 State and prove the necessary conditions for the problem

max
u

∫ t1

t0

f(t, x(t), u(t)) dt + φ(x(t0))

subject to x′(t) = g(t, x(t), u(t)), x(t1) = x1.

Exercise 3.5 (from [169]) Consider the problem

min
u

1
4

∫ 1

0

u(t)4 dt

subject to x′(t) = x(t) + u(t), x(0) = x0, x(1) = 0.

Show that the optimal control is u∗(t) =
4x0

3(e−4/3 − 1)
e−t/3.

Exercise 3.6 (from [100]) Show that there can be no optimal control for

max
u

∫ 1

0

u(t) dt

subject to x′(t) = x(t) + u(t)2, x(0) = 1, x(1) = 0.

Exercise 3.7 (from [126]) Optimal control techniques can be used to
verify the shortest distance between two points is a straight line. If we have
two points in R2, we can rescale so that one point is (0, 0). Let the other
point (after rescaling) be (a, b). Let the state x(t) be a curve from (0, 0) to
(a, b). We take the control to be u(t) = x′(t). We are interested in minimizing
arc length, which has the formula

∫ a

0

√
1 + x′(t)2 dt. Therefore, our optimal

control problem is

min
u

∫ a

0

√
1 + u(t)2 dt

subject to x′(t) = u(t), x(0) = 0, x(a) = b.
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Show the optimal state is the straight line between (0, 0) and (a, b).

Exercise 3.8 (from [55]) Using the same technique as in the previous exer-
cise, find the curve from (0, 2) to (2, 4) which, when revolved around the x-axis,
has minimal surface area. The surface area of the revolution of the curve x(t)
(defined on a ≤ t ≤ b) is given by the formula A = 2π

∫ b

a
x(t)

√
1 + x′(t)2 dt.

Exercise 3.9 (from [126]) We wish to heat a room to a desired temperature
D in a fixed time frame [0, T ]. Let x(t) be the temperature in the room
and u(t) the rate of heat supply. The temperature is governed by x′(t) =
−a(x(t)−D) + bu(t). If the initial temperature is 0 degrees (x(0) = 0), find
the heating schedule u(t) which reaches the desired temperature (x(T ) = D)
while minimizing energy used. Here the performance index is 1

2

∫ T

0
u(t)2 dt.



Chapter 4

Forward-Backward Sweep Method

Consider the optimal control problem

max
u

∫ t1

t0

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x(t), u(t)), x(t0) = a.

We want to solve such problems numerically, that is, devise an algorithm that
generates an approximation to an optimal piecewise continuous control u∗.
We break the time interval [t0, t1] into pieces with specific points of interest
t0 = b1, b2, . . . , bN , bN+1 = t1; these points will usually be equally spaced.
The approximation will be a vector ~u = (u1, u2, . . . , uN+1), where ui ≈ u(bi).

There are various methods of this type which can be employed to solve
optimal control problems. For example, total-enumeration methods or linear
programming techniques can be employed [17]. However, as we saw in the
previous chapters, any solution to the above optimal control problem must
also satisfy

x′(t) = g(t, x(t), u(t)), x(t0) = a,

λ′(t) = −∂H

∂x
= −(fx(t, x, u) + λ(t)gx(t, x, u)), λ(t1) = 0,

0 =
∂H

∂u
= fu(t, x, u) + λ(t)gu(t, x, u) at u∗.

The third equation, the optimality condition, can usually be manipulated to
find a representation of u∗ in terms of t, x, and λ. If this representation is
substituted back into the ODEs for x, λ, then the first two equations form
a two-point boundary value problem. There exist many numerical methods
to solve initial value problems, such as Runge-Kutta or adaptive schemes,
and boundary value problems, such as shooting methods [22, 32]. Any of
these methods could be used to solve the optimality system, and thus, the
optimal control problem (if appropriate existence and uniqueness results are
established).

We wish to take advantage of certain characteristics of the optimality sys-
tem, however. First, we are given an initial condition for the state x but a
final time condition for the adjoint λ. Second, g is a function of t, x, and u
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only. Values for λ are not needed to solve the differential equation for x using
a standard ODE solver. Taking this into account, the method we present
here is very intuitive. It is generally referred to as the Forward-Backward
Sweep method. Information about convergence and stability of this method
can be found in [74]. A rough outline of the algorithm is given below. Here,
~x = (x1, . . . , xN+1) and ~λ = (λ1, . . . , λN+1) are the vector approximations for
the state and adjoint.

Step 1. Make an initial guess for ~u over the interval.

Step 2. Using the initial condition x1 = x(t0) = a and the values for ~u, solve ~x
forward in time according to its differential equation in the optimality
system.

Step 3. Using the transversality condition λN+1 = λ(t1) = 0 and the values for
~u and ~x, solve ~λ backward in time according to its differential equation
in the optimality system.

Step 4. Update ~u by entering the new ~x and ~λ values into the characterization
of the optimal control.

Step 5. Check convergence. If values of the variables in this iteration and the
last iteration are negligibly close, output the current values as solutions.
If values are not close, return to Step 2.

An example of successive control estimates is shown in Figure 4.1. We
make a few notes about the algorithm. For the initial guess, ~u ≡ 0 is almost
always sufficient. In certain problems, where division by u occurs for example,
a different initial guess must be used. Occasionally, the initial guess may
require adjusting if the algorithm has problems converging. Often in Step
4, it is necessary to use a convex combination between the previous control
values and values given by the current characterization. This often helps to
speed the convergence. As you will see, this is done in the provided codes.
For Steps 2 and 3, any standard ODE solver can be used. For the purposes
of this text, a Runge-Kutta 4 routine is used. Specifically, given a step size h
and an ODE x′(t) = f(t, x(t)), the approximation of x(t + h) given x(t) is

x(t + h) ≈ x(t) +
h

6
(k1 + 2k2 + 2k3 + k4) (4.1)

where

k1 = f(t, x(t))

k2 = f(t +
h

2
, x(t) +

h

2
k1)

k3 = f(t +
h

2
, x(t) +

h

2
k2)

k4 = f(t + h, x(t) + hk3).

(4.2)
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FIGURE 4.1: Control estimates are plotted. The first four iterations (after
the initial guess) are plotted in the first graph, and the first fifteen in the
second. Note the graphs are converging to the correct control.

The error for Runge-Kutta 4 is O(h4). More information on the stability and
accuracy of this and other Runge-Kutta routines is found in numerous texts.
One of the classic references for these methods is Butcher [23, 24].

Many types of convergence tests exist for Step 5. Often times, it is sufficient
to require ‖u− oldu‖ =

∑N+1
i=1 |ui − oldui| to be small, where ~u is the vector

of estimated values of the control during the current iteration, and ~oldu is the
vector of estimated values from the previous iteration. Here, ‖ · ‖ refers to
the `1 norm for vectors, i.e., the sum of the absolute value of the terms. Both
these vectors are of length N + 1, as there are N time steps. In this text, we
use a slightly stricter convergence test. Namely, we will require the relative
error to be negligibly small, i.e.,

‖~u− ~oldu‖
‖~u‖ ≤ δ

where δ is the accepted tolerance. We must make one small adjustment; we
must allow for zero controls. So, multiply both sides by ‖~u‖ to remove it from
the denominator. Therefore, our requirement is

δ‖~u‖ − ‖~u− ~oldu‖ ≥ 0,

or
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δ

N+1∑

i=1

|ui| −
N+1∑

i=1

|ui − oldui| ≥ 0. (4.3)

We will actually make this requirement of all variables, not just the control.
In the lab programs, we take N = 1000 and δ = 0.001.

The remainder of this chapter will be devoted to further explanation of the
Forward-Backward Sweep algorithm by way of example.

Example 4.1

max
u

∫ 1

0

Ax(t)−Bu(t)2 dt

subject to x′(t) = −1
2
x(t)2 + Cu(t), x(0) = x0 > −2,

A ≥ 0, B > 0.

We require B > 0 so that this is a maximization problem. Before writing the
code, we develop the optimality system of this problem by first noting the
Hamiltonian is

H = Ax−Bu2 − 1
2
λx2 + Cλu.

Using the optimality condition,

0 =
∂H

∂u
= −2Bu + Cλ ⇒ u∗ =

Cλ

2B
.

We also easily calculate the adjoint equation to find

x′(t) = −1
2
x2 + Cu, x(0) = x0

λ′(t) = −A + xλ, λ(1) = 0.

Using these two differential equations and the representation of u∗, we gen-
erate the numerical code as described above, written in MATLAB [138]. The
code can be viewed in its entirety in the file code1.m, and is also shown in
increments below.
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code1.m
1 function y = code1(A,B,C,x0)
2

3 test = -1;
4

5 delta = 0.001;
6 N = 1000;
7 t = linspace(0,1,N+1);
8 h = 1/N;
9 h2 = h/2;

10

11 u = zeros(1,N+1);
12

13 x = zeros(1,N+1);
14 x(1) = x0;
15 lambda = zeros(1,N+1);
16

17 while(test < 0)
18

Line 1 establishes the MATLAB function code1 and variables A, B, C, and
x0 as inputs. The variable y is the output. The variable test created in Line 3 is
the convergence test variable. It begins the while loop in Line 17. The loop, as
we will see, contains the forward-backward sweep. Once convergence occurs,
test will become non-negative, and the while loop will end. In Line 7, a vector
~t representing the time variable is created. The MATLAB function linspace
creates N +1 = 1001 equally spaced nodes between 0 and 1, including 0 and 1.
In Line 8, the spacing between these nodes is assigned as h. Line 9 establishes
a convenient short-hand which is used in the Runge-Kutta subroutine. Line
11 is our initial guess for ~u, namely, ui = 0 at each of the 1001 nodes. Lines
13 and 15 declare the vectors ~x and ~λ and their size. These are not guesses,
as these values will be overwritten during the sweep process. The initial value
of ~x is stored in Line 14.

code1.m
19 oldu = u;
20 oldx = x;
21 oldlambda = lambda;
22

Lines 19 - 21 are the first lines inside the while loop, which begins the sweep
process. These lines store the vectors ~u, ~x, and ~λ as previous values, denoted
as ~oldu, ~oldx, and ~oldλ. Recall that our convergence test requires the values
of the current and previous iterations. After storing the current values as the
previous ones here, new values are generated in the following lines.
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code1.m
23 for i = 1:N
24 k1 = -0.5*x(i)^2 + C*u(i);
25 k2 = -0.5*(x(i) + h2*k1)^2 + C*0.5*(u(i) + u(i+1));
26 k3 = -0.5*(x(i) + h2*k2)^2 + C*0.5*(u(i) + u(i+1));
27 k4 = -0.5*(x(i) + h*k3)^2 + C*u(i+1);
28 x(i+1) = x(i) + (h/6)*(k1 + 2*k2 + 2*k3 + k4);
29 end
30

Lines 23 - 29 contain the Runge-Kutta sweep solving ~x forward in time.
Line 23 begins the for loop and Line 29 ends it. Line 24 calculates the k1

value, which is simply the RHS of the differential equation. In Line 25, to
find k2, x is replaced with x + h

2 k1. We are also to adjust the time variable
t by replacing it with t + h

2 . There is no explicit dependence on t in the
differential equation, but u is a function of t. So in calculating k2 and k3,
we should replace ui with ui+h/2. However, this value is not assigned by our
vector, meaning there is no u component halfway between i and i+1 locations.
There are many ways to approximate this value. An interpolating polynomial
or spline of u could be generated, for example. However, it usually suffices to
approximate it with the average

u(i) + u(i + 1)
2

.

In Line 26, similar prescribed changes in x and u are made. In Line 27, a full
time step is called for, so ui+1 is used. Line 27 generates the next iterated
value of the state x. Note, as x1 is used to find x2, x2 to find x3, and so on,
xN is used to find xN+1. This is why in Line 23, i only runs to N , not N +1.

code1.m
31 for i = 1:N
32 j = N + 2 - i;
33 k1 = -A + lambda(j)*x(j);
34 k2 = -A + (lambda(j) - h2*k1)*0.5*(x(j)+x(j-1));
35 k3 = -A + (lambda(j) - h2*k2)*0.5*(x(j)+x(j-1));
36 k4 = -A + (lambda(j) - h*k3)*x(j-1);
37 lambda(j-1) = lambda(j) - ...
38 (h/6)*(k1 + 2*k2 + 2*k3 + k4);
39 end
40

Lines 31 - 39 consist of the Runge-Kutta sweep solving ~λ backward in time.
The for loop begins in Line 30, while the new index is introduced in Line 32.
Notice that as i counts forward from 1 to N , j counts backward from N + 1
to 2. Line 33 is the k1 calculation, which comes directly from the differential
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equation. In Line 34, λj is replaced by λj − h
2 k1. Notice the minus sign,

as we are moving backward in time, so the time increment should actually
be −1/N . As before, we approximate a backward half time-step of ~x by an
average. Lines 35 and 36 are the remaining two steps. Lines 37 and 38 are
the approximation step. Note the use of the ellipse ... in the code on line 37.
This tells MATLAB that 37 and 38 are really the same line of code, and to
treat the line break only as a regular space. MATLAB does not require this,
nor does it care how long each line of code is. It is done here for printing
purposes. Line 39 ends the for loop. Note, each λi value is used to find the
one before it, so that λ2 is used to find λ1. This is why we only need to count
backward to 2, not 1.

code1.m
41 u1 = C*lambda/(2*B);
42 u = 0.5*(u1 + oldu);
43

44 temp1 = delta*sum(abs(u)) - sum(abs(oldu - u));
45 temp2 = delta*sum(abs(x)) - sum(abs(oldx - x));
46 temp3 = delta*sum(abs(lambda)) - ...
47 sum(abs(oldlambda - lambda));
48 test = min(temp1, min(temp2, temp3));
49 end
50

Line 41 is the representation of ~u using the new values for ~λ. This is not
stored as the control ~u, but as a temporary vector ~u1. The control ~u is set as
the average of the last iteration of ~u, namely ~oldu, and the new representation.
This is the convex combination described earlier. Lines 44, 45, and 46/47 are
the convergence test parameters of each variable, where δ = 0.001. Recall,
we require these three values to be non-negative. In Line 48, the variable test
is reassigned as the minimum of these three values. The MATLAB function
min is a binary operation, so in order to find the minimum of three values,
two applications of min are necessary. The end in Line 49 marks the end of
the while loop. If the minimum is non-negative, i.e., if all three values are
non-negative, then convergence has been achieved, as per (4.3), and the while
loop ends. If it is not, then the program returns to the beginning of the while
loop and performs another sweep. Once convergence occurs, the values of the
final vectors are stored in the output matrix y.

code1.m
51 y(1,:) = t;
52 y(2,:) = x;
53 y(3,:) = lambda;
54 y(4,:) = u;

Note, this technique can only be used to solve problems where the state is
fixed at the initial time and free at the terminal time. An obvious adjustment
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to the code allows states fixed at the terminal time and free at the initial time.
However, different algorithms, specifically ones based on shooting methods,
must be employed if the state has two boundary conditions. One such solver is
discussed in Chapter 21. For more information on other solvers, see [6, 7, 139].

We also would like to point out different techniques for control updates.
The term convex combination may have been confusing, as only a simple
average was taken between the previous and current control estimates. Convex
combination refers to an entire family of updating procedures. Many of these
arise in the bounded control case, which we will discuss in Chapter 8. A
different kind of convex combination which could have been used here is

u1 ∗ (1− ck) + oldu ∗ ck,

where k is the current iteration and 0 < c < 1. The terms u1 and oldu are
just as in the code, the control estimate from the characterization and the
previous sweep, respectively. This is a weighted average, where the weight
shifts each iteration towards the current iteration.

Approaches such as these have benefits and drawbacks. When compared
to our convex combination, the simple average, this new method will often
converge more quickly, i.e., with less iterations. However, this usually leads
to loss of accuracy. Often times, methods like this converge “too quickly,”
stopping the sweep process before our code would. On the other hand, these
methods have proven to be useful alternatives for problems where simpler
approaches failed to converge. Throughout this book, we will use the simpler
approach, because it works. However, the reader should keep in mind that
more complicated techniques can be used when necessary.



Chapter 5

Lab 1: Introductory Example

We now begin working on the first few interactive lab programs. They will
allow you to experiment with optimal control problems and see the solutions.
Most of the labs are based on current applied mathematical research, dealing
with an array of biological problems. The first is the problem from the pre-
ceding chapter, and the code used is exactly what we developed there. Before
preceding, however, we need to clarify a few details about the programs and
MATLAB.

First, while MATLAB is needed to run the provided programs, it is certainly
not needed to solve optimal control problems in general. Any mathematical
programming language, such as FORTRAN or C++, is capable of the calcu-
lations needed. MATLAB was chosen for this text because, in the opinion of
the authors, it is easily accessible and has superior graphing tools.

On that note, however, the programs used in this workbook are designed
so that no knowledge of MATLAB is required. For each problem, there is a
user-friendly interface that will guide you through. Each lab consists of two
different MATLAB programs, lab .m and code .m. For example, there are
two programs associated with Lab 1, lab1.m and code1.m. Here, *.m is the
extension given to all files intended for use in MATLAB. The file code1.m is the
Runge-Kutta based, forward-backward sweep solver we built in the previous
chapter. It takes as input the values of the various parameters in the problem
and outputs the solution to the optimality system. The file lab1.m is the user-
friendly interface. It will ask you to enter the values of the parameters one by
one, compile code1.m with these values, and plot the resulting solutions. All
the files must be in the directory that MATLAB treats as the home directory.
This is usually the Work directory.

If you have experience with MATLAB, you may wish to not use the interface
and instead use only the actual codes. They operate as standard MATLAB
function files, with the parameters entered as input. This will allow you
a little more freedom than the interface. However, the interface, especially
when going through the labs, is very convenient and will most likely save time.
If you do choose to use only the code files, you will need to run the interface
a few times before starting the labs in order to see exactly what they do, so
that you can emulate them on your own.
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If you are not a seasoned MATLAB veteran, do not worry. This book is
written with you in mind. However, we do need to cover just a few basic things
about MATLAB. When you open MATLAB, there will be several different
windows or portals. There will be one, most likely the largest and most likely
on the right side, called the Command Window. Everything we do in this book
will take place here. In the Command Window, there will be a prompt. This
is where you will type your commands. For example, to open the interface for
Lab 1, simply type lab1 at the prompt and press enter.

One of the more important commands to know is the stop command. Any
time you wish MATLAB to stop what it is doing, simply hit Ctrl-c. This
will kill the current application and return the prompt. It will also report to
you exactly what it was doing when you gave the stop order, but this will
rarely be of interest to you. The command Ctrl-c may be useful when you
enter certain parameters. Ill-conditioned problems or problems with invalid
parameter values will not necessarily converge. This will not stop MATLAB
from trying, however. It will continue to sweep forward and backward until
it is stopped. All the data provided in the labs is taken from the research, so
convergence always occurs. However, when you supply your own data, which
you are highly encouraged to do, you have no such guarantee. Unless otherwise
specified in the lab, convergence should take no longer than 30 seconds. If it
has failed to do so by then, stop the application and try different numbers.

The interface should be self-explanatory. Once opened, it will ask you to
enter a value for the first parameter. Type a number and press enter. If
you fail to type a number, or enter a number which is not of the right type,
you will receive an error message and be asked for the parameter again. If
you accidentally enter the wrong value and press enter, simply hit Crtl-c and
begin the lab program again. Once all the parameters are entered, it will
display “One moment please ...” as it compiles the solutions using the code
program. After the solutions have been found, it will ask if you would like to
vary any parameters. If you respond negatively, it will automatically plot the
optimal solutions in labeled graphs. The graphs may appear too small to view.
However, if you expand the window, the graphs will enlarge appropriately. If
you reply positively about varying the parameters, it will ask which parameter
to vary. You will then be asked to enter a second value for this parameter.
It will compile a second set of solutions. This set represents solutions for the
problem with the same parameters as before, except the chosen parameter will
be changed to the new value. Then, both solutions will be plotted together,
with the original solutions plotted in blue, and the second set plotted in green.
This will allow you to evaluate how each variable affects the optimal system.
When you are done studying the graph, simply go back to the prompt and
retype lab to start the interface over.

Finally, you are encouraged to compute the optimality system for each
problem by hand. Then, open the code .m files to see that system translated
to MATLAB code. All the programs work more or less the same way and
are written in a uniform manner that should make them easy to read. To
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open an m-file, select the OPEN option under FILE in the upper left-hand
corner. There may also be a standard open folder icon at the top of your
screen, depending on how your MATLAB interface is organized. This will
open a window showing all the m-files in your Work folder.

If you have any questions about MATLAB, you can refer to the MAT-
LAB manual or to any of the numerous MATLAB guides available. However,
the MATLAB Help menu within the program is one of the best resources of
information.

This first lab will utilize the code developed in Chapter 4 in order to solve
the following optimal control problem.

max
u

∫ 1

0

Ax(t)−Bu2(t) dt

subject to x′(t) = −1
2
x2(t) + Cu(t), x(0) = x0 > −2,

A ≥ 0, B > 0.

To begin the program, open MATLAB. At the prompt, type lab1 and press
enter. To become acquainted with the program, perform a few test runs. Enter
values for the constants A, B, C, and x0. At first, do not vary any parameters.
The graphs of the resulting optimal solutions, i.e., the adjoint and the optimal
control and state, will automatically appear. Run the program again, enter
different values, and vary one of the parameters. Once you feel comfortable
with the structure of the program, begin working through the lab exercises
below.

This lab will focus on using the program to characterize the optimal control
and resulting state and to ascertain how each parameter affects the solution.
First, let us consider the goal of the problem. On one hand, we want to use
the control u to maximize the integral of x. On the other hand, we also want
to maximize the negative squared value of u. This, of course, is equivalent to
minimizing the squared value of u. Thus, we must find the right balance of
increasing x and keeping u as small as possible. Enter the values

A = 1 B = 1 C = 4 x0 = 1 (5.1)

and do not vary any parameters, then look at the solutions. Your output
should look something like Figure 5.1. We see u begins strongly, pushing x
up but steadily decreasing to 0. This makes logical sense when we consider
the differential equation of x. Undisturbed by u, the state x will decrease
monotonically. So, we want to push x up early in the time period, so that the
natural decay will be less significant. As we only care about minimizing the
integral of u, and the distribution is irrelevant, the control should be highest
early on. We see this is exactly what the optimal control is. Also, note that x
begins to decrease at the end of the interval, as the control approaches zero.
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FIGURE 5.1: The optimal state, adjoint, and control for the values (5.1).

Reenter the values in (5.1) and then vary the initial condition with x0 = 2.
As the second state begins higher, less control is needed to achieve a similar
effect. Notice that the second control begins lower than the first, but they
quickly approach each other and are almost identical by t = 0.6. This causes
the two states to move towards each other as well, although they never actually
meet. Now use x0 = −1. This time, x begins below zero, so a greater control is
needed to push the state up more quickly. Notice, however, we see the same
effect as before, where the two controls eventually merge, although, much
later than in the previous simulation. We mention here why the requirement
x0 > −2 is imposed. If you were to solve the state equation without u (i.e.,
C = 0), you would find x0 > −2 is required, or division by 0 will occur and
the state will blow-up in finite time. However, we know u will be used to
increase x, so this condition is sufficient to give a finite state solution with the
control.

Use the (5.1) values, varying C with C = 1. We have decreased the effect u
has on the growth of the state. The optimal control in the second system is
less than in the first. It is worth using a greater control in the first system,
as it is more effective. Also, the second state, unlike the others we have seen,
is decreasing over the whole interval. What little control is used does not
increase the state, but only neutralizes some of the natural decay. It would
now take far too much control to increase the state. Enter the same parameter
values, this time varying with C = 8. The results are as you might expect.
The second optimal control, now more effective, is greater than the first. The
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second state increases far more than the first, but still decreases as its control
approaches zero. Finally, note that when C is varied, we do not have the two
controls merging together.

Enter (5.1) and vary with C = −4. The control now has the opposite effect
on the growth of the state. We see the control for the second state is merely
the first control reflected across the x-axis, while the state and adjoint are the
same. Try C = 0. Here, the control has no effect on x, so the optimal control
is u ≡ 0, regardless of A, B, or x0.

Reenter (5.1). Choose to vary A. Specifically, try A = 4 as your second
value. In the second system, A = 4B, so maximizing x(t) is four times as
important as minimizing u2. We see this playing out in the solutions. A
greater u is used so that x can be increased appropriately. Conversely, enter
(5.1) varying with B = 4. In this case, minimizing u(t)2 is more important.
We see on the graph, u(t) is pulled closer to zero, even though this causes
x(t) to increase much less at the beginning. The constants A and B are called
weight parameters, as they determine the importance or weight of variables
in the objective functional.

If you were to compare the graphs of the optimal solutions for

A = 1 B = 2 C = 4 x0 = 1 (5.2)

to the solutions for

A = 2 B = 4 C = 4 x0 = 1 (5.3)

you would notice they were exactly the same. This is because the system is
only influenced by the ratio of the constants A and B, not the actual values.
We know B 6= 0, so we could divide it out of the integral. This would make
our objective function

B

∫ 1

0

A

B
x(t)− u(t)2 dt.

Of course, the constant B in front of the integral is irrelevant, so we ignore
it. Thus, the only constant of significance in the integrand is A

B . In all future
labs, one term of the integrand will have no weight parameter, as it has been
divided out.

Before finishing, we look at a few special cases. Try A = 0. This will also
cause the trivial solution u∗ ≡ 0 regardless of B, C, and x0. If we no longer
care about maximizing x, then we clearly should simply pick u ≡ 0 and ignore
x. We cannot choose B = 0, because we divide by B in the characterization
of the control. However, a similar situation occurs as we let B → 0. For
instance, try A = 1 and B = 0.01. Then, compare the graphs to A = 1 and
B = 0.00001. A very large u (or large negative u, if C < 0) is used to push x
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up as quickly as possibly, because almost no importance is placed on keeping
u2 small.

Exercise 5.1 Reconsider the problem with B = 0

max
u

∫ 1

0

Ax(t) dt

subject to x′(t) = −1
2
x2(t) + Cu(t), x(0) = x0 > −2,

A ≥ 0.

Show (analytically) that no optimal control can exist when A > 0.



Chapter 6

Lab 2: Mold and Fungicide

For the second lab, we will explore an optimal control problem with biological
applications. Let x(t) be a population concentration at time t, and suppose we
wish to reduce the population over a fixed time period. We will assume x has
a growth rate r and carrying capacity M . The application of a substance is
known to decrease the rate of change of x, by decreasing the rate in proportion
to the amount of u and x. Let u(t) be the amount of this substance added
at time t. For example, the population could be an infestation of an insect,
or a harmful microbe in the body. Here we view x(t) as the concentration
of a mold and u(t) a fungicide known to kill it. The differential equation
representing the mold is given by

x′(t) = r(M − x(t))− u(t)x(t), x(0) = x0,

where x0 > 0 is the given initial population size. Note the term u(t)x(t) pulls
down the rate of growth of the mold. The effects of both the mold and fungi-
cide are negative for individuals around them, so we wish to minimize both.
Further, while a small amount of either is acceptable, we wish to penalize for
amounts too large, so quadratic terms for both will be analyzed. Hence, our
problem is as follows

min
u

∫ T

0

Ax(t)2 + u(t)2 dt

subject to x′(t) = r(M − x(t))− u(t)x(t), x(0) = x0.

The coefficient A is the weight parameter, balancing the relative importance
of the two terms in the objective functional. As we saw in the last lab, one
weight term can be divided out, so only the A parameter is needed here. The
other parameter in front of the u2 is taken to be 1. To begin, type lab2 and
press enter. Enter the values

r = 0.3 M = 10 A = 1 x0 = 1 T = 5 . (6.1)

Do not vary any parameters for now. The control initially increases, then
levels off to become constant. The state is also constant here; we say the
control and state are in equilibrium, meaning both stay at constant values.
The control eventually begins decreasing again, going all the way to 0. The
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state never decreases, with heavy growth at the beginning and end of the
interval and constant in the middle. In application, though, we wanted to
eliminate the state, or at least decrease it. Note, we entered the value A = 1,
meaning lowering the level of mold is as important as keeping the levels of
fungicide down. This generally would not be the case, however. We are much
more interested in removing the mold. Therefore, we should use a higher
weight parameter.

Enter the values

r = 0.3 M = 10 A = 10 x0 = 1 T = 5 . (6.2)

Here, the level of fungicide used is much higher. Notice that the state and
control still experience the long period of equilibrium. The control begins at its
greatest point, decreasing slightly before becoming constant, then decreasing
to 0. As desired, the state decreases from its initial amount to about 0.95 and
becomes constant. However, at the end of the interval, when the fungicide use
decreases, the level of mold rapidly increases. Seemingly, the best course of
action would be to begin another 5-day regimen of a second fungicide on about
day 4. For comparison, see Figure 6.1, which shows the optimal state with
these values, versus a mold population where no fungicide is used (u ≡ 0).

0  5  
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3  

Time
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o
ld

FIGURE 6.1: The optimal mold population for (6.2), in solid, increases at
the end of the interval, but is held much lower overall than if no fungicide was
used (dashed).
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Now try varying two larger values of A. Enter the values (6.2), varying
with A = 15. The two systems have similar dynamics. A stronger regimen
of fungicide is used in the second system; hence, the state is driven lower
before becoming constant. Both controls decrease to 0, so that both states
experience rapid growth at the end of the period. The second state does not
grow as large as the first, though, because it begins at a lower equilibrium
point and is still receiving slightly more fungicide.

Enter (6.2), varying with r = 0.1. The mold in the second system has
slow natural growth. Much less fungicide is used, but the mold in the second
system still decreases more than the first. Also, at the end of the interval
when both controls decrease, the increase of the first state is a great deal
sharper or more rapid than the second. We also mention that the second
state is the first we have seen where the amount of mold is less at the end of
the interval than at the beginning. Now vary with r = 0.5. Here, the state
is everywhere increasing, even though a stronger control is used. We are not
able to find an acceptable schedule of fungicide strong enough to overcome
the natural growth rate of the mold. It is worth noting the two controls begin
at the same value.

Examine the carrying capacity M . Enter (6.2), varying with M = 12.
Clearly, the higher carrying capacity will cause the mold in the second system
to naturally increase more rapidly. Much like we saw with the growth rate,
the best strategy is to balance this effect with the control and state. Namely,
a stronger control is used and a less desirable state is achieved. Note, the
controls begin at the same point here as well.

So far, we have only looked at systems where the mold concentration begins
at a fraction of carrying capacity. Look at a simulation where x0 is close to
M . Then, try x0 = M . For instance, run

r = 0.6 M = 5 A = 10 x0 = 5 T = 5 . (6.3)

You will notice a change in the overall behavior of the control. Here, the
control begins with an extremely strong dose of fungicide, with u(0) ≈ 5 ×
u(1). It then quickly returns to the levels we have seen, becoming constant.
However, the state, near carrying capacity, will experience little initial natural
growth. So, the initial blitz of fungicide is devastating to the population. This
allows the large decrease in fungicide use before the equilibrium period, despite
the high growth rate.

Now try varying the initial concentration. Enter (6.2), varying with x0 = 2.
In this simulation, a much stronger control is used initially in the second
system, pushing the second state closer to the first. At approximately t = 0.75,
the states become identical, as do the controls. Now vary with x0 = 3. Now
with x0 = 0.5. We see the same behavior occurs, always in about the same
amount of time. So, initial concentration affects only the initial dose of the
fungicide regimen. Afterwards, a uniform schedule is used, based on the other
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parameters. We will see that this phenomena occurs in several of the later
labs as well.

Finally, vary the length of the time interval. Enter (6.2), varying with
T = 2.5. The initial dynamics are identical. The systems differ only after the
second system exits the equilibrium state. Notice, the decrease of the control
and increase of the state, which occur at the end of the interval, is the same
in both systems, only occurring at different times. In fact, if you continue to
experiment, you will see altering T only changes the length of the equilibrium
period. On that note, if you make T small enough, say T = 0.5, you will
eliminate the equilibrium period entirely, and the dynamics will be noticeably
altered.

Before finishing, we bring up an example of what can go wrong with nu-
merical solutions. MATLAB, due to the amount of information it is able to
store, actually has a “largest number.” If we enter values which cause x to
grow too fast, the state can actually reach this limit. When this happens,
MATLAB will simply stop calculating. Enter the values

r = 1 M = 20 A = 10 x0 = 1 T = 5 . (6.4)

You see the graph goes straight up, then stops at about t = 1.75. This
behavior also occurs in the next lab.
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Lab 3: Bacteria

Suppose a certain bacteria is grown in a lab, perhaps for medical use. Left
alone, the bacteria population will grow exponentially, with growth rate r. A
chemical nutrient is known to speed the reproduction process of the bacteria
when added. However, use of the chemical by the bacteria creates a second
chemical byproduct, which hinders growth. It is also known that the level
of hinderance is related to the size of the bacteria population. Namely, the
larger the bacteria population is, the smaller the effect this byproduct will
have. It is believed this relation is roughly exponential. Therefore, if x(t) is
the bacteria concentration at time t, then the growth is given by

x′(t) = rx(t) + Au(t)x(t)−Bu(t)2e−x(t),

where u(t) is the amount of the chemical being added at time t, A is the
relative strength of the chemical nutrient increasing growth, and B is the
strength of the byproduct. Let x0 > 0 be the given initial concentration. We
will consider growth and supplementation over the normalized time interval
[0, 1]. We wish to maximize x at the end of this interval while simultaneously
minimizing the amount of chemical agent used. Thus, our problem can be
stated

max
u

Cx(1)−
∫ 1

0

u(t)2 dt

subject to x′(t) = rx(t) + Au(t)x(t)−Bu(t)2e−x(t), x(0) = x0,

A,B,C ≥ 0.

Before beginning, we make two short notes. First, it is easily shown from
the adjoint and transversality conditions that λ(t) > 0 for all t. Thus, we can
get the characterization of the control as usual (see Exercise 7.1). Second,
unlike the previous labs, there is a payoff term. Here, φ(x) = Cx and φ′ = C.
So, the adjoint is not zero at the end of the interval, but λ(1) = C. In
previous MATLAB codes, we had set the variable λ equal to a vector of zeros,
to declare its size. We were also inserting the transversality condition: the
adjoint is zero at the final time. Here, we must set λ(1) equal to the constant
C. You can see in the file code3.m this is precisely what is done.
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To begin the program, type lab3 and press enter. Enter the values

r = 1 A = 1 B = 12 C = 1 x0 = 1 . (7.1)

For now, do not vary any parameters. We see the chemical injection is concen-
trated at the end of the time interval. This is due to the decreasing effect of
the byproduct. As x becomes larger, the e−x term decreases, and the byprod-
uct has less of a hindering effect. Consequently, the level of chemical added
starts fairly low and steadily increases, with noticeably higher rates of increase
around t = 0.6 and t = 0.8. As such, the bacteria growth is approximately
exponential early in the time interval, but begins to increase more and more
rapidly.

Enter (7.1), varying with x0 = 0.9. The two solutions begin very close to
each other. However, the chemical use in the first system increases slightly
faster than the second, leading to a significant difference by the end of the
interval. As the bacteria concentration in the first system becomes larger
than the second, the effect of the byproduct becomes less significant, and
more chemical can be used. Now try varying with x0 = 1.1. The differences
in this simulation are more pronounced than before. As x0 is increased, more
chemical can be used earlier. Now try x0 = 1.1 vs. x0 = 1.1495. This small
change almost doubles the final bacteria population. As x0 inches up, the
bacteria population will explode. In fact, entering only x0 = 1.16 will cause
the population to grow beyond MATLAB’s “largest number,” as in the last
lab.

Try a small initial population, such as

r = 1 A = 1 B = 12 C = 1 x0 = 0.1 (7.2)

without varying any parameters. You see very little chemical is used. Due
to the small initial count, the population never gets large enough for the
byproduct to be as insignificant as before. Now try x0 = 0.0001. Virtually no
chemical is used.

Now examine the role of A. Enter (7.1) again, varying with A = 1.1.
The chemical now aids the growth more. As expected, more chemical is used.
However, almost the same amount is used in both systems until about t = 0.4.
At this point, the byproduct’s effect has apparently reached a threshold where
the rate of chemical use should be increased more quickly. The positive effect
of the chemical is greater in the second system, so more chemical is used there.
Similar to what we saw above, as A is increased, the bacteria population will
explode. Only A = 1.4 is needed to breach MATLAB’s limit.

If we decrease A, the chemical will have less positive effect, and less will
be used. With A = 0.4, a moderate amount is used, while almost none is
used when A = 0.01. If A = 0, then the chemical has no positive effect at
all. It is broken down by the bacteria, with no benefit, to create a harmful
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byproduct. Not surprisingly, no chemical is used when A = 0, regardless of
the other parameters.

Now enter (7.1), varying with B = 20. As expected, with more harmful
byproduct, less chemical is used. It is worth noting that when A was adjusted,
the use in chemical would stay almost the same for much of the beginning of
the time interval, before increasing rapidly. Here, the chemical uses in the
two systems begin apart, and the difference between them steadily increases.
Like before, if we continue to increase B, less and less chemical will be used.

Of interest is the behavior of the control as B decreases. Try

r = 1 A = 1 B = 0.1 C = 1 x0 = 0.1 . (7.3)

The control is now concave, where as in most of the other simulations we
have done it has been convex. For smaller B, with appropriate x0 so that
MATLAB can handle the numbers, we see the control has less variation. The
extreme of this occurs when B = 0. Enter

r = 1 A = 1 B = 0 C = 1 x0 = 0.01 . (7.4)

Here, the control appears constant. As there is no negative byproduct, the
optimal control is one of almost constant chemical injection. (Note: The
control is most likely not exactly constant. The overall change is simply so
small that MATLAB’s graphing tools cannot display it. You may have been
given an error message to this effect.)

Examine the role of the growth rate. Enter (7.1), varying with r = 1.1. In
the second system, the bacteria has a higher natural growth rate. Therefore,
the byproduct becomes less harmful more quickly, and more chemical can be
used. Notice that the optimal control, and thus state, are virtually the same
until about t = 0.4. Now compare r = 1.1 to r = 1.2. As r is increased, the
control becomes more varied and reaches higher maximum levels. Conversely,
as r is decreased, the control has less variation. Try r = 0.8. The control here
experiences far less rapid growth at the end of the interval. Now try r = 0.1.
The control is almost linear.

Finally, experiment with the weight parameter C. So far, we have used
C = 1, meaning maximizing the final bacterial concentration and minimizing
total chemical usage are of equal importance. Suppose the chemical is cheap
and plentiful, and we are not very concerned with how much we use. Compare
C = 1 vs. C = 5, using (7.1). More chemical is used to drive the bacterial
concentration higher. The two systems differ, though, only after about t = 0.7.
On the other hand, suppose the chemical is very expensive, and we are only
willing to use a little to adjust the bacterial growth. Try C = 1 against
C = 0.2. As expected, less chemical agent is used, although the effect of the
weaker chemical schedule does not become apparent immediately.
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Exercise 7.1 Calculate the necessary conditions for this lab problem.
Using the adjoint equation and transversality condition, show λ(t) > 0 for all
t, so that the characterization of the optimal control

u∗ =
Axλ

2(1 + Bλe−x)

is well-defined.



Chapter 8

Bounded Controls

Many problems require bounds on the control to achieve a realistic solution.
Suppose, for instance, that our control is the amount of a chemical used in a
system. Then, clearly we require this amount to be nonnegative, i.e., u ≥ 0.
Often, the control must also be bounded above. Perhaps there are physical
limitations on the amount of chemicals or environmental regulations which
prohibit a certain level of use. We could also have a problem where the
control is the percentage of some strength or use. Then 0 ≤ u ≤ 1 would be
our bounds.

Recall that in Labs 2 and 3, the controls were a fungicide and the concen-
tration of a chemical nutrient, respectively. Clearly, both of these quantities
must remain non-negative. We did not, however, enforce this with bounds in
the problem, as the resulting optimal controls met this requirement without
restriction. However, this is not always the case. Consider the following fish
harvesting example.

Example 8.1 (from [40])

We wish to maximize net profit of harvested fish,

max
u

∫ T

0

(
p1u(t)x(t)− p2u(t)2x(t)2 − cu(t)

)
dt

subject to x′(t) = Kx(t)(M − x(t))− u(t)x(t), x(0) = x0,

where x(t) is the population concentration of the fish, u(t) is the level of
harvesting, p1, p2, and c are the terms representing revenue from sale of fish,
diminishing returns when there is a large amount of fish to sell, and cost of
fishing. The amount of fish harvested at time t is u(t)x(t) and using the
price p1, the first revenue term is p1u(t)x(t). The variables M and K are the
carrying capacity and growth rate of the fish population, respectively.

Calculating the necessary conditions from the Hamiltonian, we obtain
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H = p1ux− p2(ux)2 − cu + λ(Kx(M − x)− ux),

λ′ = −∂H

∂x
= −[p1u− 2p2u

2x + λ(KM − 2Kx− u)], λ(T ) = 0,

0 =
∂H

∂u
= p1x− 2p2ux2 − c− λx ⇒

u∗ =
−λx∗ + p1x

∗ − c

2p2(x∗)2
.

One can see the need to solve for u∗, x∗, λ numerically. For certain, plausible
values of the constants, the optimal control will be negative during the time
interval. For example, see the optimal controls in Figure 8.1. Clearly, this is
physically impossible. The optimal control in this case should be the control
u∗ that maximizes the objective functional, chosen only from controls u such
that u ≥ 0. Thus for this example, a lower bound constraint on the controls
would be essential. For many applications, upper and lower bounds on the
controls would be reasonable.

5 

0 

0.4 

−0.4 

M = 10 

M = 1 

FIGURE 8.1: Two optimal controls for Example 8.1, with p1 = 2, p2 = 1,
c = 1, K = 0.25, x0 = 0.5, and T = 5. One control is for M = 1 and the
other for M = 10. Both optimal controls are negative for part of the interval.
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8.1 Necessary Conditions

In order to solve problems with bounds on the control, we must develop
alternate necessary conditions. Consider the problem

max
u

∫ t1

t0

f(t, x(t), u(t)) dt + φ(x(t1))

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0,

a ≤ u(t) ≤ b,

where a, b are fixed, real constants and a < b. Let J(u) be the value of
the objective functional at control u, where x = x(u) is the associated state,
namely,

J(u) =
∫ t1

t0

f(t, x(t), u(t)) dt + φ(x(t1)).

Let u∗, x∗ be an optimal pair. Let h(t) be a piecewise continuous function
where there exists a positive constant ε0, such that for all ε ∈ (0, ε0], uε(t) =
u∗(t) + εh(t) is admissible, i.e.,

a ≤ uε(t) ≤ b for all t.

Due to bounds on the controls, the derivative of the objective functional may
not be zero at the optimal control, since u∗ may be at the bounds (endpoints of
its range) at some points in time; we may only know the sign of this derivative.
To calculate this sign, we also restrict the sign of the ε parameter. Let xε(t)
be the corresponding state variable for each ε ∈ (0, ε0]. Precisely as was done
in Chapter 1, introduce a piecewise differentiable adjoint variable λ(t) and
apply the Fundamental Theorem of Calculus to write J(uε) as

J(uε) =
∫ t1

t0

[
f(t, xε, uε) + λ(t)g(t, xε, uε) + xε(t)λ′(t)

]
dt

− λ(t0)x0 + λ(t1)xε(t1) + φ(x(t1)).
(8.1)

As the maximum of J(u) with respect to u occurs at u∗,

0 ≥ d

dε
J(uε)

∣∣∣∣
ε=0

= lim
ε→0+

J(uε)− J(u∗)
ε

. (8.2)

Note, the constant ε was chosen to be positive, so the limit can only be taken
from one side. The numerator is clearly non-positive, as u∗ is maximal. This
gives the inequality shown, instead of equality as in Chapter 1. However, this
is all we will need. As we did before, choose the adjoint variable so that
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λ′(t) = −[
fx(t, x∗, u∗) + λ(t)gx(t, x∗, u∗)

]
, λ(t1) = φ′(x∗(t1)).

Then (8.1), (8.2) reduce to

0 ≥
∫ t1

t0

(fu + λgu)h dt, (8.3)

and this inequality holds for all h as described above.
Let s be a point of continuity of u∗ with a ≤ u∗(s) < b. Suppose fu+λgu > 0

at s. As u∗ is continuous at s, so is fu + λgu. Thus, there is a small interval
I, containing s, on which fu + λgu is strictly positive and u∗ < b. Let

M = max{u∗(t) : t ∈ I} < b.

Define a particular h by

h(t) =

{
b−M if t ∈ I,

0 if t /∈ I.

Note, h > 0 on I. Further, it is easily seen that a ≤ u∗ + εh ≤ b for all
ε ∈ [0, 1]. But,

∫ t1

t0

(fu + λgu)h dt =
∫

I

(fu + λgu)h dt > 0

by choice of I and h. This contradicts (8.3), and implies fu + λgu ≤ 0 at s.
Similarly, let s be a point of continuity of u∗ with a < u∗(s) ≤ b. Suppose

fu+λgu < 0 at s. As before, there is a small interval I, containing s, on which
fu + λgu is strictly negative and u∗ > a. Let m = min{u∗(t) : t ∈ I}, and
define a variation function by h = a−m on I and 0 off I. Then, a ≤ u∗+εh ≤ b
for all ε ∈ [0, 1]. But,

∫ t1

t0

(fu + λgu)h dt =
∫

I

(fu + λgu)h dt > 0,

which contradicts (8.3). So, fu + λgu ≥ 0 at s. Further, this holds for all
points of continuity s. In summary,

u∗(t) = a implies fu + λgu ≤ 0 at t,

a < u∗(t) < b implies fu + λgu = 0 at t,

u∗(t) = b implies fu + λgu ≥ 0 at t.

(8.4)

The conditions (8.4) are equivalent to

fu + λgu < 0 at t implies u∗(t) = a,

fu + λgu = 0 at t implies a ≤ u∗(t) ≤ b,

fu + λgu > 0 at t implies u∗(t) = b.

(8.5)
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This holds for all points of continuity t of u∗. As they are irrelevant to
the objective functional and the state equation, we neglect the remaining
points. These new necessary conditions can be compiled as before. Forming
the Hamiltonian

H(t, x, u, λ) = f(t, x, u) + λ(t)g(t, x, u),

the necessary conditions for x∗ and λ are unchanged, namely

x′(t) =
∂H

∂λ
, x(t0) = x0,

λ′(t) = −∂H

∂x
, λ(t1) = φ′(x(t1)).

It follows from the derivation above




u∗ = a if ∂H
∂u < 0

a ≤ u∗ ≤ b if ∂H
∂u = 0

u∗ = b if ∂H
∂u > 0.

(8.6)

A version of Pontryagin’s Maximum Principle is also true here. It is essen-
tially the same as that of Theorem 1.2, except the maximization is over all
admissible controls, i.e., all controls which adhere to the bounds. In particu-
lar, the optimal control u∗ maximizes H pointwise with respect to a ≤ u ≤ b.
If we have a minimization problem, then u∗ is instead chosen to minimize H
pointwise. This has the effect of reversing < and > in the first and third lines
of (8.6). See Exercise 8.1.

Note that the bounds on the control had no effect on the transversality
condition. In developing the above necessary conditions, we dealt only with
the case of the state being fixed at the initial time and free at the terminal
time. However, the other cases are handled just as before. For instance, if
x(t0) and x(t1) are both fixed, then the adjoint variable will have no boundary
conditions. We now present the following examples with constraints on the
controls.

Example 8.2 (from [100])

max
u

∫ 2

0

[
2x(t)− 3u(t)− u(t)2

]
dt

subject to x′(t) = x(t) + u(t), x(0) = 5,

0 ≤ u(t) ≤ 2.

Form the Hamiltonian
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H = 2x− 3u− u2 + xλ + uλ.

Then, the adjoint calculation yields:

λ′(t) = −∂H

∂x
= −2− λ ⇒ λ = −2 + c1e

−t

λ(2) = 0 ⇒ c1 = 2e2 ⇒ λ = 2e2−t − 2.

Now that we have found the adjoint value, we turn our attention to u∗, which
requires considering the sign of ∂H

∂u :

∂H

∂u
= −3− 2u + λ,

0 >
∂H

∂u
at t ⇒ u(t) = 0 ⇒ 0 > −3 + λ = −3 + (2e2−t − 2)

⇒ t > 2− ln(5/2),

0 <
∂H

∂u
at t ⇒ u(t) = 2 ⇒ 0 < −3− 2(2) + λ = −7 + (2e2−t − 2)

⇒ t < 2− ln(9/2),

0 =
∂H

∂u
at t ⇒ u(t) =

1
2
(λ− 3) ⇒ 0 ≤ 1

2
(λ− 3) ≤ 2

⇒ 2− ln(9/2) ≤ t ≤ 2− ln(5/2).

Hence, the optimal control is

u∗(t) =





2 when 0 ≤ t < 2− ln(9
2 ),

e2−t − 5
2 when 2− ln( 9

2 ) ≤ t ≤ 2− ln(5
2 ),

0 when 2− ln( 5
2 ) < t ≤ 2.

To find the optimal state, insert the values for u∗ into the differential equation
for x, and solve the three cases. We find the optimal state to be

x∗(t) =





k1e
t − 2 when 0 ≤ t < 2− ln(9

2 ),
k2e

t − 1
2e2−t + 5

2 when 2− ln( 9
2 ) ≤ t ≤ 2− ln(5

2 ),
k3e

t when 2− ln( 5
2 ) < t ≤ 2,

where k1, k2, and k3 are constants. Using x(0) = 5, it follows k1 = 7. Recall,
the state must be continuous. So, requiring x∗ to agree at t = 2− ln( 9

2 ) and
t = 2− ln( 5

2 ), we find values for k2 and k3, so that

x∗(t) =





7et − 2 when 0 ≤ t ≤ 2− ln( 9
2 ),

(7− 81
8 e−2)et − 1

2e2−t + 5
2 when 2− ln( 9

2 ) ≤ t ≤ 2− ln( 5
2 ),

(7− 7e−2)et when 2− ln( 5
2 ) ≤ t ≤ 2.
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FIGURE 8.2: Optimal control and state for Example 8.2.

Figure 8.2 displays the optimal control and state for this example.

Example 8.3 This example deals with a one-sided control constraint.

max
u

x(4)−
∫ 4

0

u(t)2 dt

subject to x′(t) = x(t) + u(t), x(0) = 0,

u(t) ≤ 5.

The Hamiltonian in this problem is

H = −u2 + λx + λu.

Recall, the payoff term φ = x(4) is not included in the Hamiltonian, but in-
stead incorporated into the transversality condition. Specifically, since φ(x) =
x and φ′ = 1, we have

λ′(t) = −∂H

∂x
= −λ, λ(4) = φ′(x∗(4)) = 1.

This gives

λ(t) = e4−t.



78 Optimal Control Applied to Biological Models

If you refer back to equation (8.5), you will see ∂H
∂u < 0 implies u∗ is at the

lower bound. However, we have no lower bound in this problem. The control
u can range over all values less than or equal to 5. So, ∂H

∂u < 0 cannot occur.
To find a representation of u∗, we need only consider the other two cases:

∂H

∂u
= λ− 2u,

∂H

∂u
> 0 ⇒ u∗(t) = 5 ⇒ λ− 10 > 0 ⇒ e4−t > 10 ⇒ t < 4− ln(10),

∂H

∂u
= 0 ⇒ u∗(t) ≤ 5 ⇒ e4−t = λ = 2u ≤ 10 ⇒ t ≥ 4− ln(10).

Hence, the above two cases give

u∗ =

{
5 when 0 ≤ t < 4− ln(10),
1
2e4−t when 4− ln(10) ≤ t ≤ 4.

To finish the example, we simply solve the state equation to find x∗:

x′(t) = x + 5, x(0) = 0 ⇒ x(t) = 5et − 5 on [0, 4− ln(10)],

x′(t) = x +
1
2
e4−t ⇒ x(t) = −1

4
e4−t + ket on [4− ln(10), 4],

for some constant k. We require that x∗ be continuous, so these two expres-
sions must agree at t = 4− ln(10). This gives k = 5− 25e−4. Hence,

x∗ =

{
5et − 5 when 0 ≤ t ≤ 4− ln(10)
− 1

4e4−t + (5− 25e−4)et when 4− ln(10) ≤ t ≤ 4.

Example 8.4 The following example illustrates an important concept.
Namely, an optimal control cannot be found by ignoring the bounds while
solving the necessary conditions, then truncating the result. Refer back to
Example 3.5 and consider the same problem with bounds on the control.

min
u

∫ 4

0

u(t)2 + x(t) dt

subject to x′(t) = u(t), x(0) = 0, x(4) = 1,

u(t) ≥ 0.

Using the Hamiltonian

H = u2 + x + λu,
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we find the adjoint function

λ′(t) = −∂H

∂x
= −1 ⇒ λ(t) = k − t,

for some constant k. To find u∗, minimize H pointwise:

∂H

∂u
= 2u + λ,

∂H

∂u
> 0 ⇒ u∗(t) = 0 ⇒ 0 < λ = k − t ⇒ t < k,

∂H

∂u
= 0 ⇒ 0 ≤ u∗ = −λ

2
=

t− k

2
⇒ t ≥ k.

So, we have the representation

u∗(t) =

{
0 when 0 ≤ t < k,
t−k
2 when k ≤ t ≤ 4.

(8.7)

So, we need only find the value for k.

Case 1: k ≤ 0. Here, 0 ≤ t < k is impossible. So, by (8.7), x′(t) = u = t−k
2

on [0, 4]. Thus, using x(0) = 0, the state differential equation yields x(t) =
t2

4 − kt
2 . However, 1 = x(4) = 4−2k, which implies k = 3

2 > 0. Contradiction.

Case 2: k ≥ 4. Now k ≤ t ≤ 4 is impossible, so that u∗ ≡ 0. Then,
x′(t) = u = 0 on [0, 4]. Thus, x(0) = 0 gives x(t) = 0 for all t. However,
1 = x(4) = 0. Contradiction.

Case 3: 0 < k < 4. By (8.7), x′(t) = u = 0 on [0, k). The initial condition
x(0) = 0 implies x(t) = 0 on [0, k). On [k, 4], x′(t) = t−k

2 . This gives

x(t) =
t2

4
− k

2
t + c,

for some constant c. From the continuity of x, c = k2

4 , so that x(t) = (t−k)2

4

on [k, 4]. Finally, 1 = x(4) = (4−k)2

4 , which implies k = 2 or 6. We assumed
k < 4, so k = 2.

Hence the optimal solutions are

u∗(t) =

{
0 when 0 ≤ t < 2,
t−2
2 when 2 ≤ t ≤ 4,

and x∗(t) =

{
0 when 0 ≤ t ≤ 2,
(t−2)2

4 when 2 ≤ t ≤ 4.

Suppose we truncated the optimal control u∗ from Example 3.5, to form a
new control û, where û ≥ 0. Then,

û(t) =

{
0 when 0 ≤ t ≤ 3

2 ,
2t−3

4 when 3
2 ≤ t ≤ 4.
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FIGURE 8.3: Controls from Examples 8.4 (solid) and 3.5 (dashed). We
see the first is not the truncation of the second.

As you can see, û and u∗ from Example 8.4 are not the same. The bounds
must be taken into account while solving the necessary conditions, not just
used to truncate the solution. Figure 8.3 shows the optimal control from this
example versus that from Example 3.5. Lab 4 deals with the idea of truncation
further.

Although it is beyond the scope of this book, it is worth mentioning that
more complicated constraints can be placed on the control. In general, one
can consider control constraints of the form

hj(t, u(t)) ≥ 0, j = 1, ..., p,

where each hj is continuously differentiable in both variables. This situation
might arise if one wants to constrain the range values of the controls to be
in a certain set, rather than just lie between two bounds. This can be done
using the hj functions. In fact, constraints which also involve the state can
be added to the problem. For example, one might want to restrict the level
of cancer cells by an upper constraint, x(t) ≤ M . For more information on
this, refer to [100, 130, 169].
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8.2 Numerical Solutions

In order to numerically solve a problem with the addition of bounds, only
a slight modification of the forward-backward sweep routine is needed. As
before, an initial guess of the control is made. The state equation and adjoint
equation are not directly affected by the bounds, so the state and adjoint
are solved forward and backward in time, respectively, as before. Only the
characterization of the control is changed. It must be altered to reflect the
bounds. Before, u∗ was identically equal to some expression in t, x, and/or
λ. Now u can be equal to that expression or set at one of the bounds; this is
a type of truncation. There is a concise way of entering these cases into the
code, which we will examine via an example.

Consider the problem we first used to motivate the routine in Chapter 4,
this time with bounds:

max
u

∫ 1

0

Ax(t)− u(t)2 dt

subject to x′(t) = −1
2
x(t)2 + Cu(t), x(0) = x0 > −2,

M1 ≤ u(t) ≤ M2.

Notice one of the weight parameters B has been removed from the problem.
Recall, we found that the second weight parameter was superfluous. Here,
the Hamiltonian is

H = Ax− u2 − 1
2
x2λ + Cuλ.

The adjoint and transversality conditions are

λ′(t) = −∂H

∂x
= −A + xλ, λ(1) = 0.

We find a characterization of u∗ by considering three cases:

∂H

∂u
= −2u + Cλ,

∂H

∂u
< 0 ⇒ u(t) = M1 ⇒ M1 >

Cλ

2
,

∂H

∂u
= 0 ⇒ u(t) =

Cλ

2
⇒ M1 ≤ Cλ

2
≤ M2,

∂H

∂u
> 0 ⇒ u(t) = M2 ⇒ M2 <

Cλ

2
.

Notice the recurrence of the expression Cλ
2 . When the control is at the upper

bound, this expression is strictly greater than M2. Similarly, when the control
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is at the lower bound, the expression is strictly less than M1. Thus, a compact
way of writing the optimal control is

u∗(t) = min
(

M2, max
(

M1,
Cλ(t)

2

))
.

This is merely a truncation of the expression Cλ
2 with the upper and lower

bounds. Note, however, that this truncation occurs within the problem. The
control is equal to a truncated expression in Cλ

2 , but the state and adjoint are
directly affected by u. This is very different from solving the problem without
bounds and truncating the resulting solution, as we have seen.

To alter the forward-backward code to reflect the bounds, we only have to
change the characterization of u. Recall that in the routine with no bounds,
code1.m, the characterization was given by the following.

code1.m
41 u1 = C*lambda/(2*B);
42 u = 0.5*(u1 + oldu);

We simply change to the truncated expression found above (and set B = 1,
as it was divided out).

code4.m
41 u1 = min(M2, max(M1, C*lambda/2));
42 u = 0.5*(u1 + oldu);

The lambda expression in line 38 above is actually a vector. However, the
min and max functions in MATLAB operate term-by-term. In other words,
they compare each individual term of the vector, finding the maximum and
minimum, thereby creating a new vector. The convex combination is still
used in line 39 to speed convergence. For this reason, it can be advantageous
to make the initial guess of the control lie within the bounds. However, we
continue to use u ≡ 0 as the initial guess in all codes. Lab 4 uses this altered
code to allow further study of this problem.

Again, it is worth pointing out that there are many different kinds of control
updates. Like in Chapter 4, we present a more sophisticated convex combina-
tion. We illustrate using the above example. Let 0 < c < 1 and k the number
of iterates. Consider the control update

u1 = min(M2, max(M1, C*lambda/2));
for i=1:N+1

if(u1(i) > oldu(i))
u(i) = M2*(1 - c^k) + oldu(i)*c^k;

else
u(i) = M1*(1 - c^k) + oldu(i)*c^k;

end
end
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Here, we use the bounds to dampen the previous iterate, based on the range
of the new approximation. Like in Chapter 4, this new method tends to be
less accurate than the method we developed earlier, but often works when
other methods fail. We will continue to use the simple averaging approach.

8.3 Exercises

Exercise 8.1 Find the necessary conditions for the following optimal con-
trol problem:

min
u

∫ t1

t0

f(t, x(t), u(t)) dt + φ(x(t1))

subject to x′(t) = g(t, x(t), u(t)), x(0) = x0,

a ≤ u(t) ≤ b.

This can be done by emulating the proof given at the beginning of this chapter,
or by converting this into a maximization problem by negating the integral.

Exercise 8.2 Solve

max
u

∫ 1

0

x(t)− u(t) dt

subject to x′(t) = 2u(t)(1− u(t)), x(0) = 0,

0 ≤ u(t) ≤ 1.

Exercise 8.3 Solve

max
u

∫ 1

0

x(t)u(t) dt

subject to x′(t) = u(t)2, x(1) = −1,

− 1 ≤ u(t) ≤ 0.

Exercise 8.4 (from [100]) The following is a generalization of Example 8.4.
Let c,B, T > 0 be constants and suppose B < cT 2/4. Solve



84 Optimal Control Applied to Biological Models

min
u

∫ T

0

u(t)2 + cx(t) dt

subject to x′(t) = u(t), x(0) = 0, x(T ) = B,

u(t) ≥ 0.

Exercise 8.5 Solve the following problem. There are three different solu-
tions, depending on the values of a and b.

min
u

1
2

∫ 1

0

u(t)2 dt +
1
2
x(1)2

subject to x′(t) = u(t), x(0) = 1,

a ≤ u(t) ≤ b.

Exercise 8.6 Reconsider Exercise 3.2 with the values d = S = T = 1 and
with control constraints 0.6 ≤ u(t) ≤ 0.9. Namely, solve

max
u

∫ 1

0

(x(t)− 1
2
u(t)2) dt + x(1)

subject to x′(t) = u(t)− x(t), x(0) = x0 > 0,

0.6 ≤ u(t) ≤ 0.9.
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Lab 4: Bounded Case

In this lab, we reexamine the first lab, this time imposing bounds on the
control. Also notice that the weight parameter B has been removed from the
problem, and only one weight parameter is used, as discussed in Lab 1.

max
u

∫ 1

0

Ax(t)− u(t)2 dt

subject to x′(t) = −1
2
x(t)2 + Cu(t), x(0) = x0 > −2,

M1 ≤ u(t) ≤ M2, A ≥ 0.

Open MATLAB and begin lab4. In Lab 1, we first examined the optimal
control for the parameters values A = x0 = 1 and C = 4 (with B = 1). There,
the optimal control lies between 0 and 2 (it appears the control is bounded
by 1, but in fact it has a maximum value slightly above 1). You may want to
run this simulation in lab1 again to refresh your memory. Now, running lab4,
enter the values

A = 1 C = 4 x0 = 1 M1 = −1 M2 = 2 . (9.1)

Now try

A = 1 C = 4 x0 = 1 M1 = 0 M2 = 1.5 . (9.2)

In both cases, the optimal control is unchanged from Lab 1. If the problem
has a solution without bounds, and bounds which contain that solution are
added, then the solution will be unchanged, as expected.

Enter

A = 1 C = 4 x0 = 1 M1 = 0 M2 = 2 (9.3)

varying with M2 = 0.5. Clearly, this set of bounds will affect the original
solution. The bounded control is very similar to the first control if it were
truncated at 0.5. However, if you look closely enough, you will see the second
control remains at its upper bound for a short time after the first control
passes the bound. You may need to use the zoom tool at the top of the figure
window, or expand the figure to full screen, in order to see this. Figure 9.1



86 Optimal Control Applied to Biological Models

also gives a closer view. In addition, the adjoints from the two problems
are different, particularly near the beginning of the interval. The effect of
the different controls is seen in the states, as the first control, which is not
inhibited by the bound, increases the state more.
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FIGURE 9.1: Optimal control plots for parameters (9.3) together with
varying M2 to be 0.5. We see one control is not a truncation of the other.

For another example, try the values

A = 20 C = 2 x0 = 0 M1 = 0 M2 = 6 , (9.4)

and then vary with M2 = 3. Again, the resulting control is similar to a
truncation of the original, but not exactly. The difference should be easier to
see than in the last simulation.

Now run a similar experiment on the lower bound. Enter (9.4), this time
varying with M1 = 5. Here, the two controls have less similarity than in the
previous experiments. As the second control is forced to stay at the relatively
high upper bound for the majority of the interval, it begins slightly lower than
the first control to compensate.

This time, we will begin with stringent upper and lower bounds. Enter the
values

A = 20 C = 2 x0 = 0 M1 = 1 M2 = 5 . (9.5)
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The optimal control will now be affected by both bounds. Vary with M1 = 4.
Here, not only does the second control reach its lower bound before the first
control, but it also decreases from the mutual upper bound first. Interestingly,
if we instead vary with M2 = 2, we find that the second control remains at its
upper bound after the first control passes it, as before, but the two controls
reach their mutual lower bound at much closer times than in the previous
simulation.

Enter the values

A = 1 C = 4 x0 = 1 M1 = 2 M2 = 3 . (9.6)

The original control lies entirely outside these bounds, and the resulting con-
trol lies entirely at the lower bound. Now try M1 = −2 and M2 = −1.
Here, the control is identically the upper bound. As a special case, enter
M1 = M2 = 0. Of course, the optimal control is u∗ ≡ 0, as this is the only
solution which satisfies the bounds.

Finally, even with the addition of the bounds, the parameters A, C, and x0

have the same effect as before. For example, enter

A = 1 C = 4 x0 = 1 M1 = 0.25 M2 = 0.75 (9.7)

varying with A = 3. The second system, with more emphasis placed on
maximizing x, uses a greater control, where possible, in order to decrease the
state more. Vary C and x0 to see they also affect the solution as before.





Chapter 10

Lab 5: Cancer

Optimal control techniques are of great use in developing optimal strategies
for chemotherapy [173]. Specifically, a treatment regimen, cast as the control,
which will minimize the tumor density and drug side-effects over a given time
interval, can be found. This technique was employed by Fister and Panetta
in [61]. There, the tumor is assumed to have Gompertzian growth. Sev-
eral models of chemotherapeutic kill-cell (killing of tumor cells) exist. Three
different models are treated in [61]. Here, we examine only one, namely, Skip-
per’s log-kill hypothesis, which states cell-kill due to chemotherapeutic drugs
is proportional to tumor population. Thus, if N(t) is the normalized density
of the tumor at time t, we have the model

N ′(t) = rN(t) ln
(

1
N(t)

)
− u(t)δN(t),

where r is the growth rate of the tumor, δ is the magnitude of the dose, and
u(t) describes the pharmacokinetics of the drug, i.e., u(t) = 0 implies no drug
effect and u(t) > 0 is the strength of the drug effect. The initial condition
is taken to be N(0) = N0, where 0 < N0 < 1, as the tumor cells have been
normalized. The objective functional used is quadratic, where the cost of
the control, representing possible side-effects, and the tumor density N are
minimized over a time interval. Finally, we require u(t) ≥ 0 for all t. So, our
problem is

min
u

∫ T

0

aN(t)2 + u(t)2 dt

subject to N ′(t) = rN(t) ln
(

1
N(t)

)
− u(t)δN(t), N(0) = N0,

u(t) ≥ 0.

Here, a is a positive weight parameter. Enter MATLAB and begin lab5.
First, try the values

r = 0.3 a = 3 δ = 0.45 N0 = 0.975 T = 20 . (10.1)

Notice that the optimal treatment strategy is one of high drug strength early
followed by a slow reduction to no drug treatment on day 20. This is consistent
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with most medical practices today. However, we see the lowered drug strength
allows for a slight increase in tumor density after day 12. See Figure 10.1 to
compare this treatment to no treatment at all.
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FIGURE 10.1: Tumor density with optimal treatment from (10.1), in solid,
compared density with no treatment (u ≡ 0) in dashed.

Now, using (10.1), varying a. Use a much higher second a value, say a = 10.
Notice we are able to push the tumor density to a much lower level when
minimizing side-effects has less importance. You will also notice the strength
of the drug is much higher, particularly at the beginning of the treatment
period. However, what is perhaps most interesting is that with less significance
placed on side-effects, the same general strategy of chemotherapy should be
employed, namely, a very high initial strength followed by a gradual reduction
to no drug treatment.

Run the program with the (10.1) parameters, this time varying with a = 1.
We have two systems, one where minimizing tumor density is three times as
important as minimizing drug side-effects, and the second where they are of
equal importance. The results are as we would expect. In the first system, a
stronger drug regimen is used, reducing the tumor density to lower levels.

The previous simulations were run with initial tumor density near carrying
capacity. Try (10.1) varying N0 now to something smaller, say N0 = 0.5.
Notice how the two tumor densities and drug strengths converge. By day 8,
the two systems are nearly identical. It seems only the early stages of optimal
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treatment are affected by initial tumor density. Afterwards, treatment and
results become uniform. Now try the two initial densities of N0 = 0.975 and
N0 = 0.3. Even in this more extreme case, virtually the same thing happens,
at almost the same rate. Next, use the same two N0 values with a longer time
interval. Namely, try

r = 0.3 a = 3 δ = 0.45 N0 = 0.975 T = 40 (10.2)

varying with N0 = 0.3. Again, the same convergence occurs. However, instead
of being scaled to the new interval, uniformity still occurs in approximately 8
days.

Moving to the growth rate of the tumor, enter

r = 0.3 a = 3 δ = 0.45 N0 = 0.6 T = 20 . (10.3)

Vary the growth rate using the second value r = 0.5. As expected, the higher
growth rate in the second system causes the tumor density to decrease more
slowly. Also, the overall pharmokinetics in the second system must be greater
to compensate. However, note that the drug strength in the first system begins
at a higher level, before falling below the second control. With a slower growth
rate, the initial blitz of drug is even more effective, so more is used.

Let us now consider the magnitude of the dosage δ. Enter the values

r = 0.2 a = 3 δ = 0.25 N0 = 0.8 T = 20 . (10.4)

Vary the magnitude using the second value δ = 0.5. Even with a higher dose
magnitude, the second system has an optimal drug strength which begins
higher than the first. It then experiences a much faster reduction. The differ-
ence in tumor densities is fairly dramatic compared to our earlier simulations.
This is the strongest evidence we have seen of the disproportional importance
of drug effect in the first few days. In this example, the drug strength in
the second system is slightly higher early, which, along with a higher dosage
magnitude, drives the tumor density down. By day 6, both drug regimens
have been lowered enough so that tumor density is being held approximately
constant. However, over the 20 day period, the tumor density in the second
system is much lower, almost half during much of the time. This difference is
created almost entirely in the first 4 days.

Finally, examine the effect of the number of days on the optimal treatment.
Enter

r = 0.3 a = 1.5 δ = 0.5 N0 = 0.7 T = 20 . (10.5)

Vary the number of days using the second value T = 40. We see the second
system uses the same basic strategy as the first system, stretched over the
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longer interval. In fact, the strategies are almost identical for the first 10
days. The second system holds the mid-level drug strength for the next 20
days before dropping down, just as the first system did in days 10 through 20.

You may have noticed that in each simulation, the bound on u seemed
unnecessary. The optimal control in each case was smooth and everywhere
non-negative. It never appeared to be “cut-off” at zero. In fact, one can
prove that the bound is superfluous; the optimal control will be non-negative
without the bound, for accepted parameter values. However, it is standard
practice in most research to include any relevant bounds, whether they are
actually required or not. As you will see, the next lab contains the same
bound, which is necessary there.

Exercise 10.1 Consider the ODE without control

N ′(t) = rN(t) ln
(

1
N(t)

)
, N(0) = N0.

Show that for 0 < N0 < 1, we have N ′ > 0 so that N is increasing. What
happens when N0 = 1?

Exercise 10.2 Prove analytically that the lower bound u ≥ 0 in the
optimal control is unnecessary. Namely, show that an optimal control for the
problem

min
u

∫ T

0

aN(t)2 + u(t)2 dt

subject to N ′(t) = rN(t) ln
(

1
N(t)

)
− u(t)δN(t), N(0) = N0

satisfies u∗ ≥ 0.



Chapter 11

Lab 6: Fish Harvesting

In this lab, we examine a simple fish harvesting problem adapted from [68].
Suppose at some point, designated as t = 0, a fish population is introduced
into a fishery of some kind (for example, an artificial tank or a netted area in
a body of water). Let x(t) be the population level (scaled) at time t, where
x(0) = x0 > 0 is the initial concentration, as determined by the introduction.
Suppose that, when introduced, the fish are very small and that the average
mass of the fish at time t = 0 is essentially 0. Further, the average mass of
the fish as a function of time is given by

fmass(t) =
kt

t + 1
,

where k is the maximum mass of this species. We will assume the time
interval [0, T ], over which we are to consider harvesting, is small enough that
no reproduction will occur. Specifically, the population will have no natural
growth. Let u(t) be the harvest rate at time t and m be the natural death rate
of the fish. We wish to maximize the total mass harvested over the interval
taking into account the cost of harvesting. So, the problem can be stated

max
u

∫ T

0

A
kt

t + 1
x(t)u(t)− u(t)2 dt

subject to x′(t) = −(
m + u(t)

)
x(t), x(0) = x0,

0 ≤ u(t) ≤ M.

The upper bound M is added to take physical limitations of harvesting into
account, and A is a nonnegative weight parameter. Note, if u is set to 0, then
x(t) = x0e

−mt which naturally decreases. Any positive control will cause the
state to decrease even more.

Type lab6 and press enter. Enter the values

A = 5 k = 10 m = 0.2 x0 = 0.4 M = 1 T = 10 . (11.1)

Do not vary any parameters. For reference, a plot of the average mass is
also displayed. The optimal harvesting strategy here is no harvesting early,
followed by a sharp increase, then a slow reduction. You can see the fish
population begins a more rapid decrease instantly when harvesting begins.
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FIGURE 11.1: Graph of total mass, population x times average mass
fmass, with no control, for the values (11.1). The graph reaches its maxi-
mum at t = 1.79.

Also, the fish population is almost totally wiped out during our period. Notice,
the average mass reaches 9 units in our 10 day simulation. Harvesting begins
when the average mass is approximately 4.5. Figure 11.1 displays the state x,
where no control is used, times the average mass fmass.

The upper bound used in this simulation had no effect, as it was set rel-
atively high. Enter the (11.1) values, varying with M = 0.6. The second
control is approximately a truncation of the first, but not exactly. There is
little change in the states. Enter (11.1) and vary with M = 0.4. The fact
that the second control is not a truncation of the first is more apparent here.
Also, the states are more distinct. We will refrain from exploring the effect of
the upper bound any further here, as this was done in Lab 4.

Alter the weight parameter A. Enter (11.1), varying with A = 10. With
a higher importance placed on the harvested weight, we expect a stronger
control. In this simulation, the second control, while stronger overall, is not
everywhere greater than the first control. The second control remains at no
harvest for a longer period at the beginning, but eventually reaches a higher
level. When total harvesting is more important, we should allow the fish to
become larger, then harvest a larger percentage.

Experimenting with the maximum mass k, you would find its effect on
the control is precisely the same as that of A. Even though they have very
different meanings physically, these two constants affect the control the same
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mathematically, because they appear in identical places in the problem. In
fact, if you ran two simulations, one with A = 10 and k = 5, and the other
with A = 5 and k = 10, you would find the controls are the same. It is the
product Ak which affects the control.

Now vary the death rate m. Enter the (11.1) values, varying with m = 0.4.
With a higher natural death rate, the resulting optimal control begins har-
vesting sooner. It reaches a higher maximum harvesting level, but decreases
faster as well. As more fish are going to die naturally, we should harvest more
upfront. The state in the second system is everywhere less than the first, due
to the change in death and harvesting rates.

Enter (11.1) and vary with x0 = 0.8. Here, the new control begins harvest-
ing later, but reaches a greater level. In fact, after passing the first control
around t = 1, the second harvesting rate is larger for the remainder of the
time period. Because the second fish population has a larger initial size, we
are able to neglect the death rate a little longer before beginning harvesting.
Consequently, the fish have a higher average mass, and the control can be
increased, as the larger yield will offset the boost in harvesting rate.

Finally, vary the length of the time period. Enter (11.1), comparing T = 10
to T = 5. The optimal control and corresponding states are relatively similar
over their common time. Now try T = 10 vs. T = 15 and T = 10 vs. T = 20.
The two systems in these simulations have even greater similarity. This is
fairly unusual. As we have seen in previous labs, and will continue to see in
later ones, altering the time period usually affects the dynamics of the optimal
control and state. Explain why this might occur here.





Chapter 12

Optimal Control of Several Variables

So far, we have only examined problems with one control and one dependent
state variable. Often, though, we will wish to consider more variables. For
example, consider a system modeling antibiotics used to fight a viral infection.
In addition to the number of viral particles in the blood, we might also want to
follow the number of antibodies or white blood cells. These quantities would
be represented as additional state variables. Further, suppose the patient was
taking two different antibiotics that caused the body to generate antibodies
at different rates or times. These would need to be separate control variables;
see [90]. Further, we could examine an SIR epidemic model with vaccination
levels as a control [13, 93, 137, 149, 157, 180], or a tuberculosis epidemic model
involving decisions in allocating efforts [95]. In this chapter, we will discuss
how to handle such problems.

12.1 Necessary Conditions

The methods developed for one control and state are easily extended to
optimal control of multiple state and control variables. Consider a problem
with n state variables, m control variables, and a payoff function φ,

max
u1, ..., um

∫ t1

t0

f(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)) dt + φ(x1(t1), . . . , xn(t1))

subject to x′i(t) = gi(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)),
xi(t0) = xi0 for i = 1, 2, ..., n,

where the functions f, gi are continuously differentiable in all variables. We
make no requirements on m, n. In fact, m < n, m = n, or m > n are all
acceptable. Use vector notation to change the problem to a more familiar
form. Let ~x(t) = [x1(t), ..., xn(t)], ~u(t) = [u1(t), ..., um(t)], ~x0 = [x10, ..., xn0],
and ~g(t, ~x, ~u) = [g1(t, ~x, ~u), ..., gn(t, ~x, ~u)]. Then, we can write the problem as

max
~u

∫ t1

t0

f(t, ~x(t), ~u(t)) dt + φ(~x(t1))



98 Optimal Control Applied to Biological Models

subject to ~x ′(t) = ~g(t, ~x(t), ~u(t)), ~x(t0) = ~x0.

Let ~u ∗ be a vector of optimal control functions and ~x ∗ be the vector of
corresponding optimal state variables. With n states, we will need n adjoints,
one for each state. Introduce a piecewise differentiable vector-valued function
~λ(t) = [λ1(t), ..., λn(t)], where each λi is the adjoint variable corresponding to
xi. Define the Hamiltonian

H(t, ~x, ~u,~λ) = f(t, ~x, ~u) + ~λ(t) · ~g(t, ~x, ~u),

where · is the dot product of vectors. By essentially the same argument pre-
sented in Chapter 1, we find the variables satisfy identical optimality, adjoint,
and transversality conditions in each vector component. Namely, ~u ∗ maxi-
mizes H(t, ~x ∗, ~u,~λ) with respect to ~u at each t, and ~u ∗, ~x ∗, and ~λ satisfy

x′i(t) =
∂H

∂λi
= gi(t, ~x, ~u), xi(t0) = xi0 for i = 1, ..., n,

λ′j(t) = − ∂H

∂xj
, λj(t1) = φxj

(~x(t1)) for j = 1, ..., n,

0 =
∂H

∂uk
at u∗k for k = 1, ..., m,

where

H(t, ~x, ~u,~λ) = f(t, ~x, ~u) +
n∑

i=1

λi(t)gi(t, ~x, ~u).

By φxj
, it is meant the partial derivative in the xj component. Note, if φ ≡ 0,

then λj(t1) = 0 for all j, as usual.
Modifications of the problems yield adjustments on the conditions similar

to those in previous chapters. For example, if a particular state variable xi

satisfies xi(t0) = xi0, xi(t1) = xi1 both fixed, then the corresponding adjoint
λi has no boundary conditions. Similarly, if bounds are placed on a control
variable, ak ≤ uk ≤ bk, then the optimality condition is changed from

∂H

∂uk
= 0 to





uk = ak if ∂H
∂uk

< 0,

ak ≤ uk ≤ bk if ∂H
∂uk

= 0,

uk = bk if ∂H
∂uk

> 0.

We illustrate these ideas with a few examples.
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Example 12.1

min
u

∫ 1

0

x2(t) + u(t)2 dt

subject to x′1(t) = x2(t), x1(0) = 0, x1(1) = 1,

x′2(t) = u(t), x2(0) = 0.

Introduce two adjoint variables, one for each state variable, and form the
Hamiltonian,

H = x2 + u2 + λ1x2 + λ2u.

Form the adjoint and transversality conditions

λ′1(t) = − ∂H

∂x1
= 0,

λ′2(t) = − ∂H

∂x2
= −λ1 − 1, λ2(1) = 0.

The first adjoint λ1 is simply a constant, say C. Then, λ2 can be solved as
follows,

λ1(t) ≡ C,

λ2(t) = −(C + 1)(t− 1).

Using the optimality condition,

0 =
∂H

∂u
= 2u + λ2 ⇒ u∗ = −λ2

2
=

C + 1
2

(t− 1).

Finally, we make use of the state equations and boundary conditions to find

x′2 = u ⇒ x2(t) =
C + 1

2

( t2

2
− t

)
, as x2(0) = 0,

x′1 = x2 ⇒ x1(t) =
C + 1

2

( t3

6
− t2

2

)
, asx1(0) = 0.

Noting that x1(1) = 1, it follows C = −7. Thus, the optimal solution set is

u∗(t) = 3− 3t, x∗1(t) =
3
2
t2 − 1

2
t3, x∗2(t) = 3t− 3

2
t2.

The optimal states x∗1 and x∗2 are shown in Figure 12.1.
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FIGURE 12.1: Optimal states for Example 12.1.

Example 12.2

max
u1,u2

∫ 1

0

x(t)− 1
8
u1(t)2 − 1

2
u2(t)2 dt

subject to x′(t) = u1(t) + u2(t), x(0) = 0,

1 ≤ u1(t) ≤ 2.

The Hamiltonian is

H = x− 1
8
u2

1 −
1
2
u2

2 + λu1 + λu2.

The adjoint and transversality conditions yield

λ′(t) = −∂H

∂x
= −1, λ(1) = 0 ⇒ λ(t) = 1− t.

The second control has no bounds, so we can easily solve for it,

0 =
∂H

∂u2
= −u2 + λ ⇒ u∗2 = λ = 1− t.

To find u∗1, we note
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∂H

∂u1
= λ− u1

4
,

∂H

∂u1
< 0 ⇒ u1(t) = 1 ⇒ 1− t <

1
4
⇒ t >

3
4
,

∂H

∂u1
= 0 ⇒ u∗1 = 4λ = 4− 4t ⇒ 1 ≤ 4− 4t ≤ 2 ⇒ 1

2
≤ t ≤ 3

4
,

∂H

∂u1
> 0 ⇒ u1(t) = 2 ⇒ 1− t >

1
2
⇒ t <

1
2
.

By plugging the three cases back into the state equation, and requiring con-
tinuity, we can find x∗. Then, the optimal solution set (Figure 12.2) is

u∗1(t) =





2 0 ≤ t < 1
2 ,

4− 4t 1
2 ≤ t ≤ 3

4 ,

1 3
4 < t ≤ 1,

u∗2(t) = 1− t,

x∗(t) =





3t− 1
2 t2 0 ≤ t ≤ 1

2 ,

5t− 5
2 t2 − 1

2
1
2 ≤ t ≤ 3

4 ,

2t− 1
2 t2 + 5

8
3
4 ≤ t ≤ 1.
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FIGURE 12.2: Optimal controls for Example 12.2.
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With certain optimal control problems, it is sometimes possible to ignore
some of the states when forming the necessary conditions. Reducing the
number of states in the optimality system can simplify matters, particularly
by also eliminating the corresponding adjoints. This technique is used in Labs
7 and 12, and we present two examples here.

Example 12.3 Consider the following general optimal control problem

max
u

∫ t1

t0

f(t, x1(t), x2(t), u(t)) dt

subject to x′1(t) = g1(t, x1(t), x2(t), u(t)), x1(t0) = x10,

x′2(t) = g2(t, x1(t), x2(t), u(t)), x2(t0) = x20,

x′3(t) = g3(t, x1(t), x2(t), x3(t), u(t)), x3(t0) = x30.

Note, f , g1, and g2 have no dependence on the state variable x3. Therefore,

max
u

∫ t1

t0

f(t, x1(t), x2(t), u(t)) dt

subject to x′1(t) = g1(t, x1(t), x2(t), u(t)), x1(t0) = x10,

x′2(t) = g2(t, x1(t), x2(t), u(t)), x2(t0) = x20,

is a valid, well-posed optimal control problem, which can be solved as normal.
Once x∗1(t), x∗2(t), and u∗(t) are found, then x∗3(t) can be solved using its state
equation and initial condition.

In the next example, we are able to eliminate a state variable by manipu-
lating the objective functional.

Example 12.4 (from [82]) Consider a well-stirred bioreactor in which
contaminant and bacteria are present in spatially uniform, time varying con-
centrations:

z(t) = concentration of contaminant,
x(t) = concentration of bacteria.

The bioreactor is rich in all nutrients except one to be controlled,

u(t) = concentration of input nutrient.

The bacteria degrades the contaminant via co-metabolism, meaning degra-
dation of the contaminant is a byproduct of the bacteria metabolism; the
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bacteria does not consume the contaminant directly. The growth of the bac-
teria as result of the nutrient u is a limited growth function, called Monod or
Michealis-Menton kinetics:

x′(t) =
Gu(t)

H + u(t)
x(t)−Dx(t)2, x(0) = x0,

z′(t) = −Kx(t)z(t), z(0) = z0.

Here, G is maximum growth rate, D is the death rate, and K is the degra-
dation rate of the bacteria. The constant H is the nutrient concentration
at which the bacterial growth rate is one half its maximum value. We wish
to minimize the final contaminant concentration and total injection of the
nutrient. As the natural logarithm is a strictly increasing function, we can
minimize the objective functional

ln(z(T )) +
∫ T

0

Au(t) dt.

The introduction of the natural logarithm may seem artificial, but it allows a
great simplification. Note, also, the first state variable x has no dependence
on z in its state equation. So, if we can find an expression of z(T ) in terms of
t, x, and/or u, we could eliminate the variable z from the problem. Solving
the equation

z′(t) = −Kx(t)z(t),

it follows that

z(t) = z0 exp
(
−

∫ t

0

Kx(s) ds

)
.

Using this expression with t = T ,

∫ T

0

Kx(s) ds = − ln
(

z(T )
z0

)
= ln(z0)− ln

(
z(T )

)
.

The constant ln(z0) is irrelevant to the minimization, so we ignore it. Replac-
ing ln(z(T )) with the integral expression above, and negating, our problem
can be cast as

max
u

∫ T

0

Kx(t)−Au(t) dt

subject to x′(t) =
Gu(t)

H + u(t)
x(t)−Dx(t)2, x(0) = x0,

u(t) ≥ 0.
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We have eliminated the z variable, so there is no need to include its state
equation in the problem. Once we have found the optimal control and x∗, we
can then find z∗. For now, we work only with x, and thus, only one adjoint.
Using the Hamiltonian, we calculate the necessary conditions.

H = Kx−Au + λ

(
Gux

H + u
−Dx2

)
,

∂H

∂u
= −A + λx

GH

(H + u)2
⇒ u∗ = max

(
0, A−1/2(λxGH)1/2 −H

)
,

λ′ = −∂H

∂x
= −

[
λ

(
Gu

H + u
− 2Dx

)
+ K

]
, λ(T ) = 0.

We could now solve for u∗, x∗, and λ numerically. A bioreactor problem with
a simpler growth term is the subject of Lab 12.

12.2 Linear Quadratic Regulator Problems

In this section, we treat a special case in the optimal control of systems, in
which the state differential equations are linear in x and u and the objective
functional is quadratic. A solution can be found in a slightly different way in
this case and has a very nice format. In particular, we are able to eliminate
the adjoint variable in the necessary conditions. For example, one might use
such systems to model chemostats [170].

Our state system is given by

x′(t) = A(t)x(t) + B(t)u(t), (12.1)

where x is an n-dimensional column vector, and u is a m-dimensional column
vector. The matrices A(t), B(t) have sizes n × n and n × m respectively.
Note that entries of matrices of A,B can be functions of time. The objective
functional is

J(u) =
1
2

[
xT(T )Mx(T ) +

∫ T

0

xT(t)Q(t)x(t) + uT(t)R(t)u(t) dt

]
, (12.2)

where the symmetric matrices M , Q(t), and R(t) are sizes n × n, n × n,
and m × m respectively, with M , Q(t) being positive semidefinite and R(t)
being positive definite for all 0 ≤ t ≤ T . The positive definite property
guarantees R(t) is invertible. The superscript T refers to transpose of the
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matrix. We can interpret the objective functional as minimizing a weighted
sum of the components of the state and the control. The matrices would
be chosen to decide which components to emphasize. In practice, the state
might be the difference between a quantity (like the levels of microorganisms
in a chemostat) and its desired profile, and the objective functional can drive
certain components of the quantity close to the profile.

Like the control and state, we write λ to mean an n-dimensional column
vector of adjoints. The Hamiltonian becomes

H =
1
2
xTQx +

1
2
uTRu + λT(Ax + Bu).

Some care must be taken in differentiating matrix expressions, particularly if
not familiar with the process. We suppress the details here, but encourage
the reader to check the calculations term-by-term. The optimality equation
is

Ru + BTλ = 0 ⇒ u∗ = −R−1BTλ,

and the adjoint equation is

λ′ = −Qx−ATλ, λ(T ) = Mx(T ).

The assumptions of symmetry for M , Q, and R are buried in the above
calculations. We choose to solve this problem in a different way due to the
structure of the transversality condition and the adjoint differential equation;
this method is called the sweep method [20, 51, 126]. Instead of using λ, we
find a matrix function S(t) such that λ(t) = S(t)x(t). By the product rule
for matrices,

λ′(t) = S′(t)x(t) + S(t)x′(t).

Using the expressions for λ′ and x′ given by the state and adjoint equations,
we have

−Qx−ATλ = S′x + SAx + SBu.

Making use of the characterization of the control and the identity λ = Sx,

−S′x = Qx + ATλ + SAx− SBR−1BTλ

= Qx + ATSx + SAx− SBR−1BTSx

= [Q + ATS + SA− SBR−1BTS]x.

From the transversality condition, we obtain the matrix Riccati equation that
S(t) must satisfy. Namely,

−S′ = ATS + SA− SBR−1BTS + Q, S(T ) = M.
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Reconsidering the characterization, we see the control is a linear function
of the state only, a type of feedback control

u = −R−1BTSx.

The matrix R−1BτS is called the gain. After solving the Riccati matrix
equation for S, the control is given by an equation in x, and x is given by
an ODE in u, so that the problem can be solved using simple ODE methods.
Therefore, we have totally eliminated the adjoint λ from the problem. See
the book by Morris about feedback control [148] and a recent application of
the Riccati approach [9].

Example 12.5 (from [51]) We consider a simple one dimensional example.

1
2

min
u

∫ T

0

x(t)2 + u(t)2 dt

subject to x′(t) = u(t), x(0) = x0.

In this case, all the matrices are scalars (size 1 × 1) and S(T ) = M = 0,
A = 0, B = Q = R = 1. The Riccati equation is

−S′ = 1− S2, S(T ) = 0.

Solving as a separable equation, and using partial fractions,

1
2

ln
∣∣∣∣
S − 1
S + 1

∣∣∣∣ =
∫

S′

S2 − 1
dt =

∫
1 dt = t + C,

which along with S(T ) = 0 gives

S(t) =
1− e2(t−T )

1 + e2(t−T )
.

The optimal control satisfies u = −Sx, so that the optimal state satisfies
x′ = −Sx. Using partial fractions (or an integral table) we can find an
antiderivative of S, and solve the separable equation to see

x(t) = C(et−T + eT−t).

Taking into account x(0) = x0,

x∗(t) = x0
et + e2T−t

1 + e2T
, and u∗(t) = x0

et − e2T−t

1 + e2T
.
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12.3 Higher Order Differential Equations

Optimal control of systems can be employed to solve maximization (or mini-
mization) problems involving higher order differential equations. Consider the
following problem,

max
u1, ..., um

∫ t1

t0

f(t, x(t), x′(t), . . . , x(n)(t), u1(t), . . . , um(t)) dt

subject to x(n+1)(t) = g(t, x(t), x′(t), . . . , x(n)(t), u1(t), . . . , um(t)),

x(t0) = α1, x′(t0) = α2, . . . , x(n)(t0) = αn+1

for n > 1. Pontryagin’s Maximum Principle, as we have developed it, does not
directly deal with this type of problem. However, it is easily converted to a
systems problem by introducing n + 1 state variables defined by x1(t) = x(t),
x2(t) = x′(t), . . . , xn+1(t) = x(n)(t). Then, the above problem becomes

max
u1, ..., um

∫ t1

t0

f(t, x1(t), x2(t), . . . , xn+1(t), u1(t), . . . , um(t)) dt

subject to x′1(t) = x2(t), x1(t0) = α1,

x′2(t) = x3(t), x2(t0) = α2,

...
x′n(t) = xn+1(t), xn(t0) = αn,

x′n+1(t) = g(t, x1(t), x2(t), . . . , xn+1(t), u1(t), . . . , um(t)),
xn+1(t0) = αn+1

which can be solved by the methods developed in this chapter. Consider this
second-order example.

Example 12.6

min
u

1
2

∫ π

0

u(t)2 − x(t)2 dt

subject to x′′(t) = u(t), x(0) = 1, x′(0) = 1.

Let x1 = x and x2 = x′, to convert the problem to

min
u

1
2

∫ π

0

u(t)2 − x1(t)2 dt

subject to x′1(t) = x2(t), x1(0) = 1,

x′2(t) = u(t), x2(0) = 1.
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Introduce two adjoint variables λ1 and λ2 and set up the Hamiltonian:

H =
1
2
u2 − 1

2
x2

1 + λ1x2 + λ2u,

0 =
∂H

∂u
= u + λ2 ⇒ u∗ = −λ2,

λ′1(t) = − ∂H

∂x1
= x1, λ1(π) = 0,

λ′2(t) = − ∂H

∂x2
= −λ1, λ2(π) = 0.

Note, λ
(4)
2 = −λ′′′1 = −x′′1 = −x′2 = −u = λ2. Thus, λ2(t) = Aet + Be−t +

C cos t+D sin t for some constants A,B, C, D. Making use of the adjoint and
state equations, we see

x1(t) = −Aet −Be−t + C cos t + D sin t,

x2(t) = −Aet + Be−t − C sin t + D cos t,

λ1(t) = −Aet + Be−t + C sin t−D cos t,

λ2(t) = Aet + Be−t + C cos t + D sin t.

Using the conditions x1(0) = x2(0) = 1 and λ1(π) = λ2(π) = 0, we find



−1 −1 1 0
−1 1 0 1
−eπ e−π 0 1
eπ e−π −1 0







A
B
C
D


 =




1
1
0
0


 .

Approximate values are A ≈ 0.0452, B = 0, C = D ≈ 1.0452, so that the
optimal solutions are

x∗(t) = x1(t) = −0.0452et + 1.0452(cos(t) + sin(t)),

u∗(t) = −λ2(t) = −0.0452et − 1.0452(cos(t) + sin(t)).

12.4 Isoperimetric Constraints

Let us return our attention to Example 3.3, the simple problem involving
cancer treatment:

min
u

x(T ) +
∫ T

0

u(t)2 dt
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subject to x′(t) = αx(t)− u(t), x(0) = x0.

As originally stated, we wished to minimize the final concentration of tumor
cells and the total harmful effects of the drugs. Now, suppose we wanted to
further restrict the amount of drug administered to the patient. One method
would be to introduce a bound on the control, say 0 ≤ u(t) ≤ M , where M is
an appropriately chosen constant. This method still allows some leniency in
the total amount of drug. Suppose we know precisely the amount of treatment
which can be given to this patient over the given time interval and still be
within safety limits. Further, suppose we wish to administer precisely this
amount over the time period, or stated mathematically

∫ T

0

u(t) dt = B,

where B is the known amount. Then, the problem we are now faced with is to
minimize the final concentration of cancerous cells using a total drug amount
of B over the time interval. This can be stated

min
u

x(T ) +
∫ T

0

u(t)2 dt

subject to x′(t) = αx(t)− u(t), x(0) = x0,∫ T

0

u(t) dt = B.

This type of constraint is known as an isoperimetric constraint. We now pro-
ceed to establish solution methods for this type of problem in more generality.

Let f(t, x, u), g(t, x, u), and h(t, x, u) be continuously differentiable func-
tions in all three variables. Consider the optimal control problem

max
u

∫ t1

t0

f(t, x(t), u(t)) dt + φ(x(t1))

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0,∫ t1

t0

h(t, x(t), u(t)) dt = B,

a ≤ u(t) ≤ b.

(12.3)

Pontryagin’s Maximum Principle cannot be used to deal with this problem as
stated. As in the last section, though, we can use a simple trick to convert
this problem to a more familiar form. Introduce a second state variable z(t)
and set

z(t) =
∫ t

t0

h(s, x(s), u(s)) ds.

Then, it follows



110 Optimal Control Applied to Biological Models

z′(t) = h(t, x(t), u(t)),
z(t0) = 0,

z(t1) = B.

Thus, (12.3) is transformed into

max
u

∫ t1

t0

f(t, x(t), u(t)) dt + φ(x(t1))

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0,

z′(t) = h(t, x(t), u(t)), z(t0) = 0, z(t1) = B,

a ≤ u(t) ≤ b.

This problem can now be solved using methods developed in this chapter. We
present the following example. For an additional example, see Exercise 12.9.

Example 12.7

min
u

1
2

∫ 1

0

u(t)2 dt

subject to x′(t) = u(t), x(0) = 0, x(1) = 1,
∫ 1

0

x(t) dt = 2.

Introduce a second state variable z(t) with z′(t) = x(t), z(0) = 0, and z(1) =
2. Then, the above problem converts to

min
u

1
2

∫ 1

0

u(t)2 dt

subject to x′(t) = u(t), x(0) = 0, x(1) = 1,

z′(t) = x(t), z(0) = 0, z(1) = 2.

The Hamiltonian will be

H =
1
2
u2 + λ1u + λ2x.

The second adjoint equation is

λ′2(t) = −∂H

∂z
= 0,

so that λ2 ≡ C for some constant C. Also, the first adjoint equation yields
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FIGURE 12.3: The optimal state from Example 12.7 is shown, along with
rectangles for the right-hand sum approximation. Of course, here we have an
expression we can integrate to check the isoperimetric constraint.

λ′1(t) = −∂H

∂x
= −λ2 = −C ⇒ λ1(t) = k − Ct

for some constant k. The optimality condition is

0 =
∂H

∂u
= u + λ1 ⇒ u∗(t) = −λ1(t) = Ct− k.

Using the state equation for x and x(0) = 0, we have

x′(t) = u(t) = Ct− k ⇒ x(t) =
C

2
t2 − kt.

Similarly, using the state equation for z and z(0) = 0, we have

z′(t) = x(t) =
C

2
t2 − kt ⇒ z(t) =

C

6
t3 − k

2
t2.

Finally, using the terminal conditions,

1 = x(1) =
C

2
− k,

2 = z(1) =
C

6
− k

2
,
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which can be solved to find C = −18 and k = −10. This gives the optimal
solutions

u∗(t) = 10− 18t,

x∗(t) = 10t− 9t2.

The optimal state is shown in Figure 12.3.

12.5 Numerical Solutions

The forward-backward sweep method for several variables is essentially
identical to the scheme used with one state and one control. First, an initial
guess of each control variable is made. All states are solved simultaneously
forward in time, then all adjoints are simultaneously solved backward in time.
Each control is updated subject to its individual characterization, and the
process is repeated until convergence occurs.

Any differential systems solver can be used to solve the states and adjoints.
As Runge-Kutta 4 has been used to this point, we will now make use of
Runge-Kutta 4 for systems, where if ~x′(t) = ~f(t, ~x(t)), then

~x(t + h) = ~x(t) +
h

6
(~k1 + 2~k2 + 2~k2 + ~k4) (12.4)

where

~k1 = ~f(t, ~x(t))

~k2 = ~f(t +
1
2
h, ~x(t) +

1
2
h~k1)

~k3 = ~f(t +
1
2
h, ~x(t) +

1
2
h~k2)

~k4 = ~f(t + h, ~x(t) + h~k3).

(12.5)

Note that 12.4 and 12.5 are almost identical to the single equation Runge-
Kutta 4 routine 4.1 and 4.2, except ~x, ~f , and ~ki, i = 1, . . . 4, are now vectors,
all of the same length.

To write a forward-backward sweep for an optimal control problem with
multiple states and/or controls, make an initial guess for each control variable,
declare all states and adjoints, and store all initial conditions. Also, when
checking convergence before, we created a convergence measure for each of
the control, state, and adjoint. Now, we must do the same for all controls, all
states, and all adjoints, and then take the minimum. Each control will have
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its own characterization, which may or may not include bounds. In order to
solve the states and adjoints, notice that the Runge-Kutta routine requires
the vector ~ki to be completely solved for before finding ~ki+1. This means
the k1 term for each state or adjoint must be found before moving onto the
k2 terms, and so on. Also, recall variables dependent on time which are not
being solved for, such as the control, are shifted by taking an average.

For an example, suppose the state equations for an optimal control problem
are as follows,

x′1(t) = x1 + x2u,

x′2(t) = x1x2 − u + t.

Then, the code would be written as below. Recall h2 = h/2.

1 for i = 1:N
2 k11 = x1(i) + x2(i)*u(i);
3 k12 = x1(i)*x2(i) - u(i) + t(i);
4

5 k21 = (x1(i)+h2*k11) + (x2(i)+h2*k12)*0.5*(u(i)+u(i+1));
6 k22 = (x1(i)+h2*k11)*(x2(i)+h2*k12) - ...
7 0.5*(u(i)+u(i+1)) + (t(i) + h2);
8

9 k31 = (x1(i)+h2*k21) + (x2(i)+h2*k22)*0.5*(u(i)+u(i+1));
10 k32 = (x1(i)+h2*k21)*(x2(i)+h2*k22) - ...
11 0.5*(u(i)+u(i+1)) + (t(i) + h2);
12

13 k41 = (x1(i)+h*k31) + (x2(i)+h*k32)*u(i+1);
14 k42 = (x1(i)+h*k31)*(x2(i)+h*k32) - u(i+1) + t(i+1);
15

16 x1(i+1) = x1(i) + (h/6)*(k11 + 2*k21 + 2*k31 + k41);
17 x2(i+1) = x2(i) + (h/6)*(k12 + 2*k22 + 2*k32 + k42);
18 end

The backward solver for the adjoints is similar.

12.6 Exercises

Exercise 12.1 (from [126]) Solve
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min
u

5x1(1)2 +
1
2

∫ 1

0

x1(t)2 + x2(t)2 + u(t)2 dt

subject to x′1(t) = x2(t) + u(t),
x′2(t) = x1(t)− x2(t), x2(1) = 1.

Exercise 12.2 Reconsider the previous exercise with the bounds −1 ≤
u(t) ≤ 1.

Exercise 12.3 Solve

min
u1,u2

1
2

∫ 1

0

u1(t)2 + u2(t)2 dt

subject to x′(t) = u1(t)u2(t) + u2(t), x(0) = 0, x(1) = 1.

Exercise 12.4 Solve

min
u1,u2

∫ 5

0

x1(t) +
1
2
u1(t)2 +

1
2
u2(t)2 dt

subject to x′1(t) = u1(t) + x2(t), x1(0) = x0,

x′2(t) = u2(t), x2(0) = 0,

− 2 ≤ u1(t) ≤ −1, −8 ≤ u2(t) ≤ −2.

Exercise 12.5 (from [51]) Consider the optimal control problem

min
u

1
2

∫ 1

0

x1(t)2 + u(t)2 dt

subject to x′1(t) = x2(t), x1(0) = 1,

x′2(t) = u(t), x2(0) = 0.

Cast this as an linear quadratic regulator problem. State the Ricatti equation.

Exercise 12.6 (from [148]) Cast as an LQR problem, and solve the Riccati
equation.
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min
u

1
2

∫ T

0

3x(t)2 + u(t)2 dt

subject to x′(t) = x(t) + u(t), x(0) = x0.

Exercise 12.7 (from [148]) Cast as an LQR problem, and solve the Riccati
equation.

min
u

1
2

∫ T

0

x1(t)2 + u(t)2 dt

subject to x′1(t) = x2(t), x1(0) = a,

x′2(t) = −10x2(t) + u(t), x2(0) = b.

Exercise 12.8 Solve

min
u

1
2

∫ 1

0

u(t)2 dt

subject to x′′(t) = u(t), x(0) = 0, x(1) = A, x′(1) = 0.

Exercise 12.9 Solve

min
u

∫ 1

0

1
2
x(t)2 + x(t) +

1
2
u(t)2 + u(t) dt

subject to x′(t) = u(t), x(0) = 0,
∫ 1

0

u(t) dt = 1.

Note, there is an alternate way of solving this problem. The isoperimetric
constraint can be modified to a final time condition of the state using the
Fundamental Theorem of Calculus.

Exercise 12.10 Formulate an optimal control problem for a system of
three ordinary differential equations. This system represents three interact-
ing populations. Population 1 and population 2 compete. Population 3 co-
operates with the other two populations. Population 1 has logistic growth.
The growth function of population 2 has an Allee effect. Population 3 has
exponential growth. The control is to harvest a proportion of population 3.
The objective functional should maximize the population harvested over time
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and minimize the cost of the harvest. Assume the cost of harvesting is a
quadratic function of the control. Set-up the optimal control problem and the
corresponding necessary conditions, but do not solve the conditions. (See Kot
[107] for an explanation of the growth terms mentioned above.)



Chapter 13

Lab 7: Epidemic Model

In this lab, we use optimal control techniques to find a vaccination schedule
for an epidemic disease. A micro-parasitic infectious disease is considered.
Permanent immunity to the disease can be achieved through natural recovery
or immunization. Immunity is not passed on during birth, so that everyone
is born susceptible. Our goal is to minimize the number of infectious persons
and the overall cost of the vaccine during a fixed time period.

To model the dynamics of the disease in a population, we use a standard
SEIR (or SEIRN) model. Let S(t), I(t), and R(t) represent number of sus-
ceptible, infectious, and recovered (immune) individuals at time t. The model
allows for an incubation period for the disease inside its host, where an infected
person remains latent for some time before becoming infectious, creating an
exposed class. Let E(t) be the number of exposed or latent individuals at
time t. Let N(t) be the total number of people in the population, so that
N(t) = S(t) + E(t) + I(t) + R(t).

Let u(t), the control, be the percentage of susceptible individuals being
vaccinated per unit of time. As vaccination of the entire susceptible population
is impossible, we bound the control with 0 ≤ u(t) ≤ 0.9. Let b be the natural
exponential birth rate of the population and d the natural exponential death
rate. The incidence of the disease is described by the term cS(t)I(t). The
parameter e is the rate at which the exposed individuals become infectious,
and g is the rate at which infectious individuals recover. Therefore, 1

e is the
mean latent period, and 1

g is the mean infectious period before recovery, if
recovery occurs. The death rate due to the disease in infectious individuals is
a. The optimal control problem is as follows,

min
u

∫ T

0

AI(t) + u(t)2 dt

subject to S′(t) = bN(t)− dS(t)− cS(t)I(t)− u(t)S(t), S(0) = S0 ≥ 0,

E′(t) = cS(t)I(t)− (e + d)E(t), E(0) = E0 ≥ 0,

I ′(t) = eE(t)− (g + a + d)I(t), I(0) = I0 ≥ 0,

R′(t) = gI(t)− dR(i) + u(t)S(t), R(0) = R0 ≥ 0,

N ′(t) = (b− d)N(t)− aI(t), N(0) = N0,

0 ≤ u(t) ≤ 0.9.
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See [93] for results on a similar problem using incidence term cSI
N . The left-

hand side of the differential equations gives us the name of the type of model
(SEIR). A flow chart of the model is given in Figure 13.1. Also, observe the
variable R appears only in the R′ differential equation. So, the other variables
do not depend on R, and we can ignore R when we solve the optimality system.
Specifically, as you see in the code, only S, E, I, and N are solved forward
in time, and the four associated adjoints are solved backward in time. Once
convergence has been achieved, R∗ is solved using its differential equation.
Refer back to Example 12.3.

S -
cIS

?
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?bN
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eE
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dE
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aI

R

?

dR

?

FIGURE 13.1: This is a flow chart for our model. The four boxes repre-
sent the four groups of individuals. The arrows show the movement between
groups, and into and out of the population.

Type lab7 at the prompt and press enter. Start with the values

b = 0.525 d = 0.5 c = 0.0001 e = 0.5
g = 0.1 a = 0.2 S0 = 1000 E0 = 100

I0 = 50 R0 = 15 A = 0.1 T = 20
. (13.1)

This is a simulation of a disease with a low incidence measure. The optimal
vaccination schedule is one of containment. An early round of vaccinations is
used to shield the susceptible population from the initially significant exposed
and infectious populations. This, combined with the low incidence level, re-
sults in the virtual end of disease spread. Exposed and infectious populations
quickly disappear (through death and recovery). By year 5, the disease is
essentially wiped out and vaccination ends. The small number of people who
do carry the disease pose little threat of spreading it. The recovered group
increases rapidly at first due to vaccinations, but slowly disappears when vac-
cination ends. By the end of the time period, susceptible people make up
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almost the entire population. Notice, the susceptible population decreases
slightly at the beginning of the time interval. Here, the vaccination rate is
greater than the overall growth. See Figure 13.2 to compare this simulation
with that of no vaccination.
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FIGURE 13.2: Results from optimal vaccination from (13.1), in solid, com-
pared with that of no vaccination (dashed). Infectious I and total population
N are pictured. With no vaccination, the number of infectious decreases little
and total population is nearly constant.

Now, vary (13.1) with c = 0.001, a much higher, and more realistic, inci-
dence level. Here, the threat of disease spread is much more serious, and a
more aggressive plan is needed. Maximum vaccination is used initially, fol-
lowed by a reduction, but a slower reduction than in the first system. With
a low incidence, there was no need to vaccinate once the exposed and infec-
tious populations were reduced, as almost no one would contract the disease.
In the system with c = 0.001, though, we see it is advantageous to continue
vaccinating almost 40% of the population, even after exposed and infectious
populations are reduced. The susceptible population is reduced by half in
the first two years, as the great majority are being vaccinated and many of
the others are exposed. The infectious population even sees a slight initial
increase. However, after the first several years, the same dynamic of the other
simulation returns. Susceptible begins to steadily climb, almost reaching the
levels of those in the first system. Exposed and infectious almost disappear,
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and vaccination levels do eventually reach 0. Total population is hardly af-
fected by the increase in incidence. It is worth noting in the second system,
at the end of the period, the recovered group is still a significant portion of
the total population.

This time, enter

b = 0.525 d = 0.5 c = 0.001 e = 0.5
g = 0.1 a = 0.2 S0 = 1000 E0 = 100

I0 = 50 R0 = 15 A = 0.1 T = 20
. (13.2)

and vary A using as the second choice A = 2. With a higher weight para-
meter, we can vaccinate at the maximum level for a longer period of time.
This change greatly decreases the susceptible population and increases the
recovered population. However, the exposed and infectious populations are
reduced, but the change is marginal. Total population seems unaffected in
any way, which seems to suggest early vaccinations are the key to disease
management. Later vaccinations, while effective and helpful, become increas-
ingly less efficient as time passes. To verify this, vary A = 0.1 versus A = 200.
Here, with such a high A value, vaccination cost is of virtually no importance.
As such, maximum vaccination is used almost exclusively. The effects on the
susceptible and recovered populations are pronounced, but the change in the
number of exposed and infectious people is small.

Enter (13.2) varying with g = 0, representing a disease where no recov-
ery can occur. A higher vaccination rate must be used, as immunity is no
longer achieved naturally. The second system has a higher infectious popula-
tion throughout. This makes sense, as no one is recovering. The reduction in
infectious people in the second system is due only to death. Now try (13.2)
varying with g = 0.4. Here, one stands a much better chance of recovering
from the disease. The infectious population reduces more rapidly, meaning a
less aggressive vaccination routine can be used. Note, even though natural re-
covery is occurring more often in the second system, there are fewer recovered
people. The shift in vaccination outweighs the shift in recovery rate.

We might suspect a higher disease-related mortality would necessitate a
greater immunization rate. However, the opposite is actually true. Enter
(13.2), this time varying with a = 0.4. In the second system, a slightly less
powerful, but still aggressive initial immunization strategy is used. The in-
fectious population reduces more rapidly due to the greater mortality rate,
and fewer vaccinations are needed. Notice, however, that the total population
in the second system is lowered slightly. If you try a disease mortality rate
as high as a = 1.5, you will see very little vaccination is used, as the infec-
tious population rapidly declines. The effect on total population also becomes
more severe. Recall our objective functional minimizes the number of infec-
tious people only. This simulation suggests we might also consider the total
population in our goals.
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Vary the latency of the disease, using (13.2) and varying with e = 0.1. In
the second system, the disease has an incubation period five times as long.
So, a large initial round of immunizations is not needed. The longer incuba-
tion period allows the immunizations to be spread out over the first several
years. Also, the infectious population receives no initial boost and reduces at
a greater speed. The recovery and death rates of infectious individuals are
now larger than the rate at which susceptible people become exposed, then
infectious.

Consider the relationship between the management of the disease and the
effective growth of the population as a whole. In all the previous simulations,
we considered a population with moderate growth. We now turn our atten-
tion to a simulation with rapid growth. Enter (13.2), varying with b = 0.55.
Here, we have doubled the effective growth rate (b− d). With so many more
susceptible people, the disease can spread more easily. Thus, a more stringent
schedule of immunizations must be used to balance out the population growth.
Infectious and exposed populations are similar in both systems for the major-
ity of the time interval. However, as immunization is decreased, both begin to
rise at approximately 15 years. At this point, there are so many susceptible
people, even a few infectious individuals are enough to restart the epidemic
if immunizations are not continued. Conversely, consider a population with
small or no effective growth, i.e., b = d. Enter the same (13.2) values as before,
this time varying d to d = 0.525. The initial immunization blitz reduces the
number of susceptible people as normal, but as the growth rate is zero, the
susceptible population will have a slower increase. Thus, fewer vaccinations
are needed after the first few years. The exposed and infectious populations
are reduced in the usual way. However, the total population, without disease,
is naturally static as b = d. Thus, the disease-caused deaths cause the total
population to reduce in size.

To this point, we have examined populations where susceptible people were
in the majority. Now, let us consider a case where the infection has been
spreading unchecked for some time before intervention occurs. Enter the
values

b = 0.525 d = 0.5 c = 0.001 e = 0.5
g = 0.1 a = 0.2 S0 = 1000 E0 = 1000
I0 = 2000 R0 = 500 A = 0.1 T = 20

. (13.3)

Here, maximum vaccination is almost the entire period. The number of ex-
posed and infectious people are reduced by the end of the period, but not
nearly to the levels we have been observing. The number of exposed people
actually begins to increase again in the last year. Most troublesome, the total
population drastically falls in the first five years, before stabilizing and then
increasing. Now try
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b = 0.525 d = 0.5 c = 0.001 e = 0.5
g = 0.1 a = 0.2 S0 = 1000 E0 = 2000
I0 = 5000 R0 = 1000 A = 0.1 T = 20

. (13.4)

Here, vaccination has begun too late. Even with maximum vaccination for
more than 19 of the 20 years, total population steadily falls. This again estab-
lishes the importance of early vaccinations. Treatment must begin before the
infection gets out-of-hand. Try to create a set of parameters where the popu-
lation has moderate growth but eventually dies out, despite the immunization
tactics.

On your own, examine a few special cases of the initial conditions. Run
a simulation where immunization begins before the disease becomes infec-
tious, namely I0 = R0 = 0. Consider a closed environment, such as a cruise
ship, where a few infectious individuals enter an uncontaminated population,
specifically, E0 = R0 = 0. Also, try E0 = I0 = R0 = 0.

Vary each of the initial conditions one by one to see their effect on the
optimal immunization treatment. How does shortening the time interval alter
the execution and efficiency of the immunization schedule?

Exercise 13.1 Consider this model with an objective functional that in-
stead maximizes N . For example,

max
u

∫ T

0

AN(t)− u(t)2 dt

subject to S′(t) = bN(t)− dS(t)− cS(t)I(t)− u(t)S(t), S(0) = S0 ≥ 0,

E′(t) = cS(t)I(t)− (e + d)E(t), E(0) = E0 ≥ 0,

I ′(t) = eE(t)− (g + a + d)I(t), I(0) = I0 ≥ 0,

R′(t) = gI(t)− dR(i) + u(t)S(t), R(0) = R0 ≥ 0,

N ′(t) = (b− d)N(t)− aI(t), N(0) = N0,

0 ≤ u(t) ≤ 0.9.

Write a code for this problem (or alter code7.m), and examine the differences
between the two problems.



Chapter 14

Lab 8: HIV Treatment

In the following lab, optimal control is used to find an optimal chemotherapy
strategy in the treatment of the human immunodeficiency virus (HIV). Unlike
the last lab, where the dynamics of a population affected by an epidemic were
considered, this problem studies the immune system of an individual.

A great deal of research has been conducted on the effect of chemotherapy
on the HIV virus. For example, in [105], Kirschner et. al. study the effects
of chemotherapy on reducing viral production, which is most applicable to
drugs such as protease inhibitors. Here, we consider the chemotherapy of re-
verse transcription inhibitors, such as AZT, which affects the “infectivity” of
the virus. These drugs interrupt key stages of the infection process during
the life cycle of HIV within a host cell. Butler, Kirschner, and Lenhart cre-
ated a model for this type of interaction and used optimal control to develop
treatment strategies in [25]. This lab is based on their work.

It is assumed the treatment acts to reduce the infectivity of the virus for a
finite time, until drug resistance occurs. The measure of benefit of chemother-
apy treatment is based solely on the increase of the CD4+T cell count. Thus,
the model used describes the interaction of the immune system with HIV. Let
T (t) and Ti(t) be the concentration of uninfected and infected CD4+T cells,
respectively, and let V (t) be the concentration of free virus particles. In this
instance, concentration refers to the population count per unit volume. Let

s

1 + V (t)

be the source term from the thymus, representing the rate of generation of
new CD4+T cells. Let r be the growth rate of T cells per day. This growth is
assumed to be logistic, with a maximum level of Tmax. Let kV (t)T (t) be the
rate that free virus cells infect T cells. Let m1, m2, m3 be the natural death
rates of uninfected CD4+T cells (T ), infected CD4+T cells (Ti), and free virus
particles (V ), respectively. Once infection of a T cell occurs, replication of
the virus is initiated and an average of N virus particles are produced before
the host cell dies.

The control, u(t), is the strength of the chemotherapy, where u(t) = 0 is
maximum therapy and u(t) = 1 is no therapy. We note that maximum therapy
u = 0 is probably unrealistic to achieve; a more realistic positive lower bound
would be better. We leave the problem as originally stated, though. A flow
chart is given in Figure 14.1. We wish to maximize the number of uninfected
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T cells while simultaneously minimizing the “cost” of the chemotherapy to
the body. The fixed time frame simulates the period before drug resistance
occurs. Letting A ≥ 0 be the cost, or weight, parameter, the problem is

max
u

∫ tfinal

0

AT (t)− (1− u(t))2 dt

subject to T ′(t) =
s

1 + V (t)
−m1T (t) + rT (t)

[
1− T (t) + Ti(t)

Tmax

]

− u(t)kV (t)T (t),
T ′i (t) = u(t)kV (t)T (t)−m2Ti(t),
V ′(t) = Nm2Ti(t)−m3V (t),
T (0) = T0 > 0, Ti(0) = Ti0 > 0, V (0) = V0 > 0,

0 ≤ u(t) ≤ 1.

This example has only one control; see [90] for an HIV immunology problem
with two controls representing two types of drug treatments. We note that
models of HIV have changed since this work, but this still provides an excellent
example of an immunology model.
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FIGURE 14.1: There are two types of T cells, uninfected and infected.
Although the virus concentration is a separate population (T cells do not
become virus particles), the death of infected T -cells directly affects the pro-
duction of new virus particles. This is illustrated with the line from the death
of infected T -cells to new virus particles, labeled with multiplication by N .
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Enter MATLAB and begin lab8. Begin with the values

s = 10 m1 = 0.02 m2 = 0.5 m3 = 4.4 r = 0.03
Tmax = 1500 k = 0.000024 N = 300 T0 = 800

Ti0 = 0.04 V0 = 1.5 A = 0.05 tfinal = 20
. (14.1)

We see the optimal chemotherapy treatment begins with the strongest dose,
followed by a decreasing of treatment. (Remember u = 0 is the maximum
therapy, and u = 1 is no therapy). This has the effect of steadily increasing
the T cell concentration, even though treatment is not 100% effective 100% of
the time. This behavior is seen in drugs such as AZT and DDT. Also, infected
T cell count and viral concentration initially decrease and then increase as
treatment lessens, but only to a fraction of original levels.

Let us begin with an evaluation of the weight A. Enter the (14.1) values,
varying with A = 0.025 as our second value. As expected, the system with
higher cost parameter has a control where maximum treatment is continued
longer. Subsequently, the T cell count is driven higher, and infected T cell
and viral concentration are pushed lower. However, the increase in healthy
T cells is marginal, while the infected T cell and viral concentrations are
approximately halved. This is somewhat surprising, considering that only
healthy T cell count is explicitly considered in the objective functional. Notice
that both systems exhibit the same basic behavior. Optimal treatment for
both begins with a period of maximum strength, then reduces in strength
until reaching no treatment, both before the 20 day period is actually over.

Enter (14.1) again, this time varying the number of virus particles produced
by infected cells, say N = 250 as the second value. Here, the concentrations of
uninfected and infected T cells are approximately the same for both systems
and the viral concentration is only slightly altered. However, the treatment
regimen in the first system sustains maximum strength for a full day longer
to achieve virtually the same results. Now, try N = 300 versus N = 50.
Notice the dramatic difference. In the second system, the T cell count is
driven a little higher, but with a much less strenuous treatment regimen. In
fact, maximum strength treatment is never used, and treatment effectively
ends after only ten days. Further, with N = 50, after the population is driven
sufficiently low enough with drugs, the virus actually fades because it is not
reproducing enough to sustain itself.

Now, enter (14.1), varying T cell growth rate to r = 0.045. Because of the
higher natural growth rate of the T cells in second system, we are able to
drive the T cell count higher, with virtually the same treatment regimen. It is
worth pointing out the fundamental differences in this simulation and the last.
When N was advantageously adjusted, the optimal treatment was to reduce
drug strength in order to achieve the same T cell count. Conversely, when T
cell growth rate was increased, the optimal action was to instead maintain a
similar treatment schedule in order to gain a better T cell count. This is a
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direct result of the objective functional, which considers only healthy T cell
count. An increased growth rate directly affects T , whereas a lower N value
hinders viral production, altering T cells only indirectly.

Vary the infection rate, using (14.1) and varying with k = 0.000032. In-
creasing the infectivity of the virus has somewhat expected results. Viral
and infected T concentrations are higher at the end of the time period, when
drug treatment is greatly reduced. Also, uninfected T cell concentration re-
mains approximately the same, while a longer period of maximum treatment
is needed to achieve this. Again, notice the interesting duality, as, in this case,
the optimal strategy is to increase overall drug strength in order to achieve
the same healthy T cell count.

We now turn our attention to the generation of new CD4+T cells, repre-
sented by s. With (14.1), vary s to the second value of s = 9. Then, try
s = 8 as the second value. Then s = 7. The behavior is unlike what we saw
with N , k, and r. Here, as s varies, the optimal control and uninfected T cell
count both change. A weaker drug regimen is used and the healthy T cell
count decreases. When s is reduced, the production of T cells is slowed, so it
is logical that the T cell count would be less in the second system. Notice the
viral and infected T cell concentrations remain essentially unchanged through
these variations of s. With fewer T cells, a weaker drug treatment is needed
to keep the same levels of infection.

Try varying the maximum concentration of T cells in (14.1), using Tmax =
1200 as the second value. One might suspect that since neither 1500 nor 1200
are particularly close to our initial condition of 800, this variation will cause
little change in the outcome. However, you will see from the graphs that this
is not true. The T cell count in the second system, which begins at 67%
carrying capacity, actually decreases initially, before finishing at a level only
slightly above the initial number. The first system T cell count, which begins
at only 53% carrying capacity, increases steadily after the first two days. This
occurs despite the two systems using very similar treatment regimens.

Now consider the length of the time interval. Vary the final time using
(14.1) and tfinal = 10. In the shortened time interval, the treatment makes
far less progress. The final T cell count in the second system is lower than the
first system on day 10. The treatment is even less effective in reducing the
infected T cell and viral concentrations. Notice, however, that the maximum
drug strength is held for a shorter interval and overall drug strength is less.
The way the problem is cast, we are requiring drug side-effects to be minimized
over a 10 day period. By comparing to a 20 day regimen, we are, in some
sense, unfairly capping the allowed side-effects. The addition of 10 days to
the treatment period will certainly lead to more side-effects. If, for instance,
days 11 - 20 are completely drug-free, then we should allow twice the amount
of side-effects in days 1 - 10 as compared to the original 10 day treatment.
Hence, run the simulation with tfinal = 10 and A = 0.1, twice the original
value. Here, we see the dynamic we are used to. However, the final number,
although better than the first 10 day schedule, are not comparable to the
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20 day period. The length over which a drug is administered seems to be
an integral part of its effectiveness. Thus, it is important to develop strong
reverse transcription inhibitors which also have long resistance times.

The effect of varying each of the death rates m1, m2, and m3 is predictable.
Also, we have already examined the effect of initial conditions on systems such
as this. So, the study of these parameters is left as an exercise for the reader.
It may be of interest to ascertain which death rate and initial condition have
the most impact.





Chapter 15

Lab 9: Bear Populations

This lab focuses on a metapopulation harvesting model, which will involve two
separate controls. It is based on work done by Salinas, Lenhart, and Gross
in [165]. A metapopulation is a population consisting of multiple local popu-
lations. Here, we wish to model a black bear population which is motivated
by the scenario in the Great Smoky Mountain National Park. We consider the
bear population in a “generic” park, in the surrounding national forest, and in
the “outside” or “human-populated” areas (e.g., small towns and tourist ar-
eas). These areas have shared borders, and the density-dependent emigration
and immigration of the bears is based on the connectivity of the patches.

P F

(a)

P

(b)

F

FIGURE 15.1: Park and forest positions for (a) mp = 0 = mf (b)
mp = 1, mf = 0.35.

Let r be the population growth rate of the bears, which will be assumed
to be the same in the park and the forest. Let K be the carrying capacity.
Let mp be the proportion of the park boundary connected with the forest,
and let mf be the proportion of the forest boundary connected with the
park. All boundaries not accounted for by mp, mf are assumed to connect
to outside areas. Various border alignments are shown in Figures 15.1 and
15.2. Let P (t), F (t), and O(t) be the bear density in the park, forest, and
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outside regions, respectively, at time t. We also consider the rates of bear
harvesting in the park (up(t)) and in the forest (uf (t)). Harvesting occurs
via bear hunting in the forest, where hunting limits are enforced, and possible
culling by the Forestry Service in the forest and park. Hunting is currently
illegal in this national park, but we consider a model with harvesting allowed
in the park. We wish to minimize the numbers of bears that enter the human-
populated areas and thereby reduce bear-human encounters. To do this, we
find the optimal harvesting levels in both the park and forest that minimize
the outside population O, while taking the cost of harvesting into account,

min
up,uf

∫ T

0

O(t) + cpup(t)2 + cfuf (t)2 dt

subject to P ′(t) = rP (t)− r

K
P (t)2 +

mfr

K

(
1− P (t)

K

)
F (t)2 − up(t)P (t),

F ′(t) = rF (t)− r

K
F (t)2 +

mpr

K

(
1− F (t)

K

)
P (t)2 − uf (t)F (t),

O′(t) = r(1−mp)
P (t)2

K
+ r(1−mf )

F (t)2

K
+

mfr

K2
P (t)F (t)2

+
mpr

K2
P (t)2F (t),

P (0) = P0 ≥ 0, F (0) = F0 ≥ 0, O(0) = O0 ≥ 0,

0 ≤ up(t) ≤ 1, 0 ≤ uf (t) ≤ 1.

In the objective functional, cp, cf are positive weight parameters. In the P
state equation, rP represents the natural exponential growth,

r

K
P 2

is the density-dependent emigration,

mfr

K
(1− P

K
)F 2

is the density-dependent immigration from the forest, and upP is the level of
harvesting. The terms are similar in the state equation for F . In the O state
equation,

r(1−mp)
P 2

K

represents emigration from the park to outside areas, while

r(1−mf )
F 2

K

is emigration from the forest to outside areas. The terms
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mfr

K2
PF 2 and

mpr

K2
P 2F

are, respectively, the portion of the emigrating population from the park that
enters the forest but is forced to leave because of density-dependence, and the
portion entering the park from the forest that is forced to leave.

Open MATLAB and enter lab9. First, consider a portion of the park which
shares half its border with the forest, and vice versa. At this time, the Great
Smoky Mountain National Park does not participate in the culling of black
bears, either in the forest or in the park. It is unlikely they will change this
policy except in case of extreme overpopulation or other crises. To simulate
a situation like that, we impose a very large cost on park harvesting. Begin
with the values

r = 0.1 K = 0.75 mp = 0.5 mf = 0.5 P0 = 0.4
F0 = 0.2 O0 = 0 cp = 10000 cf = 10 T = 25

. (15.1)

Here, the harvesting inside the park is effectively zero. The park population
grows logistically towards the carrying capacity 0.75. The forest harvesting
is concentrated early in the period, causing the bear population in the forest
to be almost constant initially. Afterwards, however, the forest population
begins to grow, which, along with the growth in the park, causes a rapid rise
in the number of bears in the outside areas.

P F

(a)

PF

F

F

F

(b)

FIGURE 15.2: Park and forest possible positions for (a) mp = 0.25 = mf

(b) mp = 1/3, mf = 0.25.

Now enter the values (15.1) again, this time varying with K = 2. The
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large carrying capacity reduces the levels of immigration and emigration. The
bear populations in the park and in the forest are increased over time, as
fewer bears leave the area. Consequently, the outside population is reduced,
while requiring less harvesting in the forest. Notice in both systems, the
park population shows signs of leveling off, while the forest population is
growing exponentially. This is due to the low initial concentration of the forest
population, which is far from carrying capacity. Now vary with K = 0.5, a
carrying capacity much closer to the initial concentrations. In the second
system, the forest harvesting begins at a higher level, but decreases below
the levels of the first system after about 10 years. Both the park and forest
populations experience slower growth in the second system, as they are near
carrying capacity. This causes an initial boost in the outside population, but
by the end of the time period, the second system actually has fewer bears in
the human areas.

This time, enter (15.1), varying with r = 0.2. The harvesting level in the
park is increased, but still effectively zero. The higher growth rate causes an
early population boom in the park, but the growth subsides as the carrying
capacity is approached. This leads to greater emigration to the forest and out-
side areas. The higher growth rate and immigration into the forest necessitate
a more active forest harvesting rate. Still, though, the forest concentration
increases from the first system. Higher population concentrations lead to an
increased number of bears leaving both the park and the forest for outside
areas. By the end of the period, the number of bears in the outside area has
tripled from the first to second system.

What if the park and forest bordered each other differently? Suppose the
forest borders the park on all sides but one, mp = 0.75 and mf = 0.3 for
example. Enter

r = 0.1 K = 0.75 mp = 0.75 mf = 0.3 P0 = 0.4
F0 = 0.2 O0 = 0 cp = 10000 cf = 10 T = 25

. (15.2)

You will notice the graphs are virtually the same. You will also see they
remain essentially unchanged if you consider a situation where the park is
entirely surrounded by the forest, such as

r = 0.1 K = 0.75 mp = 1 mf = 0.4 P0 = 0.4
F0 = 0.2 O0 = 0 cp = 10000 cf = 10 T = 25

. (15.3)

You might assume from this the border parameters have little effect on the
system. However, as we will see, the underlying effect can be verified by
varying other parameters. Reenter (15.3) and vary with cp = 100. In the
second system, we are “allowing” harvesting in the park. As expected, the
harvesting level greatly increases, which reduces the bear population in the
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park over the entire time interval. As there are less bears to emigrate from
the park, the forest and outside populations are reduced, and less harvesting
in the forest is needed. Now suppose the park and forest share only a tiny
portion of their borders. Enter

r = 0.1 K = 0.75 mp = 0.1 mf = 0.1 P0 = 0.4
F0 = 0.2 O0 = 0 cp = 10000 cf = 10 T = 25

(15.4)

and vary cp as before, with cp = 100. The park and outside population, along
with the level of park harvesting, are affected exactly as before. This time,
however, the forest population and harvesting levels experience very little
change. The thinning of bears in the park has little effect on the forest if the
border between them is too small.

Enter the (15.1) values again, varying with T = 15. Both park harvesting
rates are effectively zero. Notice the park populations are almost identical over
the common time interval. As there is essentially no park harvesting, the bear
population in the park grows near the same rate for both systems. There is
more change in the outside population, which is caused by greater immigration
from the forest. The shorter time interval forces the forest harvesting level
to decrease, in turn increasing the forest bear population. In fact, the final
forest bear population in the second system is almost equal to the final forest
bear population in the first system, ten years sooner.

Finally, we examine the role of the initial conditions. Enter (15.1), first vary-
ing with P0 = 0.5. The higher initial park population results in the second
system having more park bears throughout, though the populations become
closer in size as both approach the carrying capacity. The forest population
and harvesting levels are slightly affected by the greater rates of immigration
from the park, and the outside population is pushed up accordingly. Now vary
the initial forest population, with F0 = 0.3. The result is quite different than
before. Here, more aggressive harvesting is done early to negate the effect of
the higher starting population. By year 15, the forest population and harvest-
ing in both systems are nearly identical. The park and outside populations,
in addition to park harvesting, are only slightly affected. Finally, vary the
initial outside population, using O0 = 0.1. Notice only the outside population
is affected; all other quantities are exactly the same in both systems. This
behavior could have been predicted by examining the state equations. Notice
P , F affect O, but O does not affect P or F . Also, notice the growth rate
of O does not depend on its own size. We see in the graph that the outside
populations in the two systems remain the same distance apart over the en-
tire time interval. Their growth rate is the same throughout, even though the
actual population sizes are not.





Chapter 16

Lab 10: Glucose Model

We mentioned earlier that systems of differential equations modeling spe-
cific behavior are often times very sensitive to changes in parameters. By
now, you may have encountered solutions which were unrealistic or had prob-
lems which failed to converge when you supplied your own parameter values.
Ideally, mathematical models are calibrated using data from field or clinical
research. A model’s effectiveness is based on its ability to accurately portray
behavior inside the realm of the original data. Providing parameters which
are well beyond these bounds can cause the system to act unexpectedly. In
optimal control problems, the optimality system can yield an optimal control
which makes little sense physically; sometimes, the system fails to converge to
provide any solution at all. In this lab, we examine an ill-conditioned problem
with this type of behavior.

In a study by Ackerman et al., a simplified, but highly accurate model
of the blood regulatory system was developed to improve the ability of the
GTT (glucose tolerance test) to detect pre-diabetics and mild diabetics [1].
The model considers the concentration of blood glucose g and net hormonal
concentration h. It was shown that

g′(t) = c1g(t) + c2h(t),
h′(t) = c3g(t) + c4h(t).

Using properties of the blood glucose regulatory system, it is determined that
c1, c2, c3 < 0, and c4 ≥ 0. Also, it was shown that for diabetics, c4 = 0 is a
reasonable assumption.

This model is used by Eisen in an attempt to better regulate blood glucose
levels in diabetic patients [55]. He introduces the change of variables g = x1

and h = x2, a convention we follow here. The goal is to find the insulin
injection level, u(t), which will minimize the difference between x1 and the
desired constant glucose level l, while taking “cost” of the treatment into
account. Thus, the problem becomes
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min
u

∫ T

0

A(x1(t)− l)2 + u(t)2 dt

subject to x′1(t) = −ax1(t)− bx2(t), x1(0) = x10 > 0,

x′2(t) = −cx2(t) + u(t), x2(0) = 0,

a, b, c > 0, A ≥ 0.

If you were to write out the optimality system for this problem, you would
see that it is quite simple. In fact, it is a linear system with constant coeffi-
cients. If a, b, and c were specified, you could easily solve it by hand, finding
the eigenvalues of a 4×4 matrix. As always, though, a solver code is provided.
Enter MATLAB and begin lab10. Enter the following values

a = 1 b = 1 c = 1 x10 = 0.75 A = 2 l = 0.5 T = 20 . (16.1)

For now, do not vary any parameters. The results are somewhat troubling.
The hormonal concentration and insulin level are both negative on the in-
terval. This is clearly a physical impossibility. Also, the behavior of the
glucose level seems to defy our goal. It decreases to the desired 0.5 level, then
continues to decrease past it.

One problem could be the lack of control restrictions. Why not just require
u(t) ≥ 0? If the statement of the problem is so changed, and the code is
appropriately adjusted, then it will simply converge to u ≡ 0. We might
have been able to guess this would not work from the graph, where u is
nowhere positive. The source of the problem is actually the parameters we
have used, mainly the length of time. As we said earlier, the ODE model used
in this optimal control problem was created for more accurate GTTs. While
the model has proven very accurate for this purpose, in this problem we have
asked much more. A GTT requires the monitoring of glucose for only three to
five hours. Our problem requires the accurate prediction of glucose levels for
weeks or even months. We have pushed the model well beyond its boundaries
of reliability.

Now, enter the parameter values

a = 1 b = 1 c = 1 x10 = 0.75 A = 2 l = 0.5 T = 0.2 . (16.2)

Do not try to simultaneously view the solutions for T = 20 and T = 0.2, or
you will not actually be able to see the second system. Of course, 0.2 days
is 4.8 hours, which is within the acceptable time range for the model. As
such, the results are very reasonable. The glucose concentration is steadily
decreased, almost linearly, and the hormonal concentration and insulin levels
are positive. Also, the scales of the hormone and insulin levels are more
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accurate. So, the model behaves perfectly and provides accurate solutions
when reasonable parameters are used, but can give physically implausible
solutions otherwise. Results for various T values are shown in Figure 16.1.

T = 0.3 T = 0.4 

T = 0.5 T = 0.6 

0.01 

0 

0.01 

0.005 

0 

−0.005 

0.004 

0 

−0.004 

FIGURE 16.1: The optimal control u∗ for four different T values, with
a = b = c = 1, x0 = 0.75, A = 2, and l = 0.5. We see the control becomes
negative when T = 0.5, but it is still feasible for T = 0.3 and T = 0.4.

The purpose of this lab was to illustrate the necessity of reasonable pa-
rameters. We refrain from doing so here, but the reader may still find it
insightful to experiment with this model, varying the parameters, as we have
been doing.

Exercise 16.1 As mentioned earlier, this optimal control problem can be
solved by hand. Find the optimal control in the case of the values (16.1). In
particular, solve

min
u

∫ 20

0

2(x1(t)− 0.5)2 + u(t)2 dt

subject to x′1(t) = −x1(t)− x2(t), x1(0) = 0.75,

x′2(t) = −x2(t) + u(t), x2(0) = 0.





Chapter 17

Linear Dependence on the Control

In the preceding chapters, we have examined increasingly more general opti-
mal control problems. However, we now turn our attention to a special case,
which often arises in applications. Specifically, we focus on problems that are
linear in the control u. The method of solving such problems is sometimes
quite different, and the optimal solution often involves discontinuities in u∗.

17.1 Bang-Bang Controls

Consider the optimal control problem

max
u

∫ t1

t0

f1(t, x) + u(t)f2(t, x) dt

subject to x′(t) = g1(t, x) + u(t)g2(t, x), x(0) = x0,

a ≤ u(t) ≤ b.

Notice the integrand function f and the right-hand side of the differential
equation g are both linear functions of the variable u. Thus, the Hamiltonian
is also a linear function of u, and can be written

H = [f1(t, x) + λ(t)g1(t, x)] + u(t)[f2(t, x) + λ(t)g2(t, x)].

The necessary condition λ′(t) = −∂H
∂x is as normal. However, the optimality

condition

∂H

∂u
= f2(t, x) + λ(t)g2(t, x),

contains no information on the control. We must try to maximize the Hamil-
tonian H with respect to u using the sign of ∂H

∂u , but, when f2 + λg2 = 0, we
cannot immediately find a characterization of u∗.

Define ψ(t) = f2(t, x(t)) + λ(t)g2(t, x(t)), usually calld the switching func-
tion. Our characterization of u∗ is
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u∗(t) =





a if ψ(t) < 0
? if ψ(t) = 0
b if ψ(t) > 0.

If ψ = 0 cannot be sustained over an interval of time, but occurs only at
finitely many points, then the control u∗ is referred to as bang-bang. In this
case, it is piecewise constant function, switching between only the upper and
lower bounds. An example of such a control is given in Figure 17.1. The
switches coincide with the places where ψ switches signs (so that ψ = 0),
hence the name switching function. The actual points where this occurs are
called switching times. As mentioned in Sections 1.1 and 8.1, we will not be
concerned with the actual value of the control at these times.

Time

C
o

n
tr

o
l

t
0

t
1

b

a

FIGURE 17.1: A typical bang-bang control.

If ψ(t) ≡ 0 on some interval of time, we say u∗ is singular on that interval. A
characterization of u∗ on this interval must be found using other information.
The endpoints of this interval are sometimes called switching times as well.
We postpone the discussion of singular controls until the next section.

To solve a bang-bang problem numerically, the forward-backward sweep
method can be employed. First, it must be analytically proven that the
problem is in fact bang-bang, i.e., ψ ≡ 0 over an interval is impossible. Once
this is established, the code is written as usual, where the characterization of
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u is given by

for i=1:N+1
temp = psi(t(i),x(i),lambda(i))
if(temp < 0)

u1(i) = a;
else

u1(i) = b;
end

end
u = 0.5*(u1 + oldu);

where psi(t(i),x(i),lambda(i)) in the second line is replaced by the actual value
of the function ψ in terms of t, x, and λ, according to the specific problem.
Notice, even though it is irrelevant from an analytical standpoint, the value
of the control at the switching times must be assigned in our MATLAB code.
Here, we have arbitrarily assigned u = b when ψ = 0. Assigning u = a would
have been just as prudent. Defining u to be the average of a and b at these
points is also used. It usually makes little difference. Finally, note the convex
combination remains as before. This hastens the finding of the switching
times.

Labs 11 and 12 investigate problems which are linear in the control. Both of
these problems have bang-bang optimal controls. This is verified analytically
in the lab before we examine the problems numerically. Here, we consider a
few bang-bang examples which can be solved by hand.

Example 17.1

max
u

∫ 2

0

et(1− u(t)) dt

subject to x′(t) = u(t)x(t), x(0) = 1,

0 ≤ u(t) ≤ 1.

The objective functional here does not depend on x, and the state does not
have a terminal time condition. Therefore, looking at the format of the inte-
grand of the objective functional we see that the optimal control should be
0.

The Hamiltonian is

H = et(1− u) + λux.

The adjoint and transeversality conditions are
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λ′ = −∂H

∂x
= −λu, λ(2) = 0,

and

ψ(t) =
∂H

∂u
= −et + λ(t)x(t).

Suppose u∗ is singular on some interval, i.e., 0 < u∗ < 1. Then, ψ = 0 on this
interval, so that

et = λx.

As this holds on an interval, we can differentiate both sides,

et = (λx)′ = λ′x + λx′ = −λux + λux = 0.

This is clearly impossible, so u∗ is nowhere singular, thus bang-bang. Con-
sidering both possible values for u∗,

u∗ = 0 ⇒ x′ = 0 = λ′ ⇒ x, λ constant,

u∗ = 1 ⇒ λ′ = −λ ⇒ λ(t) = ke−t,

for some constant k. Note, for λ(t) = ke−t to satisfy λ(2) = 0, k must be
zero. In the other case, λ is constant. Hence, regardless of what the control
is near t = 2, λ ≡ 0 on some interval including t = 2. However, we require λ
to be continuous, and it is impossible for λ = ke−t to be continuously joined
with λ ≡ 0 for non-zero k. Thus, λ ≡ 0 everywhere. It follows

∂H

∂u
= −et < 0 for all t,

so that

u∗ ≡ 0 and x∗ ≡ 1.

Example 17.2 (from [100])

max
u

∫ 2

0

2x(t)− 3u(t) dt

subject to x′(t) = x(t) + u(t), x(0) = 5,

0 ≤ u(t) ≤ 2.

If we view this as a simple population model with exponential growth, we
seek to increase the population as much as possible, while keeping the cost of
control down.
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The Hamiltonian is

H = 2x− 3u + xλ + uλ.

Using the necessary conditions and transversality condition, λ can be imme-
diately solved:

λ′ = −∂H

∂x
= −2− λ, λ(2) = 0 ⇒ λ(t) = 2e2−t − 2.

The switching function

ψ(t) =
∂H

∂u
= λ− 3 = 2e2−t − 5

is clearly nowhere constant, thus not identically 0 over an interval. So, u∗ is
bang-bang, and

u∗(t) = 0 ⇔ ψ < 0 ⇔ e2−t < 5/2 ⇔ t > 2− ln(5/2),

u∗(t) = 2 ⇔ ψ > 0 ⇔ e2−t > 5/2 ⇔ t < 2− ln(5/2).

For 0 ≤ t < 2− ln( 5
2 ),

u = 2 ⇒ x′ = x + 2.

Along with x(0) = 5, this gives x(t) = −2 + 7et. On 2− ln( 5
2 ) < t ≤ 2,

u = 0 ⇒ x′ = x ⇒ x(t) = k0e
t

for some constant k0. As x must be continuous, the expressions −2 + 7et and
k0e

t must agree at t = 2− ln( 5
2 ). This gives k0 = 7−5e−2. Hence, the optimal

solutions are

u∗ =

{
2 when t < 2− ln(5/2),
0 when t > 2− ln(5/2),

and

x∗ =

{
7et − 2 when t ≤ 2− ln(5/2),
7et − 5et−2 when t ≥ 2− ln(5/2).

The optimal state is shown in Figure 17.2.

17.2 Singular Controls

We now turn our attention towards singular controls, and in particular, a
few examples. In the first example, the solution is relatively easy to guess.
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FIGURE 17.2: The optimal control and state for Example 17.2. The state
appears differentiable here, but this is due to scale. It is in fact only continuous
at t = 2− ln(5/2).

However, because it is singular, generating the optimal control via the neces-
sary conditions is somewhat difficult.

Example 17.3

min
u

∫ 2

0

(x(t)− t2)2 dt

subject to x′(t) = u(t), x(0) = 1,

0 ≤ u(t) ≤ 4.

First, generate the necessary conditions as usual,

H = (x− t2)2 + λu,

λ′(t) = −∂H

∂x
= −2(x− t2), λ(2) = 0,

ψ =
∂H

∂u
= λ.

If ψ ≡ 0 on some interval, then
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0 ≡ λ′(t) = −2(x− t2) ⇒ x(t) = t2,

so that on this interval

u = x′ = 2t.

Hence, we obtain

u∗(t) =





0 when λ > 0,

2t when λ = 0,

4 when λ < 0.

(17.1)

Our first goal is to establish that x∗(t) ≥ t2 on [0, 2]. Suppose not, i.e.,
suppose that x(t) < t2 somewhere. Then, as x(t) > t2 at t = 0, there must
exist a t0 ∈ (0, 2) such that x(t0) ≤ t20 and u(t0) = x′(t0) < 2t0. Hence, from
(17.1), it follows u(t0) = 0 and λ(t0) > 0.

Now, consider the points in time t > t0 for which λ(t) = 0. We know at
least one such point exits, namely t = 2. Let t1 be the minimum of these
points so that λ(t1) = 0 but λ(t) > 0 for t ∈ [t0, t1). Then, from (17.1), we see
u∗ = 0 on [t0, t1). This implies x∗(t) = x∗(t0) on [t0, t1). As we choose t0 so
that x∗(t0) ≤ t20, we see x∗(t) ≤ t2 on [t0, t1). Hence, by the adjoint equation,
λ′(t) ≥ 0 on [t0, t1). But, if λ(t0) > 0 and λ never decreases on this interval,
then λ(t1) = 0 is impossible. This gives our contradiction.

Thus, x∗(t) ≥ t2 on [0, 2]. This immediately gives λ′ ≤ 0 on [0, 2]. As
λ(2) = 0, we must have λ ≥ 0 on [0, 2]. As λ is a non-negative, non-increasing
function, there is some k ∈ [0, 2] so that λ > 0 on [0, k) and λ = 0 on [k, 2].

Suppose k = 0. Then, λ = 0 everywhere, so that λ′ = 0 everywhere. But,
x∗(t) > t2 at t = 0 so that λ′(0) < 0. Contradiction. Now suppose k = 2.
Then, u∗ = 0 everywhere, so that x∗ = 1 everywhere. This clearly contradicts
x∗ ≥ t2. Hence, 0 < k < 2, and we have

u∗(t) =

{
0 when 0 ≤ t < k,

2t when k < t ≤ 2,
x∗(t) =

{
1 when 0 ≤ t ≤ k,

t2 + (1− k2) when k ≤ t ≤ 2,

as x∗ must be continuous. Finally, to find k, note that λ ≡ 0 on [k, 2], which
implies

0 = λ′(t) = −2(1− k2) on (k, 2) ⇒ k = 1.

Hence, the optimal solution set (Figure 17.3) is

u∗(t) =

{
0 when 0 ≤ t < 1,

2t when 1 < t ≤ 2,
x∗(t) =

{
1 when 0 ≤ t ≤ 1,

t2 when 1 ≤ t ≤ 2.
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FIGURE 17.3: The optimal control and state for Example 17.3. Here, it
is clear the state is not differentiable at t = 1.

The next example is a basic resource model example from Clark [33] and is
more complicated than the previous example.

Example 17.4 (from [33])

max
u

∫ T

0

(
pqx(t)− c

)
u(t) dt

subject to x′(t) = x(t)(1− x(t))− qu(t)x(t), x(0) = x0 > 0,

0 ≤ u(t) ≤ M.

We can think of this as a fishery model, where x represents a unit of harvested
fish. Then, p is the price of one unit, q is the “catchability” of the fish, and c
is cost of harvesting one unit. The control u is the effort put into harvesting.
The integral represents total profit, revenue less cost. We have

H = (pqx− c)u + λx− λx2 − quxλ,

λ′ = −∂H

∂x
= −pqu− λ + 2λx + quλ, (17.2)

ψ =
∂H

∂u
= pqx− c− qxλ.
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Consider the singular case, i.e., suppose ψ ≡ 0 on some interval. Assuming
c > 0, this means x 6= 0. So, solving for λ we find

λ =
pqx− c

qx
= p− c

qx
. (17.3)

Differentiating this expression, and using the state equation for x′, it follows

λ′ =
c

qx2
x′ =

c

qx2
(x− x2 − qux) =

c

qx
(1− x− qu). (17.4)

By plugging the λ expression (17.3) into the adjoint equation (17.2), we get

λ′ = −pqu− (p− c

qx
)(1− 2x− qu). (17.5)

Setting the expressions (17.4) and (17.5) equal to each other and doing some
simple algebra, we find the u terms will cancel, and we arrive at the constant
expression for the state below. Noting that x′ = 0 during the singular interval,
by plugging x∗ into state equation, we can find u∗,

x∗(t) =
c + pq

2pq
and u∗(t) =

pq − c

2pq2
.

First, note this problem may still be bang-bang. The singular value for the
control is a constant. If this constant lies outside the bounds on the control,
i.e., is less than 0 or greater than M , then the singular control is not achiev-
able. This forces the optimal control to be bang-bang. Suppose, however, the
singular control is possible, namely, that 0 < pq−c

2pq2 < M . Then, we have a
representation of u∗ based on the value of the switching function as before.
Can we solve for the optimal control numerically as we have been doing? In
the bang-bang version of the forward-backward sweep, we assigned values to
each point of the u∗ vector depending on the sign of the switching function.
Recall, we arbitrarily assigned the control to be at one of the bounds (or the
average) when the switching function was zero. However, in singular prob-
lems, we have a separate characterization for u∗ when the switching function
is zero. Thus, it seems we could simply add a third value for u∗. For instance,
in Example 17.4, our characterization would be
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for i=1:N+1
temp = p*q*x(i) - c - q*x(i)*lambda(i)
if(temp < 0)

u1(i) = 0;
elseif(temp == 0)

u1(i) = (p*q - c)/(2*p*q^2);
else

u1(i) = M;
end

end
u = 0.5*(u1 + oldu);

However, this method is an approximation, so it is unlikely the switching
function ψ will ever be exactly zero. One possible solution to this problem
is to use the singular value for u∗ when ψ is in a small interval around zero,
say (−0.00001, 0.00001). If we tried this forward-backward routine on Exam-
ple 17.4, we would find convergence occurs for all values of p, q, c, and M for
which the control is bang-bang, and none of the values for which the control
could be singular. Singular problems, because the switching function is iden-
tically zero on some interval, are often unstable for general control methods.

A great deal of work has been done on singular control problems, both
analytically and numerically. Researchers have classified some of the behavior
of singular optimal controls leading to additional necessary conditions, beyond
those of Pontryagin’s Maximum Principle, which singular optimal controls
must satisfy. The most notable of these additional necessary conditions is the
generalized Legendre-Clebsch condition [20, 29, 109, 116, 142]. This necessary
condition is referred to as a second order condition, in that it involves higher
order derivatives of the Hamiltonian. We have only used the second derivative
of the Hamiltonian with respect to the control to verify that we are finding
minimizing or minimizing controls. Second order optimality conditions, such
as Legendre-Clebsch, use higher derivatives with respect to the states and
time, not just the controls. These second order conditions have proven of
great use in difficult singular problems, both analytically and numerically.

Many different types of numerical solvers have also been developed for prob-
lems which are linear in the control. Although we will not detail them here,
they include gradient methods [156, 159], continuation methods [14, 31], it-
erative dynamic programming [132, 133], modified quasi-linearization meth-
ods [3], function space quasi-Newton methods [54], and adapted shooting
methods [48, 49, 64, 140].

For some interesting results involving cancer chemotherapy and bang-bang
and singular controls, see [44, 113, 114, 115]. Before concluding this chapter,
we present an interesting example of a fishery problem in which x is the
underlying variable.
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Example 17.5 (from [154]) No-take marine reserves have been contro-
versial, as advocates stress their conservation benefits and critics emphasize
that the reserves decrease fishery yield. In a one-dimensional spatial prob-
lem, Neubert investigated the role of reserves as a part of an optimal harvest
strategy designed to maximize yield [154].

After rescaling, the partial differential equation for stock density relative to
the carrying capacity w(x, t) is

wt(x, t) = wxx(x, t) + w(x, t)(1− w(x, t))− u(x)w(x, t).

Consider the corresponding steady state equation and call the stock density
w(x). Then,

0 = wxx(x) + w(x)(1− w(x))− u(x)w(x)

with the boundary conditions

w(0) = w(l) = 0.

The boundary conditions reflect that the area surrounding the domain is
uninhabitable. Note, this is a second order differential equation with the
underlying variable x, and wxx can instead be written as w′′(x). We assume
the harvest control u(x) satisfies 0 ≤ u(x) ≤ 1.

Now converting to a system of two differential equations, we have

w′(x) = v(x), w(0) = w(l) = 0,

v′(x) = u(x)w(x)− w(x)(1− w(x)).

We wish to maximize the yield over a fixed domain [0, l] with controls satis-
fying 0 ≤ u ≤ 1. So, our objective functional should be

J(u) =
∫ l

0

u(x)w(x) dx.

Note that for any control u, two functions which are identically zero give
a solution to the state system. But here, we choose for our state variables
the nonzero solutions of the state system (with w positive in the interior of
the domain). We refer the reader to [26, 47] for the justification of such an
approach.
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The Hamiltonian and necessary conditions are easily found,

H = uw + λ1v + λ2(uw − w(1− w)),

λ′1 = −∂H

∂w
= λ2(1− 2w − u)− u,

λ′2 = −∂H

∂v
= −λ1, λ2(0) = λ2(l) = 0,

ψ =
∂H

∂u
= w(1 + λ2).

If the switching function w(1 + λ2) is zero on some interval and 0 < w < 1
is valid on the whole interval, then the function 1 + λ2 must be zero. This
means λ2 = −1 and λ′2 = 0, which implies λ1 = 0. Using the λ′1 equation,
one obtains w∗ = 1

2 and then the state equation gives u∗ = 1
2 on this interval

where the singular case holds. We conclude

u∗(t) =





1 when λ2 > −1,

1/2 when λ2 = −1,

0 when λ2 < −1.

(17.6)

The necessary conditions need to solved numerically.
The results obtained in [154] depend on the length of the domain l, including

some singular cases. From the numerical calculations in all cases, there is at
least one interval where the optimal control is zero, which means a region of
no-take reserve. For example, when the length of the domain is 6.3, there are
2 reserves, in the interior of the domain.

The case of no-flux boundary conditions, v(0) = v(l) = 0, is also quite
interesting. The same argument as before still shows that u = 1

2 is the singular
case for an optimal control. But the objective functional can be used to obtain
an exact solution in this case. By the state equations, uw = v′+ w(1−w), so
that the objective functional can be rewritten

J(u) =
∫ l

0

v′ + w(1− w) dx.

The v′ term will vanish by integration by parts and the boundary conditions,
and we are left with

J(u) =
∫ l

0

w(1− w) dx.

Irrespective of any optimal control techniques, it is clear this integral is max-
imized by w∗ = 1

2 , because w ≥ 0 everywhere. This gives u∗ = 1
2 , and the

singular case occurs on the whole time interval.
The management of fisheries is an area where economics comes naturally

into the consideration. The classic book by Clark [33] is an excellent place to
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start looking at such models including economic impacts. See recent papers
by Herrera and Sanchirico et. al. [83, 166] for results with economic effects and
spatial considerations. See also [100, 167] for other economic applications.

17.3 Exercises

Exercise 17.1 (from [169]) Solve

max
u

[
8x1(18) + 4x2(18)

]

subject to x′1(t) = x1(t) + x2(t), x1(0) = 15,

x′2(t) = 2x1(t)− u(t), x2(0) = 20,

0 ≤ u(t) ≤ 1.

Exercise 17.2 Solve Example 17.2 as a minimization problem.

Exercise 17.3 Solve

min
u

∫ 1

0

u(t) dt

subject to x′(t) = x(t)− u(t),
x(0) = 1, x(1) = 0,

1 ≤ u(t) ≤ 2.

Exercise 17.4 (from [100]) Solve

min
u

∫ 1

0

(2− 5t)u(t) dt

subject to x′(t) = 2x(t) + 4te2tu(t),

x(0) = 0, x(1) = e2,

− 1 ≤ u(t) ≤ 1.

Exercise 17.5 (from [175]) Solve
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min
u

∫ 2

0

x(t)2 dt

subject to x′(t) = u(t), x(0) = 0, x(2) = 1,

− 1 ≤ u(t) ≤ 1.

Exercise 17.6 (from [175]) Let r, s, p, b, x0, T > 0 be positive constants.
Assume b

r+b > 1 > s and solve

max
u

∫ T

0

e−rt(px(t)− u(t)) dt + se−rT x(T )

subject to x′(t) = −bx(t) + u(t), x(0) = x0,

0 ≤ u(t) ≤ M.

Exercise 17.7 (from [37]) Let a, b, x10, x20 be constants where a < b.
Solve

min
u

∫ 5

0

4u(t) + x1(t) dt

subject to x′1(t) = u(t)− x2(t), x1(0) = x10,

x′2(t) = u(t), x2(0) = x20,

a ≤ u(t) ≤ b.
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Lab 11: Timber Harvesting

For our first lab involving a problem linear in the control, we examine a
simple tree harvesting simulation. Consider a timber farm which, due to
environmental regulations, can harvest at most a fixed percentage of its tree
population, which must then be replanted. We assume the farm operates at
this constant percentage of harvesting, producing raw timber in the amount
of x(t) at time t. The growth and death rates of individual trees are not
considered. The amount of timber is based solely on the size of the farm (or
equivalently, the number of trees). We also assume the harvest percentage
level is low enough so that tree age need not be considered and there will
always be mature trees ready for harvest. Once the timber has been processed,
it is immediately sold. The money can either be kept as profit or reinvested in
the farm by purchasing land and labor for further tree growth. The owners of
the farm wish to find the reinvestment schedule which maximizes profit over
a fixed time interval. Let the control u(t) represent the percentage of timber
revenue reinvested in the frame. Reinvestment will lead to the growth of more
trees and the production of more timber, so we have x′(t) = kx(t)u(t), where
k is the return constant, which takes into account the average cost of labor
and land. Further, if p is the market price of a unit of timber, then the profit
at time t is px(t)(1− u(t)), and the total profit is

p

∫ T

0

x(t)[1− u(t)] dt.

However, we also wish to take into account money which could be gained
through interest on profit. Profit earned in year one could be placed into an
interest bearing account, while profit from the end of the time period could
not. Therefore, money from earlier in the time frame is, in some sense, more
valuable. In economics, this is referred to as present-value. If we let r be the
interest rate over the period (assuming it is fixed), then the profit, adjusted
for interest, is

p

∫ T

0

e−rtx(t)[1− u(t)] dt.

The exponential term in the integral is generally called a discount term. Ex-
ercise 17.6 in the previous chapter contained such a term. The function e−rt

is a decreasing function of time, encouraging money to be invested at the
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beginning of the interval. Future values of profit are discounted at a rate r.
More information can be found in [100]. Finally, note that the constant p will
not affect how this integral is maximized, so the optimal control problem is

max
u

∫ T

0

e−rtx(t)[1− u(t)] dt

subject to x′(t) = kx(t)u(t), x(0) = x0 > 0,

0 ≤ u(t) ≤ 1.

The Hamiltonian is

H = e−rtx(1− u) + kxuλ.

By developing the optimality system as usual, we find

λ′ = u(e−rt − kλ)− e−rt and ψ =
∂H

∂u
= x(kλ− e−rt).

As x(0) = x0 > 0, k > 0, and u ≥ 0 for all t, it follows that x′(t) = kxu ≥ 0
and x(t) > 0 for all t. Suppose ψ = 0 over some interval. As x is strictly
positive, this can occur if and only if λ(t) = 1

ke−rt over some interval. Then,
λ′(t) = − r

ke−rt. However, if we use the adjoint equation, we instead find
λ′(t) = −e−rt. If k 6= r, this is clearly a contradiction. If k = r, then
it follows that λ(t) = 1

ke−rt for the remainder of the time interval. This
contradicts λ(T ) = 0. Thus, ψ = 0 cannot be sustained over an interval, and
the optimal control is bang-bang.

To begin, type lab11 at the prompt. Enter

x0 = 100 k = 1 r = 0 T = 5 . (18.1)

Do not vary any parameters for now. If you look at the control, you will
notice that the graph is continuous and there is an abrupt shift at t = 4.
Of course, we know the control should be bang-bang. MATLAB creates the
graph by connecting a series of points, forcing it to be continuous. The part
of the graph at t = 4, which is almost vertical, represents the switching point.
Specifically, u∗(t) = 1 for 0 ≤ t < 4 and u∗(t) = 0 for 4 < t ≤ 5; u∗(4) need
not be defined. The state x∗(t) is exponential for 0 ≤ t ≤ 4 and constant
for 4 ≤ t ≤ 5, as expected. The solution tells us the optimal reinvestment
strategy is to reinvest all timber revenue for the first four-fifths of the time
interval, allowing the farm to grow. Then, near the end of the time interval,
all revenue should instead be kept as profit.

Try the values

x0 = 100 k = 0.3 r = 0.05 T = 5 (18.2)

varying with x0 = 50. Then, try x0 = 100 vs. x0 = 500. As the timber
production grows exponentially, the two states are quite different. However,
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the two optimal controls are identical. Continue experimenting with the initial
value. You will see the optimal reinvestment strategy is independent of initial
timber production capacity.

Now, let us examine the role of k. Enter the (18.2) values, this time varying
k with k = 0.35 as the second value. The higher k value represents a greater
return with reinvestment, due to lower labor and/or land costs. We see that
if we have a greater k value, a longer period of reinvestment and growth is
optimal. The higher k allows the second state to grow more rapidly. At
approximately t = 1.355, the first system ends reinvestment, but the second
system continues for slightly longer. As the second state is already much
higher at t = 1.355, the effect of continuing for this short time is much greater
in system 2 than in system 1. This same type of behavior in the optimal
control is also seen in the next lab. If you try k = 0.3 and k = 0.6, you will
see the period of no investment at the end is almost cut in half. In fact, if
we instead use r = 0, we will see doubling the value of k exactly cuts the
interval of no investment in half; conversely, halving k doubles the size of the
no investment interval. Finally, enter (18.2), varying with k = 0.2. Here, the
return constant is so low, it is never advantageous to reinvest in the farm. All
money should be kept as profit.

Enter (18.2), this time varying r with r = 0.075. This represents a greater
return on the profits. As you might expect, the resulting optimal control is
to end reinvestment in the farm earlier. With higher yield on profits, we wish
to begin accumulating them earlier. Now vary with r = 0.2. Here, interest is
so high it is best to take all money as profit.

Enter (18.2) varying the time interval with T = 10. Notice, the length of
the no investment period in the controls is the same. This tells us the length
of this period is a function of k and r only. Further, as we saw, with r = 0,
it is inversely proportional to k. Now, try T = 5 versus T = 3. In the second
system, the time interval is too short to conduct any reinvesting. The growth
will take too long to make up for lost money. We could have predicted this,
of course, based on what we saw above. In the first system, the length of
the no investment period is approximately 3.645 years. As k and r alone
determine this length, and neither was changed, the period of no investment
in the second system must also be 3.645 years. However, the time interval is
only 3 years. Thus, u = 0 must occur everywhere.

Finally, it is worth discussing briefly a numerical peculiarity that occurs
with this problem. You may have already discovered that if you enter certain
values convergence will not occur. One such set is r = 0 and k = T = 1 (x0

is irrelevant). The reason for this failure is, surprisingly, round-off error. By
observing the solutions when k = 1, r = 0, and T 6= 1 and then T = 1, r = 0,
and k 6= 1, combined with our knowledge of how the solution behaves under
changes in k and T when r = 0, we see the optimal solution with k = T = 1
and r = 0 is u ≡ 0. However, when the values of u are essentially 0, the
adjoint equation becomes λ′(t) = −1. Using this and λ(1) = 0, the backward
sweep of the code should arrive at λ(t) = 1 − t and specifically λ(0) = 1.
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However, it does not. After the backward Runge-Kutta sweep, the value of
λ(0) is actually 1 + 10−16. This may seem insignificant, but when used, gives
∂H
∂u (0) > 0, causing u(0) to be incorrectly stored as 1, not 0. Using this
u, the subsequent sweeps will arrive at the correct control, namely u ≡ 0.
However, the convex combination portion of the code will actually average
the conflicting 0 and 1 values, causing the estimation of u(0) to be 0.5, then
0.025, then 0.125, and so on. The value of u(0) will slowly converge to the
correct value of 0, but once it becomes small enough, essentially 0, the loop
will begin anew, preventing convergence. This problem is actually caused
entirely by the use of the Runge-Kutta 4 routine, specifically, the division by
6 in the algorithm. As 1

6 is a repeating decimal, MATLAB cannot store the
value with complete accuracy, leading to round-off error, which accumulates
with each iteration. This problem also occurs when r = 0 and T = 1/k,
for the same reasons. We should mention this type of convergence problem
sometimes appears with bang-bang controls when a switching time occurs at
the beginning or end of the interval, as it does here. Often times for bang-bang
problems, a different type of code is used. Instead of forcing a representation
of u∗ to converge, an algorithm is used to estimate the switching times. More
information on this method can be found in [52].

Exercise 18.1 The convergence problem discussed above will occur when-
ever the optimal control has a switching time at t = 0. The case r = 0 has
already been explored. Find (by hand) the values of k and T which cause a
switching time at 0 for r > 0 (x0 is still irrelevant). Confirm using the code
that convergence does not occur in this case.



Chapter 19

Lab 12: Bioreactor

This lab deals with a variation on Example 12.4. Often, contaminated soil
will contain bacteria which, via metabolism or co-metabolism, is capable of
eliminating the contaminant. Thus, a cost-effective method of managing and
cleaning contaminated areas is to increase the level of these bacteria, in that
more bacteria will result in more rapid degradation of the contaminant. The
injection of nutrients needed for metabolism and colony growth has proven
to be a successful technique in boosting the bacteria population. However,
modeling the remediation process is nontrivial. Various processes, such as
bacterial reproduction, metabolism, death, nutrient flow, and contaminant
degradation, are highly coupled. Also of concern is the uncertainty in estima-
tions of bacterial and contaminant distribution in the soil.

Hence, a realistic model would need to include spatial effects and hetero-
geneities in the environment. For this reason, we instead focus on the more
controlled setting found in a bioreactor, such as the ones used for drug produc-
tion and sewage treatment, for example. There, simple but effective relations
for bacterial growth, degradation, and production processes can be formed.
Precisely this type of model was developed and used for optimal control stud-
ies in the paper by Heinricher, Lenhart, and Solomon [82].

A bioreactor with ideal mixing is considered, where a contaminant and a
bacteria known to degrade this contaminant via co-metabolism are present.
The bacteria and contaminant have spatially uniform, time-varying concen-
trations (in g/L) x(t), z(t) respectively. The bioreactor is assumed to be
rich in all nutrients needed for bacteria growth save one, whose injection into
the reactor has spatially uniform, time-varying concentration u(t). Bacterial
growth rate is given by Gu(t)x(t) and death rate by Dx2(t), so that

x′(t) = Gu(t)x(t)−Dx(t)2, x(0) = x0 > 0.

The positive constant G represents maximum growth rate, while the positive
constant D is the natural death rate. Note, as contaminant degradation occurs
via co-metabolism, the contaminant is not needed for bacterial growth, and
thus does not appear in the equation. The rate of degradation is assumed to
be proportional to both bacterial and contaminant concentrations, in that

z′(t) = −Kx(t)z(t), z(0) = z0 > 0,
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where K > 0 represents the degradation rate of the bacteria. The soil is
assumed to have physical limitations that necessitate the bounds 0 ≤ u(t) ≤
M (the need to limit methane concentrations in the soil, for example). The
goal is to minimize use of the nutrient and the final contaminant levels. As
in Example 12.4, we consider the objective functional

ln(z(T )) +
∫ T

0

Au(t) dt, (19.1)

which should be minimized. Also as before, this allows a great simplification,
in that we can eliminate z and its associated adjoint. Further, we set A = 1.
The reason will be clear shortly. Solving z′(t) = −Kx(t)z(t), we find

z(t) = z0 exp
(
−

∫ t

0

Kx(s) ds

)
,

so that

∫ T

0

Kx(s) ds = − ln
(

z(T )
z0

)
= − ln(z(T )) + ln(z0).

Hence, our objective functional (19.1) is equal to

−
∫ T

0

[Kx(t)− u(t)] dt + ln(z0).

The addition of the constant ln(z0) will have no effect on the minimization.
Further, removing the negative sign and converting to maximization, an equiv-
alent problem is

max
u

∫ T

0

Kx(t)− u(t) dt

subject to x′(t) = Gu(t)x(t)−Dx2(t), x(0) = x0,

0 ≤ u(t) ≤ M.

It is now clear why A was set to 1; the variable K plays the role of a weight
parameter here. Much like the maximum average mass in Lab 6, it plays two
roles mathematically.

Before beginning, we must show the optimal control is bang-bang. The
equation for x′(t) is given, and the equation for the adjoint,

λ′(t) = −K −Guλ + 2Dxλ,

is found as usual. Also,

ψ =
∂H

∂u
= −1 + Gλx.
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Considering the function (xλ)(t) and using the state and adjoint differential
equations, we have

(xλ)′ = x′λ + xλ′ = Dx(xλ−K/D).

Now, it follows from the state equation and initial condition that x(t) > 0
for all t. So, by the differential equation, xλ must be everywhere greater
than, less than, or equal to the constant K/D. As (xλ)(T ) = 0 < K/D, it
follows (xλ)(t) < K/D for all t. Thus, xλ is monotonically decreasing, so
that A = Gλx could be maintained only at a single point. Hence, u∗ is bang-
bang, with the switching time occurring where xλ − A

G changes sign. The
variables u∗, x∗, and λ are as solved before. Once the optimal control, state,
and adjoint are found, z∗ is found using the differential equation.

Open MATLAB and enter lab12. Begin with the values

K = 2 G = 1 D = 1 x0 = 0.5 z0 = 0.1 M = 1 T = 2 . (19.2)

In this simulation, the optimal nutrient injection is no injection at all. The
combination of the K and G values is such that the benefits of the nutri-
ent does not outweigh its cost, so it is more efficient to leave the reactor
undisturbed. This causes the bacterial population to steadily decrease. The
bacteria present are able to degrade some contaminant, but the level of degra-
dation decreases with the bacterial population. Now, enter the (19.2) values,
this time varying K with a second value of K = 2.1. Only a slight change
in K causes the injection of nutrients to become efficient. By increasing K,
we have increased the importance placed on maximizing the level of bacteria,
or, referring to the original problem, minimizing the final contaminant level.
Here, it is advantageous to use nutrients to precipitate the growth of more
bacteria. Also, whereas we might expect a small change in K to produce
only a short period of injection, we see the period of nutrient addition is more
than a quarter of the time interval. This is caused by the delayed reaction
we see in contaminant concentration. The injection causes a sharp increase
in bacteria, followed by the same steady decrease as in the other system. The
contaminant level seems only slightly affected by the injection initially. How-
ever, the higher bacteria levels cause a more rapid contaminant degradation
to build. By the end of the 2 day period, the second contaminant level is
almost half that of the first. The optimal strategy is to inject the maximum
nutrient levels early, which results in a sharp increase in bacteria population,
which, in turn, triggers a quicker decrease in contaminant.

Note that in the graph, when the optimal control moves off its upperbound,
it appears almost rounded as it decreases. We showed analytically the optimal
control should be bang-bang. This rounding of the switching point is caused
simply by numerical error. In large measure, it is due to the convex combina-
tion of the control estimates. The actual switching time is still approximately
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where the vertical line is. You will see this rounding effect in all simulations
of this lab.

Enter (19.2) again, this time varying G to G = 1.2. We have increased
the effectiveness of the nutrient in aiding the growth of new bacteria. As
expected, this makes the injection of nutrients desirable, as the overall effect
has been increased. Now enter the values

K = 2.1 G = 1 D = 1 x0 = 0.5 z0 = 0.1 M = 1 T = 2 (19.3)

varying G with G = 1.2. With this K, as we have seen, the injection of
nutrients is optimal, even with G = 1. Thus, both systems use nutrient
injection initially. However, during this period, the second system sees a
greater increase in bacteria population, due to the greater growth rate G.
Also, with the greater G, the injections continue for a longer period, as they
have more effect.

Enter

K = 2.1 G = 1.2 D = 1 x0 = 0.5 z0 = 0.1 M = 1 T = 2 (19.4)

varying with x0 = 0.7. We might expect a higher initial bacterial concen-
tration to result in a shorter injection period. This way, less injection could
be used to garner the same effect. However, we see the opposite occurs. The
second system calls for a longer injection period. To understand this, we must
remember the bacteria population grows and degrades the contaminant ex-
ponentially. So, at approximately 1.3 days, when injection ends in system 1,
the effect of continuing injection in system 2 is greater than doing the same
in system 1, as system 2 has more bacteria at this point. Enter (19.4) again,
varying with x0 = 0.3. Even with these K and G values, the second system
calls for no injection. The low initial concentration means it would take much
more nutrient supplementation to increase the bacteria to effective levels. So
much more, apparently, that it is no longer efficient to do so.

Much like x0, adjusting M does the opposite of what you may expect.
Enter (19.4), varying with M = 2. One might guess that doubling the allow-
able injection strength would result in halving the injection period. Instead,
though, the greater M results in a longer period of nutrient addition. This,
again, is due to the exponential nature of the populations. The higher in-
jection strength not only pushes the bacteria population higher, but to levels
over three times that of the other system. Therefore, it is worth continuing
injection for several hours longer. The final contaminant concentration in the
first system is over 30 times the size of the final concentration in the second
system.

Consider the effect of D on the optimal control. Enter the values (19.4),
varying with D = 0.8. The lower death rate, in some sense, increases the
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effectiveness of the injection. Specifically, the same amount of injection will
now result in a higher bacteria population. Like we have seen with x0 and
M , when injection becomes more effective, we should continue injections for
a longer period.

Now try varying the initial contaminant concentration. Enter any two val-
ues for z0. The optimal nutrient injections and resulting bacterial concen-
trations are identical. Only the contaminant concentrations are affected by
the change in z0. Considering the optimal control problem we have solved,
this could have been predicted, as z0 enters only the state equation for the
contaminant level, and z was eliminated from the problem. However, if we
instead recall the original problem, that of minimizing the final contaminant
concentration and total cost of the nutrient injection, the irrelevancy of z0

seems surprising. The value of z0 directly affects the contaminant concen-
tration. Nevertheless, we have shown the optimal strategy is unchanged by
alterations of z0. The actual contaminant levels are irrelevant. We should
focus only on increasing the bacteria population.

Finally, enter (19.4) varying T with T = 4. There is little surprise here.
The optimal strategy is to use the extra time to add more nutrients in order to
build the bacteria population to greater levels. If you try other combinations
of T values, the system with the longer time interval always has a smaller
interval of no injection.

Exercise 19.1 Reconsider this problem without the introduction of the
natural logarithm, i.e.,

min
u

z(T ) +
∫ T

0

Au(t) dt

subject to x′(t) = Gu(t)x(t)−Dx2(t), x(0) = x0,

z′(t) = −Kx(t)z(t), z(0) = z0,

0 ≤ u(t) ≤ M.

The same trick to eliminate the z variable can no longer be used. However,
this problem can still be approached by the methods we have developed. Show
that this optimal control problem is bang-bang, and write a MATLAB code
to solve it. You will note that all the parameters have the same influence
here as they did in the lab above, save one. In this problem, z0 will affect the
optimal control. Why do you think the introduction of the natural logarithm
made z0 irrelevant?





Chapter 20

Free Terminal Time Problems

In many applications, we are concerned with maximizing (or minimizing)
an objective functional over a non-fixed time interval. If we return to our
simple cancer example, Example 3.3, we could instead consider a slightly
different problem. Before, we wanted to find a drug treatment over a given
time frame [0, T ] which would minimize the final tumor cell concentration and
total harmful effects of the drug. Suppose, instead, we want to find a time
frame and a control that produce an objective functional value minimum
among all time frames and all controls. Namely,

min
u,T

x(T ) +
∫ T

0

u(t)2 dt

subject to x′(t) = αx(t)− u(t), x(0) = x0.

Notice that the minimization is now considered over the variables u and T .
This is the standard way of writing an optimal control problem when T is
free.

We now have more unknowns, with the optimal control and optimal termi-
nal time both to be determined. To handle this problem, and other problems
where the terminal time is free, we must redevelop the necessary conditions.
As you will see, having given up information, in some sense, by allowing T to
be free, we will gain new information in the way of a necessary condition we
did not have before.

We note that we could just as easily allow the initial time, or both the
initial and terminal times, to be free. In most applications, though, it is the
final time which is allowed to move, so we handle this case.

20.1 Necessary Conditions

Let f(t, x, u) and g(t, x, u) be continuously differentiable functions in all
three variables, and consider the free terminal time problem

max
u,T

∫ T

t0

f(t, x(t), u(t)) dt + φ(T, x(T ))
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subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0.

As there are two unknowns here, we write the value of the objective functional
as

J(u, T ) =
∫ T

t0

f(t, x(t), u(t)) dt + φ(T, x(T )),

where, of course, x is the state corresponding to u. Let (u∗, T ∗) be an optimal
pair. Namely, u∗ is a control on the nonempty, finite interval [t0, T ∗] and
J(u, T ) ≤ J(u∗, T ∗) < ∞ for all other controls u and times T . Let x∗ be
the corresponding state. Let h be a piecewise continuous function and ε a
real number. Then, uε(t) = u∗(t) + εh(t) is a control. As J(u, T ) reaches a
maximum at u∗, T ∗, we have that

0 = lim
ε→0

J(u∗, T ∗)− J(uε, T ∗)
ε

.

It follows from the same arguments used in Chapters 1 and 3 that

0 =
∂H

∂u
at u∗,

λ′ = −∂H

∂x
= −fx − λgx,

λ(T ∗) = φx(T ∗, x(T ∗)),

where φx refers to the partial derivative of φ in the state variable or the
second variable. However, this still does not give any information about the
optimal final time T ∗. For this, we exploit the T variable of J . Consider real
numbers δ ≥ t0 − T ∗, so that T ∗ + δ is an admissible terminal time. It is
necessary to consider u∗ and x∗ on an interval larger than [t0, T ∗]. First, we
can assume that u∗ is left-continuous at T ∗, by simply reassigning its value
there if necessary. Then, set u∗(t) = u∗(T ∗) for all t > T ∗, so that u∗ will be
continuous at T ∗. Now, x∗ is also defined for t > T ∗. As J(u, T ) reaches its
maximum at u∗, T ∗, we have

0 = lim
δ→0

J(u∗, T ∗ + δ)− J(u∗, T ∗)
δ

,

or equivalently,
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0 = lim
δ→0

1
δ

[ ∫ T∗+δ

t0

f(t, x∗, u∗) dt + φ(T ∗ + δ, x∗(T ∗ + δ))

−
∫ T∗

t0

f(t, x∗, u∗) dt− φ(T ∗, x∗(T ∗))
]

= lim
δ→0

1
δ

∫ T∗+δ

T∗
f(t, x∗(t), u∗(t)) dt

+
φ(T ∗ + δ, x∗(T ∗ + δ))− φ(T ∗, x∗(T ∗))

δ

= f(T ∗, x∗(T ∗), u∗(T ∗)) + φt(T ∗, x∗(T ∗)) + φx(T ∗, x∗(T ∗))
dx∗

dt
(T ∗)

= f(T ∗, x∗(T ∗), u∗(T ∗)) + λ(T ∗)g(T ∗, x∗(T ∗), u∗(T ∗)) + φt(T ∗, x∗(T ∗))
= H(T ∗, x∗(T ∗), u∗(T ∗), λ(T ∗)) + φt(T ∗, x∗(T ∗)).

We see the need for extending u∗ and x∗ in the first and second lines, as
the values of t considered are greater than T ∗, in the case when δ > 0.
The transition from the second to the third line follows via the Fundamental
Theorem of Calculus and the product rule. This is due to our earlier assurance
that u∗ is continuous at T ∗, and thus x∗ is differentiable at T ∗.

This gives the new necessary condition we promised. Namely,

H(T ∗, x∗(T ∗), u∗(T ∗), λ(T ∗)) + φt(T ∗, x∗(T ∗)) = 0.

In the case when φ is a function of x(T ) only, this says the Hamiltonian is
0 at the terminal time. This proof was done on a simplified problem for
convenience. It should be clear, however, that the same necessary conditions
would arise with bounds on the control and multiple states and controls as
before, and that this new necessary condition would be unchanged.

What is not clear, though, is how problems with a state fixed at both
endpoints are affected. Because we did not provide a development of this
case, it is not obvious how a free terminal time would alter the necessary
conditions. In fact, the same new necessary condition arises. Stated formally,
if u∗ is an optimal control on the finite, nonempty interval [t0, T ∗], with control
x∗, for the optimal control problem

max
u,T

∫ T

t0

f(t, x(t), u(t)) dt + φ(T )

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0, x(T ) = x1,

then for some piecewise differentiable adjoint variable λ, the following neces-
sary conditions are simultaneously satisfied by u∗, x∗, λ:
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0 =
∂H

∂u
at u∗,

λ′ = −∂H

∂x
,

0 = H(T ∗, x∗(T ∗), u∗(T ∗), λ(T ∗)) + φ′(T ∗).

Of course, the full statement should include a constant λ0, as in Theorem 3.1,
but we still assume λ0 = 1. As before, we do not provide proofs here, as this
result is a great deal more involved than the one provided. See [158].

Example 20.1 Let us return now to the problem introduced at the be-
ginning of the chapter,

min
u,T

x(T ) +
∫ T

0

u(t)2 dt

subject to x′(t) = αx(t)− u(t), x(0) = x0, α > 0.

The necessary conditions

H = u2 + αxλ− uλ,

0 =
∂H

∂u
= 2u− λ at u∗,

λ′ = −∂H

∂x
= −αλ,

λ(T ∗) = φx(x∗(T ∗)) = 1,

are exactly as in Example 3.3, so we arrive at the same solutions:

u∗(t) =
eα(T∗−t)

2
,

x∗(t) = x0e
αt + eαT∗ e−αt − eαt

4α
,

λ(t) = eα(T∗−t).

Before, T was some fixed constant. Here, T ∗ is an unknown constant, which
must be found using the last necessary condition:

0 = H(T ∗, x∗(T ∗), u∗(T ∗), λ(T ∗))

=
1
4

+ αx0e
αT∗ +

1− e2αT∗

4
− 1

2

= αx0e
αT∗ − 1

4
e2αT∗ ,
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which can easily be solved to show T ∗ = 1
α ln(4αx0). Of course, this only

makes sense if 4αx0 > 1, which can be taken as an extra assumption on x0.
Figure 20.1 shows the optimal control.

0 T*

Time

C
o

n
tr

o
l

u*(T*) = 1/2 

u*(0) = 2αx
0
 

FIGURE 20.1: Optimal control from Example 20.1.

Example 20.2 (from [169])

min
u,T

1
2

∫ T

0

u(t)2 + 1 dt

subject to x′(t) = u(t), x(0) = 5, x(T ) = 0,

− 2 ≤ u(t) ≤ 2.

Form the Hamiltonian

H =
1
2
(u2 + 1) + λu.

The adjoint equation is

λ′ = −∂H

∂x
= 0,

so that λ ≡ c for some constant c. Further,
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∂H

∂u
= u + c,

0 > u∗ + c ⇒ u∗ = 2 ⇒ −2 > c,

0 < u∗ + c ⇒ u∗ = −2 ⇒ 2 < c,

0 = u∗ + c ⇒ −2 ≤ u∗ ≤ 2 ⇒ −2 ≤ c ≤ 2.

Clearly, as c is a constant, only one of these cases can be true. Thus, u∗ is
identically constant. Also, as the control must push the state from 5 down to
0, it is also clear that u∗ must be negative. So, either u∗ ≡ −2 or u∗ ≡ −c.

If u∗ ≡ −2, then the Hamiltonian is

H ≡ 5
2
− 2c.

As the terminal time is free, H must be zero at the final time. This allows us
to solve for c giving c = 5/4. However, this contradicts what we saw above,
namely, when u∗ ≡ −2 we must have c > 2.

Thus, u∗ = −c, and

0 = H(T ∗, x∗(T ∗), u∗(T ∗), λ(T ∗))

=
1
2
(u2 + 1) + λu

=
1
2
(c2 + 1)− c2.

This yields c = ±1. As the control must be negative, we have c = 1 and
u∗ ≡ −1. This and x(0) = 5 gives x∗(t) = −t + 5 so that T ∗ = 5.

20.2 Time Optimal Control

Of particular interest is a specific type of free terminal time problems called
minimal time problems, or time optimal control. The idea is simple: move a
state (or states) from a given initial location to a specified final position in
minimum time. It may not be immediately clear that this confirms to the
form discussed above, but note that

T =
∫ T

0

1 dt.

Therefore, the problem
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min
u,T

∫ T

0

1 dt

subject to x′(t) = g(t, x(t), u(t)), x(0) = x0, x(T ) = x1,

a ≤ u(t) ≤ b,

is precisely what we want, namely, to find a control u which moves x from
x0 to x1, subject to its dynamics, in minimal time. Of course, this is just
as easily done with multiple states and controls. We make the note here
that more complicated terminal state conditions or constraints can be used.
Many times in applications, we are interested instead in moving the state or
states from a specific initial condition to a certain region in minimal time. For
example, we could only require x(T ) to be close to x1, i.e., |x(T )−x1| ≤ δ. Or,
if we have two states, we could simply require they be equal, x1(T ) = x2(T ),
or be close, i.e, |x1(T )− x2(T )| ≤ δ. In general, the constraints

k(T, x1(T ), . . . , xn(T )) = 0 and
k(T, x1(T ), . . . , xn(T )) ≥ 0,

where k is a continuously differentiable function in all variables, can be con-
sidered. We do not treat these conditions, as such problems are generally a
great deal more complicated. We refer the reader to [99, 100, 130, 141]. For
examples of such problems, see [98, 120].

Example 20.3

min
u,T

∫ T

0

1 dt

subject to x′(t) = x(t)u(t)− 1
2
u(t)2, x(0) = x0 ∈ (0, 1), x(T ) = 1.

We write the Hamiltonian

H = 1 + xuλ− 1
2
u2λ.

The adjoint equation is

λ′ = −∂H

∂x
= −λu,

which gives

λ(t) = C exp
(
−

∫ t

0

u(s) ds

)
,
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for some constant C. Note, if C = 0, then λ ≡ 0. This gives H ≡ 1, which
contradicts the Hamiltonian being 0 at T ∗. Thus, C 6= 0 so that λ is never
zero. Hence, the optimality condition

0 =
∂H

∂u
= λ(x− u)

gives

u∗ = x∗.

Making this substitution in the state equation, we see x∗ satisfies

x′ =
1
2
x2, x(0) = x0.

This gives the solutions

x∗(t) =
2x0

2− x0t
= u∗(t).

The condition x(T ) = 1 gives T ∗ = 2/x0 − 2.

Example 20.4 Let x(t) represent the location of a particle at time t.
Initially, it is at rest and is positioned at x0 > 0. We can steer the particle by
controlling its acceleration, within its designated limits. Find the acceleration
which brings x to a rest at position 0 in minimum time. Specifically,

min
u,T

∫ T

0

1 dt

subject to x′′(t) = u(t), x(0) = x0 > 0, x(T ) = 0,

x′(0) = 0, x′(T ) = 0, −1 ≤ u(t) ≤ 1.

First, we recast this as a systems problem

min
u,T

∫ T

0

1 dt

subject to x′1(t) = x2(t), x1(0) = x0 > 0, x1(T ) = 0,

x′2(t) = u(t), x2(0) = 0, x2(T ) = 0,

− 1 ≤ u(t) ≤ 1.

The Hamiltonian is

H = 1 + λ1x2 + λ2u.

From the adjoint equations
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λ′1 = − ∂H

∂x1
= 0,

λ′2 = − ∂H

∂x2
= −λ1,

it is clear λ1 is identically some constant, and λ2 is a linear function in t. If
λ2 were identically 0, then λ1 ≡ λ2 ≡ 0, from which we see H ≡ 1. This
contradicts H(T ∗) = 0, so λ2 is not identically 0. Further,

∂H

∂u
= λ2.

As λ2 is linear and not identically 0, it can be 0 only at a point and only once,
so that u∗ is bang-bang with at most one switch. Now, x′2 = u and x2 is to
begin and end at 0. Therefore, it is clear that u cannot be identically −1 or
1, but must utilize the one allowed switch. It should also be clear that this
switch occurs at the half-way point of the interval, T ∗/2. The only thing to
determine is which bound u∗ begins with.

Suppose the optimal control is

u∗(t) =

{
1 when 0 ≤ t < T ∗/2,

−1 when T ∗/2 < t ≤ T ∗.

Using the state equation and x2(0) = 0 = x2(T ∗), we can see

x∗2(t) =

{
t when 0 ≤ t ≤ T ∗/2,

T ∗ − t when T ∗/2 ≤ t ≤ T ∗.

Using x′1 = x2, x1(0) = x0, and x1(T ∗) = 0, it follows

x∗1(t) =

{
1
2 t2 + x0 when 0 ≤ t ≤ T ∗/2,

− 1
2 t2 + T ∗t− 1

2 (T ∗)2 when T ∗/2 ≤ t ≤ T ∗.

Now, x∗1 is continuous, so the two expressions must agree at T ∗/2. This
implies

1
2
(T ∗/2)2 + x0 = −1

2
(T ∗/2)2 + T ∗(T ∗/2)− 1

2
(T ∗)2 ⇒

x0 = −(T ∗/2)2 < 0.

This contradicts the original assumption of x0. Therefore, the optimal control,
and resulting optimal states, must be
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u∗(t) =

{
−1 when 0 ≤ t < T ∗/2,

1 when T ∗/2 < t ≤ T ∗,

x∗1(t) =

{
− 1

2 t2 + x0 when 0 ≤ t ≤ T ∗/2,
1
2 t2 − T ∗t + 1

2 (T ∗)2 when T ∗/2 ≤ t ≤ T ∗,

x∗2(t) =

{
−t when 0 ≤ t ≤ T ∗/2,

t− T ∗ when T ∗/2 ≤ t ≤ T ∗.

Using the fact that x∗1 must be continuous, we find x0 = (T ∗/2)2, so that
T ∗ = 2

√
x0. This can be substituted into the expressions above to finish the

problem. The optimal states are shown in Figure 20.2.

x_0

0 T*/2 T*

x
1

*
(t)

−T*/2

0 T*/2 T*

x
2

*
(t)

FIGURE 20.2: The optimal states for Example 20.4.
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20.3 Exercises

Exercise 20.1 (from [130]) Solve

min
u,T

∫ T

0

1 +
1
2
u(t)2 dt

subject to x′1(t) = x2(t), x1(0) = 1, x1(T ) = 0,

x′2(t) = u(t), x2(0) = 0,

− 1 ≤ u(t) ≤ 1.

Exercise 20.2 (from [126]) Let x0 > x1 > 0. Solve

min
u,T

1
2

∫ T

0

u(t)2 dt

subject to x′(t) = x(t) + u(t), x(0) = x0, x(T ) = x1.

Exercise 20.3 (from [126]) Let 0 < x0 < 1. Solve

min
u,T

∫ T

0

1 dt

subject to x′(t) = x(t)− u(t), x(0) = x0, x(T ) = 0,

− 1 ≤ u(t) ≤ 1.

Exercise 20.4 (from [141]) Solve

min
u,T

∫ T

0

1 dt

subject to x′1(t) = x2(t), x1(0) = x0, x1(T ) = 0,

x′2(t) = −x1(t) + u(t), x2(T ) = 0,

− 1 ≤ u(t) ≤ 1.





Chapter 21

Adapted Forward-Backward Sweep

The forward-backward sweep method, as used so far, is somewhat limited in
the type of optimal control problems it can solve. In this chapter, we develop
a modified version of the forward-backward sweep, which will allow us to
examine more complicated problems.

21.1 Secant Method

Before moving forward with this new method to solve optimal control prob-
lems, it is advantageous to first introduce a basic algorithm for finding zeros
of functions, the secant method. For those with some familiarity of numerical
methods, the secant method is simply Newton’s method, where the deriva-
tive is replaced by a difference quotient. We give a brief development of the
method here. For more information, see [32].

Let V be a real-valued function. Suppose we are interested in the zeros of
V , i.e., the values x for which V (x) = 0. The idea is to form a sequence of
values or nodes x1, x2, . . . which converge to such a zero. We take x1, x2 to be
given and not equal. We form the sequence by induction.

Suppose we have x1, . . . , xn. Further, suppose V ′(xn) is well-defined. Con-
sider the linear approximation of V at xn, given by L(x) = V ′(xn)(x− xn) +
V (xn). We set xn+1 to be the zero of L(x). Namely,

xn+1 = xn − V (xn)
V ′(xn)

.

This is precisely the idea of Newton’s method. If V ′ is defined everywhere,
then this sequence will, in fact, converge to a zero of V .

However, we are interested in the case when V ′ may not be known. For
small h, we have

V ′(x) ≈ V (x + h)− V (x)
h

.

If we set x = xn and h = xn−1 − xn, then
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V ′(xn) ≈ V (xn−1)− V (xn)
xn−1 − xn

.

Substituting this into the formula above, we arrive at

xn+1 = xn −
(

xn − xn−1

V (xn)− V (xn−1)

)
V (xn).

By induction, we can find the nodes xn for all n. The idea is to continue
construction of the sequence until V is “close” to 0, i.e., |V (xn)| < ε, for some
error tolerance ε. A pseudocode for a secant method in MATLAB is provided
below.

secantcode.m
1 function y = secantcode(a,b,epsilon)
2

3 flag = -1;
4

5 Va = V(a);
6 Vb = V(b);
7

8 while(flag < 0)
9 if(abs(Va) > abs(Vb))

10 k = a;
11 a = b;
12 b = k;
13 k = Va;
14 Va = Vb;
15 Vb = k;
16 end
17

18 d = Va*(b - a)/(Vb - Va);
19 b = a;
20 Vb = Va;
21 a = a - d;
22 Va = V(a);
23

24 if(abs(Va) < epsilon)
25 flag = 1;
26 end
27 end
28

29 y = a;

The letters a and b are used throughout the code for the two current nodes
in the sequence, while V a and V b are used to represent the values of V at a,
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b. As we are not interested in the actual sequence, only the last element, we
abandon the notation xn all together, and use a, b as inputs. Lines 5 and 6
calculate the function value at our initial a, b. Line 8 begins the while loop,
which will calculate the successive nodes. The variable flag, as before, acts
as the on-off switch for the loop. Lines 9 through 16 switch the values of
a, b, and V a, V b if |V a| > |V b|. This is done to keep the “better” value (the
one closer to zero) and replace the other. The variable k is just a temporary
place holder here. Line 18 calculates the difference quotient times the function
value. Lines 19 and 20 store the new values as the old values, and lines 21
and 22 calculate the new values. Line 24 checks how close our function value
is to 0, while line 29 outputs the last known element of the sequence, once the
error is small enough. Note, in lines 5, 6, and 22, the use of V (a) and V (b)
only makes sense if V (·) is defined in MATLAB. Specifically, V must be an
inline function or a function defined by another code, as will be done later.

21.2 One State with Fixed Endpoints

Consider the optimal control problem

max
u1,...,um

∫ t1

t0

f
(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t)

)
dt

subject to x′1(t) = g1

(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t)

)
, x1(t0) = x10,

x′2(t) = g2

(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t)

)
, x2(t0) = x20,

...

x′n(t) = gn

(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t)

)
, xn(t0) = xn0,

xn(t1) = xn1,

aj ≤ uj(t) ≤ bj for j = 1, 2, . . . , m.

Note, all states are free at the terminal time, except xn, which is fixed at
both endpoints. As we stated earlier, our current numerical methods cannot
deal with this problem. Let us now develop a way to solve it. We will have
n adjoints, λ1, . . . , λn. Now, λj(t1) = 0 for j = 1, 2, . . . , n − 1, but λn(t1) is
unknown.

Suppose we make a guess λn(t1) = θ. Then, construct a forward-backward
sweep code to solve this problem, using the given initial conditions and ~λ(t1) =
(0, 0, . . . , 0, θ). Assuming convergence occurs, we will be given a value for the
nth state at the terminal time. Denote this estimate by x̃n1. It is unlikely our
guess yielded the correct value; in particular, x̃n1 6= xn1. However, we can
consider the map θ 7→ x̃n1 as a function. Then, our problem boils down to
finding the θ value for which x̃n1 is actually xn1. Or, equivalently, if we define
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V (θ) = x̃n1 − xn1,

we are interested in the zeros of V .
To carry this out requires the construction of two separate codes. The first

code will be a forward-backward sweep routine, which takes as input the guess
θ. The second code will be the secant code provided above, with V replaced
by the first code. This is essentially a type of shooting method. For this text,
we refer to it as the Adapted Forward-Backward Sweep method. We illustrate
the idea with an example.

Example 21.1

min
u

1
2

∫ 1

0

x1(t)2 + u(t)2 dt

subject to x′1(t) = x2(t), x1(0) = 1,

x′2(t) = −ru(t), x2(0) = 0, x2(1) = s,

r > 0, s < 0.

Note, our function of interest here is V (θ) = x̃21 − s. We write two codes for
this problem, example1.m and example2.m. The code example1.m solves the
above problem, ignoring the condition x2(1) = s and guessing λ2(1) = θ. The
code example2.m is the secant method to find the appropriate 0.
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example1.m
1 function y = example1(theta,r)
2

3 test = -1;
4

5 delta = 0.001;
6 N = 1000;
7 t=linspace(0,1,N+1);
8 h=1/N;
9 h2 = h/2;

10

11 x1=zeros(1,N+1);
12 x1(1)=1;
13 x2=zeros(1,N+1);
14 x2(1)=0;
15

16 lambda1=zeros(1,N+1);
17 lambda2=zeros(1,N+1);
18 lambda2(N+1) = theta;
19

20 u=zeros(1,N+1);
21

22 while(test < 0)

example1.m
74 y(1,:)=t;
75 y(2,:)=x1;
76 y(3,:)=x2;
77 y(4,:)=u;

The missing portion of the code is simply the forward and backward sweeps,
the update of u, and convergence tests, all as usual. For the most part, this is
the standard forward-backward sweep we have been using. Line 16 sets λ2(1)
to θ. Also, as this first portion ignores the condition x2(1) = s, the variable
s is not an input of example1.m.
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example2.m
1 function y = example2(a,b,r,s)
2

3 flag = -1;
4

5 z = example1(a,r);
6 Va = z(3,1001) - s;
7 z = example1(b,r);
8 Vb = z(3,1001) - s;
9

10 while(flag < 0)
11 if(abs(Va) > abs(Vb))
12 k = a;
13 a = b;
14 b = k;
15 k = Va;
16 Va = Vb;
17 Vb = k;
18 end
19

20 d = Va*(b - a)/(Vb - Va);
21 b = a;
22 Vb = Va;
23 a = a - d;
24 z = example1(a,r);
25 Va = z(3,1001) - s;
26

27 if(abs(Va) < 1E-10)
28 flag = 1;
29 end
30 end
31

32 y = z;

First, note that the error tolerance ε has been set to 10−10. Also, the variables
r and s are inputs. In line 5, the forward-backward sweep of example1.m is
run, with the initial guess λ2(1) = a and the stored value for r. Once the
forward-backward sweep converges, the values are stored as z, a 4 × 1001
array containing the values for t, x1, x2, and u. In line 6, V (a) is found, as
z(3, 1001) is the stored value for x2(1). The same thing occurs in lines 7, 8
and 24, 25. Finally, instead of outputting only the 0 of the function, as was
done in secantcode.m, here we output the stored values for z. This gives the
values for the variables t, x1, x2, u during the last iteration, when V was
nearly 0. Therefore, we take these to be the solutions of the optimal control
problem.
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FIGURE 21.1: Estimates for x∗2 in Example 21.1. Note, the iterates cluster
to the correct function, which has value −1 at t = 1.

Figure 21.1 shows the iterations of this method for Example 21.1, for r = 1
and s = −1. For each guess θ, a full forward-backward sweep runs and must
converge. After this, we have an estimate for x2, all of which are shown in
the figure together. Once x2(1) is close enough to s = −1, the program stops.

This method is of particular interest when dealing with optimal control
problems involving isoperimetric constraints. Recall from section 12.4, one
method of solving such problems is to introduce an artificial state variable,
which is fixed at both endpoints. This numerical method allows us to deal with
such problems. Lab 13 focuses on a biological model with an isoperimetric
constraint.

The adapted forward-backward sweep method is based on two critical as-
sumptions: the forward-backward sweep will converge for most choices of θ,
and the function V is well-defined. For “well-behaved” problems, both are
usually true. There, the choices of a, b (the beginning nodes) are usually irrel-
evant. Most a 6= b will arrive at the same set of solutions. Of course, guesses
which are closer to the actual values generally lead to quicker convergence.
On the other hand, for certain ill-behaved problems, these assumptions may
not hold. Many choices of θ can lead to difficulty with convergence, while
V may be a well-defined function only on some interval, not the whole real
line. In this case, the choice of a, b is critical, and experimentation must be
performed. This is why a, b are left as inputs in our code, and not set to
universal values.
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We would also like to point out that any root-finding algorithm will work
in place of the secant method. Indeed, for problems where the secant-based
method has trouble converging, a bisection-based method, although much
slower, is a good alternative. For more information on basic root-finding
methods, see [32].

21.3 Nonlinear Payoff Terms

A slight alteration of the adapted forward-backward sweep can be used
to numerically solve optimal control problems with nonlinear payoff terms.
Consider the problem

max
u1,...,um

φ(xn(t1)) +
∫ t1

t0

f(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)) dt

subject to x′1(t) = g1(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), x1(t0) = x10,

x′2(t) = g2(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), x2(t0) = x20,

...
x′n(t) = gn(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), xn(t0) = xn0,

aj ≤ uj(t) ≤ bj for j = 1, 2, . . . , m.

Now, if φ is linear, i.e., φ′ ≡ c for some constant c, then the standard forward-
backward sweep can be used. Simply set λj(t1) = 0 for 1 ≤ j ≤ n − 1 and
λn(t1) = c. However, for any other φ, the value λn(t1) will not be constant,
but will depend on x∗n(t1). In this case, the standard forward-backward sweep
cannot be used, but the adapted method can be applied.

As before, we make a guess for the value of adjoint at the terminal time,
say λn(t1) = θ. Then, we use the standard forward-backward sweep to solve
the problem with given initial conditions and λn(t1) = θ. This will give a
value for the nth state at t1, say x̃n1. We want φ′(x̃n1) = θ. So, consider the
map θ 7→ x̃n1, and define a function V (θ) = φ′(x̃n1) − θ. Thus, our problem
has been reduced to finding the zeros of V . The secant code given earlier can
now be employed. Let us follow with an example.

Example 21.2

min
u

1
4
x2(1)4 +

1
2

∫ 1

0

x1(t)2 + u(t)2 dt
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subject to x′1(t) = x2(t), x1(0) = 1,

x′2(t) = −ru(t), x2(0) = 0,

r > 0.

First, note this example is nearly identical to Example 21.1, the only difference
being x2(1) is no longer fixed, but is in the objective functional. Also, φ(s) =
1
4s4, so that φ′(s) = s3. Thus, the function we want is V (θ) = (x̃21)3 − θ.

The first code which must be constructed is the forward-backward sweep
which solves the problem given λ2(1) = θ; but, this is precisely example1.m.
Nothing in the code needs to be altered. The second code is the secant method
routine which will find the zeros of our V . It can easily be recovered from
example2.m. Lines 6, 8, and 25 should be changed to, respectively,

V a = z(3, 1001)3 − a,

V b = z(3, 1001)3 − b,

V a = z(3, 1001)3 − a.

This is done to reflect the new definition of V .

21.4 Free Terminal Time

Finally, we can apply this numerical method to non-autonomous problems
which have free terminal time. Consider the problem

max
u1,...,um,T

∫ T

t0

f(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)) dt

subject to x′1(t) = g1(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), x1(t0) = x10,

x′2(t) = g2(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), x2(t0) = x20,

...
x′n(t) = gn(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), xn(t0) = xn0,

aj ≤ uj(t) ≤ bj for j = 1, 2, . . . , m.

This time, make a guess for the optimal terminal time T ∗, say T ∗ = θ >
t0. Solve the above problem as a fixed time problem using the standard
forward-backward sweep method. This will give estimates of the controls,
states, and adjoints at the final time. These can be used to calculate the
estimate of the Hamiltonian at the final time, which we denote H̃(θ). If we
consider the map θ 7→ H̃(θ), we can define our function as V (θ) = H̃(θ).
As we require H(T ∗) = 0, we can simply look for the zeros of V as before.
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Note, the requirement that the original problem be non-autonomous is crucial.
Otherwise, the Hamiltonian would be 0 for all t.

When employing this method, one should always take the initial nodes a, b
to be strictly greater than the initial time. Of the three types of problems we
have discussed, free terminal time problems tend to have the longest conver-
gence time with this method. In general, it is also free terminal time problems
that have the most trouble converging. This is caused by the Hamiltonian
function, which is usually more complicated than the V functions associated
with fixed states and nonlinear payoff problems. Nevertheless, it is still effec-
tive enough to mention here and always worth trying for relevant problems.

21.5 Multiple Shots

So far, we have developed the Adapted forward-backward Sweep to deal
with problems with one state fixed, a nonlinear payoff term, or free terminal
time, but not problems with several such elements. Expansion to these kinds
of problems is actually relatively simple. It is done by employing our shooting
method multiple times, or doing multiple shots.

To use the basic forward-backward sweep, we require the information of the
necessary conditions to be in certain locations, namely, fixed initial conditions
for the states and fixed terminal conditions for the adjoints. When dealing
with other problems, we may not have these conditions, but we gain other
necessary conditions. For example, in problems with a nonlinear payoff term,
we lose the fixed terminal condition of an adjoint, but gain a condition linking
the terminal values of the adjoint and its state. The idea of the method
developed in this chapter is to guess a value for the missing necessary condition
and use a root-finder to determine the appropriate guess to recover this new
necessary condition.

Stated another way, we ignore troublesome necessary conditions and guess
other values so the problem takes on a form we are comfortable with. We solve
this problem (numerous times, if necessary), until the neglected necessary con-
dition is satisfied. Now, suppose a problem had two such necessary conditions.
Then, we could put aside the first and make an appropriate guess. The result-
ing problem would have only one troublesome necessary, and we know how to
solve this type of problem; use the Adapted Forward-Backward Sweep as just
developed. This allows us to solve problems with two such elements. However,
now three-element problems can be reduced to two-element problems to be
solved, and so on. By induction, any multiple element problem can be solved.

For the sake of exposition, we study a problem with two states, both fixed
at the endpoints. Consider
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max
u

∫ t1

t0

f(t, x1(t), x2(t), u(t)) dt

subject to x′1(t) = g1(t, x1(t), x2(t), u(t)), x1(t0) = x10, x1(t1) = x11,

x′2(t) = g2(t, x1(t), x2(t), u(t)), x2(t0) = x20, x1(t1) = x21.

After writing out the necessary conditions, suppose we arrive at the system

x′1(t) = g1(t, x1(t), x2(t), u(t)), x1(t0) = x10, x1(t1) = x11,

x′2(t) = g2(t, x1(t), x2(t), u(t)), x2(t0) = x20, x2(t1) = x21,

λ′1(t) = h1(t, x1(t), x2(t), λ1(t), λ2(t), u(t)),
λ′2(t) = h2(t, x1(t), x2(t), λ1(t), λ2(t), u(t)),
u(t) = k(t, x1(t), x2(t), λ1(t), λ2(t)).

(21.1)

Make the guess λ1(t1) = θ1 and ignore x1(t1) = x11. Then, (21.1) becomes

x′1(t) = g1(t, x1(t), x2(t), u(t)), x1(t0) = x10,

x′2(t) = g2(t, x1(t), x2(t), u(t)), x2(t0) = x20, x2(t1) = x21,

λ′1(t) = h1(t, x1(t), x2(t), λ1(t), λ2(t), u(t)), λ1(t1) = θ1,

λ′2(t) = h2(t, x1(t), x2(t), λ1(t), λ2(t), u(t)),
u(t) = k(t, x1(t), x2(t), λ1(t), λ2(t)).

(21.2)

We have discussed solving systems like (21.2). Make a guess λ2(t1) = θ2 and
ignore x2(t1) = x21. Then, we have

x′1(t) = g1(t, x1(t), x2(t), u(t)), x1(t0) = x10,

x′2(t) = g2(t, x1(t), x2(t), u(t)), x2(t0) = x20,

λ′1(t) = h1(t, x1(t), x2(t), λ1(t), λ2(t), u(t)), λ1(t1) = θ1,

λ′2(t) = h2(t, x1(t), x2(t), λ1(t), λ2(t), u(t)), λ2(t1) = θ2,

u(t) = k(t, x1(t), x2(t), λ1(t), λ2(t)).

(21.3)

This system can be solved by the standard forward-backward sweep method.
For θ1 fixed, solve (21.3) for various θ2 using a root-finder to determine the θ2

which achieves x2(t1) = x21. Then, we have solved (21.2) for some fixed θ1.
We do this for several different θ1. For each θ1, we get an estimate for x1(t1).
Using a root-finder, we determine the θ1 that yields x1(t1) = x11. Note, to
solve (21.1) in this manner will require solving (21.2) many times, and each
time we solve (21.2) requires solving (21.3) many times.
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Example 21.3

min
u

1
2

∫ 1

0

x1(t)2 + u(t)2 dt

subject to x′1(t) = x2(t), x1(0) = 1, x1(1) = 0,

x′2(t) = −ru(t), x2(0) = 0, x2(1) = s,

r > 0, s < 0.

Again, this is almost Example 21.1, except now both x1, x2 are fixed at the
terminal time. Neither λ1, λ2 are known at 1, so we make guesses for both.
The first code is the forward-backward sweep, with both θ1, θ2 as inputs. This
can be written by taking example1.m and making the following changes:

example1.m
1 function y = example1(theta1,theta2,r)

example1.m
16 lambda1=zeros(1,N+1);
17 lambda1(N+1) = theta1;
18 lambda2=zeros(1,N+1);
19 lambda2(N+1) = theta2;

The second code should find the zeros of the function V (θ2) = x̃21 − s, with
λ1(1) = θ1 fixed. This is nearly example2.m, except we must add θ1 as an
input and reflect the changes in example1.m:

example2.m
1 function y = example2(theta1,a,b,r,s)
2

3 flag = -1;
4

5 z = example1(theta1,a,r);
6 Va = z(3,N+1) - s;
7 z = example1(theta1,b,r);
8 Vb = z(3,N+1) - s;

example2.m
24 z = example1(theta1,a,r);
25 Va = z(3,N+1) - s;

The third code, example3.m, will use the new example2.m above to find the
zeros of the function V (θ1) = x̃11. This is done by amending example2.m
appropriately.
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example3.m
1 function y = example3(a,b,c,d,r,s)
2

3 flag = -1;
4

5 z = example2(a,c,d,r,s);
6 Va = z(2,N+1);
7 z = example2(b,c,d,r,s);
8 Vb = z(2,N+1);

example3.m
24 z = example2(a,c,d,r,s);
25 Va = z(2,N+1);

Here, a, b are the beginning nodes for the x1-secant routine, and c, d are the
beginning nodes for x2-secant routine.

This method is of great use for problems containing multiple fixed states
and/or nonlinear payoff terms. However, due to the discussed difficulty with
free terminal time problems, it has proven generally ineffective for multiple
element problems where the terminal time is also free. For example, minimum
time problems, in addition to having free terminal time, usually contain a fixed
state or states. While we would like to employ this method on such problems,
it often fails. Other methods, usually quite complicated, are needed; see [12].

21.6 Exercises

Exercise 21.1 Reconsider the bioreactor problem of Lab 12:

min
u

ln(z(T )) +
∫ T

0

Au(t) dt

subject to x′(t) = Gu(t)x(t)−Dx(t)2, x(0) = x0,

z′(t) = −Kx(t)z(t), z(0) = z0,

0 ≤ u(t) ≤ M.

Instead of making the simplification done in Lab 12, solve the problem exactly
as written. In particular, use the Adapted Forward-Backward Sweep to solve
this problem numerically. Verify that you get the same solutions as given by
lab12.

Exercise 21.2 Write a code to solve the following problem:
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min
u

1
2

∫ 1

0

u(t)2 dt

subject to x′1(t) = x2(t), x1(0) = 0, x1(1) = 1,

x′2(t) = u(t), x2(0) = 0, x2(1) = 0.

Solve the problem analytically and verify the solutions are the same.
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Lab 13: Predator-Prey Model

In this lab, we study a simple predator-prey model which contains an isoperi-
metric constraint. It is partially based on the work by Goh, Leitmann, and
Vincent [70]. We start with the standard Lotka-Volterra model

N ′
1(t) = (α1 − β1N2(t))N1(t), N1(0) = N10,

N ′
2(t) = (β2N1(t)− α2)N2(t), N2(0) = N20,

where N1(t) is the prey population at time t, and N2(t) is the predator pop-
ulation. Here, we have scaled time to some arbitrary unit. Also, α1, α2, β1,
and β2 are positive constants, subject to this time scaling.

We wish to consider a situation where the prey act as a pest, such as an
insect population. The goal should be to reduce the pest population with the
use of a chemical or biological agent, or pesticide. An ideal pesticide is one
that affects only the pests (not the predators), leaves no residue, and kills in
a density dependent manner. In practice, none of these is usually true. For
simplicity, we study a pesticide which adheres to the last two assumptions.
More information on models with less ideal pesticides can be found in [70, 81,
180].

Suppose the application of a pesticide kills both the pest/prey and predator
in a density dependent manner, with density parameters d1 > 0 and d2 > 0
respectively. Let u(t) be the rate of application at time t. Then, our model
becomes

N ′
1(t) = (α1 − β1N2(t))N1(t)− d1N1(t)u(t), N1(0) = N10 > 0,

N ′
2(t) = (β2N1(t)− α2)N2(t)− d2N2(t)u(t), N2(0) = N20 > 0.

Our goal should be to minimize the pest population at some specified time T .
However, the levels of pesticide should also be taken into account. Suppose
environmental and/or economic restrictions allow only a certain fixed level of
application at any given time (say M) and only a certain fixed total application
over the time period (say B). Finally, for simplicity, we take α1 = α2 = β1 =
β2 = 1. Then, our optimal control problem can be cast as

min
u

N1(T ) +
A

2

∫ T

0

u(t)2 dt
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subject to N ′
1(t) = (1−N2(t))N1(t)− d1N1(t)u(t), N1(0) = N10,

N ′
2(t) = (N1(t)− 1)N2(t)− d2N2(t)u(t), N2(0) = N20,

0 ≤ u(t) ≤ M,

∫ T

0

u(t) dt = B.

Note B =
∫ T

0
u(t) dt ≤ ∫ T

0
M dt = MT . So, the constants B, M , and T

cannot be chosen completely independent of each other. This compatibility
condition is enforced in the code provided.

Observe, the integral of u over the time period is fixed, while the integral
of u2 is included in the objective functional. This may be somewhat puzzling,
but is done for two reasons. First, while the total amount of pesticide is fixed,
the integral of u2 can vary. Indeed, this objective functional penalizes overly
large values of u and encourages smaller values. Environmentally, we can see
why such a consideration is made. The second reason is a purely practical
one. The introduction of the u2 term prevents our problem from being linear
in the control, and our usual techniques can be applied. However, if large
amounts of pesticide are of no concern, the weight parameter A can be taken
exceedingly small to limit the effect this term has.

To solve this problem numerically, we introduce the state variable z(t) with
z′(t) = u(t), z(0) = 0, and z(T ) = B. The adapted forward-backward sweep
can then be used to solve this three-state problem, which is precisely what is
done. The two pieces involved, the standard forward-backward sweep routine
which takes λ3(T ) as an input and the accompanying secant routine, have
been placed in one m-file code13.m for convenience. There are also a few
cosmetic alterations to the code developed in the previous chapter. You will
now be asked for the initial nodes a and b of λ3(T ). In the simulations spelled
out here, nodes are provided which will lead to speedy convergence. The code
also updates you on how many iterations of the forward-backward sweep have
been implemented. Finally, the last guess of λ3(T ) will be given, which may
be helpful when you run your own simulations. The program lab13.m is the
usual interface.

Finally, the reader should keep in mind that this method is highly sensitive.
As discussed in the previous chapter, the choice of nodes a and b can be
critical, and the best choices will of course vary with the constants in the
problem. Certain constant choices will have trouble converging, and it may
take several tries to find the “correct” a and b. Still other choices may lead to
a situation where convergence is impossible. When you run simulations with
your own data, watch the iterations. Each iteration should occur relatively
quickly: about 5 seconds, no more than 10. And overall convergence should
occur in no more than 15 iterations. If it goes beyond this, you might want
to consider supplying different nodes.

We are now ready to begin this lab. Open MATLAB and enter lab13. Begin
with the values
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FIGURE 22.1: Optimal control from the (22.1) simulation. Here, the
right-hand sum approximation is 5.1349.

d1 = 0.1 d2 = 0.1 N10 = 10 N20 = 1 M = 1
A = 1 B = 5 T = 10 a = −0.52 b = −0.5

. (22.1)

Do not vary any parameters yet. The optimal control is shown in Figure 22.1.
In this simulation, both the prey and predator populations are nearly elimi-
nated. There is an initial rise in predator population, as the prey population
is large enough to support an increase. However, as the pesticide regimen
strengthens and the prey population declines, so does the predator. Here,
d1 = d2, which is not realistic. We would not use a pesticide that eroded the
predator and prey populations at the same rate. Also, the total pesticide level
B is likely unrealistically high.

Try the values

d1 = 0.1 d2 = 0.01 N10 = 5 N20 = 2 M = 1
A = 1 B = 1 T = 5 a = −0.2 b = −0.18

. (22.2)

Even with these changes in d2, N10, N20, B, T , a, and b, we still have a
similar result. The pesticide regimen, while generally weaker than before,
still starts at its minimum value and increases, becoming nearly constant
for much of the time period. The predator population initially increases, and
both populations are nearly wiped out. Perhaps we are still being too flippant



192 Optimal Control Applied to Biological Models

about the negative effects of the pesticide, when we use such a low value of A.
Enter the (22.2) values again, this time varying with A = 10. The total value
of pesticide is fixed, so the change in A only affects the overall distribution
of the pesticide. In particular, the initial values are raised and the later
values lowered so that the second control is nearly constant the entire time
interval. However, something unusual occurs to the two populations: they do
not change at all. Despite the fact that a new pesticide regimen is in place,
the prey and predator populations experience no change.

You will recall in the previous labs we have touched on this duality. Namely,
when certain constants are changed, there are two ways the new optimal con-
trol can be affected: the control is altered in order to achieve the same state
results, more or less, or the control is unchanged, while the state systems
are shifted. More often than not, the new optimal control was a compromise
between these two scenarios. On occasion, though, we have pointed out sys-
tems which leaned more heavily in one direction. This is a relatively extreme
example of the first option. In fact, this behavior is not limited to changes in
A. Indeed, it is seen in virtually all the constants.

Enter (22.2) and vary with d1 = 0.3. Again, the control is changed (as
expected) but the populations remain the same. Vary each of d2, M , and B
in turn (making sure the compatibility condition B ≤ MT is satisfied). Each
time the populations remain unchanged. Now try varying N10 with N10 = 6.
This time, the populations will have to differ. However, by the half-way point
of the time interval, they are essentially identical again. The same occurs
when varying N20.

Finally, the parameter T even exhibits this behavior, in a way. Vary with
T = 10 using (22.2). During the interval 0 ≤ t ≤ 5, the controls are vastly
different, yet the populations remain identical. During the interval 5 ≤ t ≤ 10,
the second system becomes highly dynamic. The second pesticide regimen
is lower on average than the first, because it is forced to meet the same
isoperimetric constraint over a longer time interval. This leads to a gradual,
then sudden rise in the pest population in the second half. A higher dose of
pesticide near the end, along with a resurgent predator population, brings the
pest population back down. However, it is still much higher than the final
pest population of the first system. Also, in this simulation, the predator
population does not fade out, but ends higher than it began.
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Discrete Time Models

For many populations, births and growth occur in regular (predictable) times
each year (or each cycle). Discrete time models are well suited to describe
the life histories of organisms with discrete reproduction and/or growth. For
example, the Beverton-Holt stock-recruitment model for a population Nt at
time t is

Nt+1 = rNt

(
1 + Nt

r − 1
K

)−1

.

Kot [107] gives many examples of discrete time equations modeling plants,
insects, fish, birds, and mammals. For systems of discrete time models and
many applications, see Caswell’s book on matrix models [28].

The theory of optimal control can be adapted to discrete time models.
Namely, instead of continuous time ODEs as the underlying dynamics, as
has been seen so far, we can instead consider state systems given by discrete
difference equations. In this chapter, we give a brief derivation of the necessary
conditions that the optimal control, state, and adjoint must satisfy in the case
of one state and one control (without bounds). We also discuss multiple states
and/or controls. The reader will immediately notice the similarity with the
continuous time problems. All other problem types (states fixed at both
endpoints, control bounds, etc.) follow by more or less the same techniques.
For necessary conditions with more generality, see the work by Halkin [78].
For more information and examples of optimal control of discrete time models,
see [33, 169].

23.1 Necessary Conditions

We will use subscripts to denote our time step throughout this chapter.
Given a control u = (u0, u1, . . . , uT−1) and an initial state x0, the corre-
sponding state equation is given by the difference equation

xk+1 = g(xk, uk, k)
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for k = 0, 1, 2, . . . , T − 1. Note that the state has one more component than
the control

x = (x0, x1, . . . , xT ),

where the first state component x0 is given. The given first state component
x0 is analogous to the initial condition in continuous optimal control problems.

We define the objective functional as

J(u) = φ(xT ) +
T−1∑

k=0

f(xk, uk, k)

where we include a payoff term. We seek to maximize J(u) over vectors u in
RT . We assume that f and g are continuously differentiable functions of their
arguments.

Suppose u∗ = (u∗0, u
∗
1, . . . , u

∗
T−1) achieves the (finite) maximum of J(u) over

all vectors u ∈ RT , and let x∗ = (x0, x
∗
1, . . . , x

∗
T ) be the corresponding state.

Let uε = u∗+ εh be another control, where h is any T -dimensional vector and
ε ∈ R. Let xε be the corresponding state. We differentiate J with respect to
u at u∗ in the h direction,

0 = lim
ε→0

J(u∗ + εh)− J(u)
ε

=
T−1∑

k=0

( ∂f

∂xk
(x∗k, u∗k, k)ψk +

∂f

∂uk
(x∗k, u∗k, k)hk

)
+ φ′(x∗T )ψT

(23.1)

where the “sensitivity” ψ = (ψ0, ψ1, . . . , ψT ) is defined by

ψ =
dxε

dε

∣∣∣∣
ε=0

= lim
ε→0

xε − x∗

ε
.

The sensitivity is the analogue of dxε

dε at ε = 0 from Chapter 1. One can
think of the sensitivity ψ as the directional derivative of the control-to-state
map u → x at u∗ in the direction h. The existence of such a limit of those
difference quotients follows from the regularity properties of f and g (as in
Chapter 1). By differentiating and using the Chain Rule, we can show that
ψ satisfies the sensitivity equations:

ψ0 = 0,

ψk+1 =
∂g

∂xk
(x∗k, u∗k, k)ψk +

∂g

∂uk
(x∗k, u∗k, k)hk for k = 0, 1, . . . , T − 1.

We choose our adjoint λ to satisfy the system
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λk =
∂g

∂xk
(x∗k, u∗k, k)λk+1 +

∂f

∂xk
(x∗k, u∗k, k) for k = 0, 1, . . . , T − 1,

λT = φ′(x∗T ) (transversality condition).

Substituting out the
∂f

∂xk
terms from our adjoint system, equation (23.1)

becomes

0 =
T−1∑

k=0

[
ψk

(
λk − ∂g

∂xk
(x∗k, u∗k, k)λk+1

)
+

∂f

∂uk
(x∗k, u∗k, k)hk

]

+ φ′(x∗T )ψT .

=
T−1∑

k=0

λkψk +
T−1∑

k=0

[
∂f

∂uk
(x∗k, u∗k, k)hk − ψk

∂g

∂xk
(x∗k, u∗k, k)λk+1

]

+ φ′(x∗T )ψT .

(23.2)

Using ψ0 = 0, and then a change of index on the first sum, we transform
equation (23.2) to

0 =
T−1∑

k=1

λkψk +
T−1∑

k=0

[
∂f

∂uk
(x∗k, u∗k, k)hk − ψk

∂g

∂xk
(x∗k, u∗k, k)λk+1

]
+ φ′(x∗T )ψT

=
T−2∑

k=0

ψk+1λk+1 +
T−1∑

k=0

[
∂f

∂uk
(x∗k, u∗k, k)hk − ψk

∂g

∂xk
(x∗k, u∗k, k)λk+1

]

+ φ′(x∗T )ψT

=
T−2∑

k=0

λk+1

(
ψk+1 − ∂g

∂xk
(x∗k, u∗k, k)ψk

)
+

T−1∑

k=0

∂f

∂uk
(x∗k, u∗k, k)hk

− λT
∂g

∂xT−1
(x∗T−1, u

∗
T−1, T − 1)ψT−1 + φ′(x∗T )ψT .

Making substitutions via the sensitivity equations, we obtain
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0 =
T−2∑

k=0

λk+1
∂g

∂uk
(x∗k, u∗k, k)hk +

T−1∑

k=0

∂f

∂uk
(x∗k, u∗k, k)hk

− λT

(
ψT − ∂g

∂uT−1
(x∗T−1, u

∗
T−1, T − 1)hT−1

)
+ φ′(x∗T )ψT

=
T−1∑

k=0

λk+1
∂g

∂uk
(x∗k, u∗k, k)hk +

T−1∑

k=0

∂f

∂uk
(x∗k, u∗k, k)hk − λT ψT + φ′(x∗T )ψT

=
T−1∑

k=0

hk

(
λk+1

∂g

∂uk
(x∗k, u∗k, k) +

∂f

∂uk
(x∗k, u∗k, k)

)
,

where the adjoint transversality condition is used to gain the last equality
(ψT terms drop out). This equality holds for any vector h, which implies the
optimality condition

λk+1
∂g

∂uk
(x∗k, u∗k, k) +

∂f

∂uk
(x∗k, u∗k, k) = 0 for k = 0, 1, . . . , T − 1.

To express these conditions in terms of a Hamiltonian, define the Hamil-
tonian at time k by

Hk = f(xk, uk, k) + λk+1g(xk, uk, k), for k = 0, 1, . . . , T − 1.

The necessary conditions become

λk =
∂Hk

∂xk

λT = φ′(x∗T )
∂Hk

∂uk
= 0 at u∗.

Note the similarity between these conditions and the necessary conditions
derived in Chapter 3. Here, the adjoint equation is missing its minus sign
and is a (backwards) difference equation for λk, not a differential equation.
The Hamiltonian here is defined in a subtly different way. The adjoint which
appears in Hamiltonian at time k, Hk, is indexed forward one step in time. We
should mention some authors choose to index their adjoint variables differently
than is done here (e.g., [33]). This leads to a Hamiltonian which is completely
analogous to the continuous time problems, but alters the necessary conditions
slightly from those given here. Now we focus on a simple example.
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Example 23.1

min
u

2∑

k=0

1
2
[
x2

k + Bu2
k

]

subject to xk+1 = xk + uk for k = 0, 1, 2,

x0 = 5.

The control is the source or sink for the state. Since we are seeking to
minimize the states and the cost of control input (with squared terms), we
would expect the optimal control components to be negative in order to bring
the state components down.

We have T = 3 steps here and take B = 1 for this simple calculation. Note
that in our objective functional, there is no φ(xT ) term, meaning the problem
does not depend on the state xT at the last step. Our kth Hamiltonian is:

Hk =
1
2
[
x2

k + u2
k

]
+ λk+1(xk + uk).

Our necessary conditions are

λk =
∂Hk

∂xk
= xk + λk+1 for k = 0, 1, 2,

λ3 = 0,

0 =
∂Hk

∂uk
= uk + λk+1 at u∗k.

Substituting the characterization of the optimal control into the state equation

xk+1 = xk − λk+1 for k = 0, 1, 2.

Since these conditions are very simple, we can now solve for the adjoints and
state values explicitly. Using the new state equation above and the adjoint
difference equation, and starting with λ3 = 0,

x3 = x2 and λ2 = x2.

Continuing,

x2 = x1 − λ2

implies

x2 = x1 − x2 ⇒ x2 =
x1

2
.

Then the adjoint difference equation, λ1 = x1 + λ2 = x1 + x2, gives
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x1 = x0 − λ1 = x0 − (x1 + x2) = 5− 3x1

2
.

This is easily solved to give x∗1 = 2. Substituting back yields x∗2 = 1, x∗3 = 1.
Using the state equation, our optimal control values are u∗0 = −3, u∗1 = −1,
u∗2 = 0.

If we take the number of steps to be much larger, then one would choose
to solve this problem numerically. The standard forward-backward sweep
method developed in Chapter 4 is still applicable in the discrete time case,
and, in fact, is even easier to implement. Indeed, recall that in the previous
labs, during the forward and backward sweeps, we estimated the differen-
tial equations by discretizing the time interval and employing a Runge-Kutta
method. In the discrete time case, there is no need for such an estimation,
since we can use the difference equations directly. The rest of the sweep
method works as before. However, discrete problems sometimes have conver-
gence problems when the time step is not small. In this simple example, we
took the time step to be 1. Sometimes the size of the balancing constant B
can be adjusted to achieve convergence. Figure 23.1 gives the results when
T = 20, B = 100, and x0 = 5.

0 5 10 15 20

−0.5

Time

C
o
n
tr
o
l

0 5 10 15 20

5

Time

S
ta
te

FIGURE 23.1: Optimal control and state for Example 23.1 with 20 time
steps.



Discrete Time Models 199

23.2 Systems Case

If one has multiple states and/or controls, the procedure is analogous to the
systems case for differential equations. Namely, there is an adjoint variable
for each state variable.

Given controls ui = (ui,0, ui,1, ..., ui,(T−1)), for i = 1, 2, . . . , m, where the
second subscript (in the components of the vector) denotes the time step, the
corresponding state equations are given by

xj,k+1 = gj(x1,k, . . . , xn,k, u1,k, . . . , um,k, k)

for k = 0, 1, 2, . . . , T − 1, j = 1, 2, . . . , n. Note that each state has one more
component than the controls:

xj = (xj,0, xj,1, . . . , xj,T ).

In this notation, there are m controls, n states, and T time steps. Define the
objective functional as

J(u) = φ(x1,T , . . . , xn,T ) +
T−1∑

k=0

f(x1,k, . . . , xn,k, u1,k, . . . , um,k, k).

The same analysis as before yields analogous necessary conditions. Again we
express them in terms of the Hamiltonian,

Hk = f(x1,k, . . . , xn,k, u1,k, . . . , um,k, k)

+
n∑

j=1

λj,k+1gj(x1,k, . . . , xn,k, u1,k, . . . , um,k, k),

the necessary conditions are

λj,k =
∂Hk

∂xj,k

λj,T =
∂φ

∂xj,T
(x1,T , . . . , xn,T )

∂Hk

∂ui,k
= 0 at (u∗1,k, . . . , u∗m,k)

for all k = 0, 1, . . . , T − 1, j = 0, 1, . . . , n, and i = 0, 1, . . . , m.
Note that a system of discrete time models can be used to express spatial

structure. The different state variables may represent populations or resources
in different geographic areas; see the book by Tan and Bennett. [174]
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Example 23.2 Consider this simple system with 2 states, 1 control, and
3 time steps.

max
u

x2,3 −
2∑

k=0

(
1
2
u2

k + x2
1,k

)

subject to x1,k+1 = uk + x1,k, x1,0 = 1,

x2,k+1 = x1,k + x2,k, x2,0 = 0.

The Hamiltonian here is

Hk = −1
2
u2

k − x2
1,k + λ1,k+1(uk + x1,k) + λ2,k+1(x1,k + x2,k),

which gives

0 =
∂Hk

∂uk
= −uk + λ1,k+1 ⇒ uk = λ1,k+1,

λ1,k =
∂Hk

∂x1,k
= −2x1,k + λ1,k+1 + λ2,k+1, λ1,3 = 0,

λ2,k =
∂Hk

∂x2,k
= λ2,k+1, λ2,3 = 1,

since φ(x2,3) = x2,3. It follows from the last equation that λ2 = (1, 1, 1, 1).
Substituting λ1,k+1 for uk, we have

x1,k+1 = x1,k + λ1,k+1,

λ1,k = −2x1,k + λ1,k+1 + 1.

Using λ1,3 = 0, and alternating between the two above equations, we see

x1,3 = x1,2 + λ1,3 = x1,2,

λ1,2 = −2x1,2 + λ1,3 + 1 = −2x1,2 + 1,

x1,2 = x1,1 + λ1,2 = x1,1 − 2x1,2 + 1,⇒ x1,2 =
1
3
(x1,1 + 1),

λ1,1 = −2x1,1 + λ1,2 + 1 = −2x1,1 − 2x1,2 + 2 = −8
3
x1,1 +

4
3
,

x1,1 = x1,0 + λ1,1 = 1− 8
3
x1,1 +

4
3
⇒ x1,1 =

7
11

.

Substituting back, x∗1 = (1, 7/11, 6/11, 6/11) and x∗2 = (0, 1, 18/11, 24/11).
From the difference equation for x1, we have u = (−4/11,−1/11, 0).
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Example 23.3 Invasive plant populations frequently consist of a large
main focus and several smaller outlier populations. Management of such an
invasive population requires decisions about whether to control the main focus
and/or the outlier populations and about the timing of control actions.

Consider an invasion of a plant species that consists of a finite number
of satellites with a main focus. Moody and Mack [145] look at two control
scenarios for this problem. Namely, allow either all satellites to be eradicated
or an amount of the main focus to be removed, that amount being equivalent
to the total area of all foci (assuming the focus and the satellites were circles).
They then allowed the invasive populations to expand and found that the
total area invaded was always greater, after a sufficiently long period of time,
for the second scenario (removing area from the main focus). This is not
surprising as after an initial transient period, all circles become sufficiently
large that asymptotically the increase in area becomes the same. Thus having
more satellites remaining will give greater area than just one remaining.

Recently a model by Whittle et. al. [179] generalized this work to include
a finite time horizon and a finite number of steps at which controls can be
applied. The state equations for the radius of the invasion over time are given
by

rj,t+1 =
(

rj,t +
rj,tk

ε + rj,t

)
(1− uj,t)

for t = 0, 1, . . . , T −1, where rj,t represents the radius of the focus j at time t.
The initial size of the foci are given and will determine which is the main focus.
The spread rate is given by k and is scaled by r

ε+r for ε small. The scaling
ensures that if a focus is eradicated, rj,t = 0, it remains eradicated and does
not grow back. The control coefficient uj,t is the amount of radius decrease
due to control at time t for the focus j. Note that in discrete time models,
the order of the events is crucial; here the growth happens before the removal
by the control. We want to minimize the area covered by the invasive species
at the final time and the cost of the control over the whole time period. With
controls u = (u1, u2, . . . , un) where uj = (uj,0, uj,1, . . . , uj,T−1), the objective
functional is given by

J(u) =
n∑

j=1

[
r2
j,T + B

T−1∑
t=0

u2
j,t

]

where B is a positive-valued weight parameter. We seek to minimize J(u)
over controls with components 0 ≤ uj,t ≤ 1.

The Hamiltonian is given by

Ht =
n∑

j=1

[
Bu2

j,t + λj,t+1

[(
rj,t +

rj,tk

ε + rj,t

)
(1− uj,t)

]]
. (23.3)

Using the necessary conditions, we have
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λj,t =
∂Ht

∂rj,t
= λj,t+1(1− uj,t)

(
1 +

εk

(ε + rj,t)2

)

for t = 1, 2, . . . , T − 1, with the transversality conditions

λj,T = 2rj,T .

Furthermore the optimal control is given by

u∗j,t = max

{
0, min

{
λj,t+1

2B

(
rj,t +

rj,tk

ε + rj,t

)
, 1

}}
.

This characterization is obtained from solving the optimality condition

∂H

∂uj,t
= 2Bu∗j,t − λj,t+1

(
rj,t +

rj,tk

ε + rj,t

)
.

Although we have not discussed bounds in the discrete time case, the nec-
essary conditions follow in exactly the same way as before. In particular,
the Hamiltonian is still maximized (or minimized) pointwise by the optimal
control. We will see numerical results for a similar example in the next lab.

For an optimal control example of a discrete model for pest control, specif-
ically for gypsy moths, see [178]. For a review of “biocontrol” models of pests
and invasives, see [81].

23.3 Exercises

Exercise 23.1 (from [126]) Solve

min
u

4∑

k=0

u2
k

subject to xk+1 = 2xk + uk, for k = 0, 1, . . . , 4,

x0 = 3, x5 = 0,

0 ≤ uk ≤ 1 for k = 0, 1, . . . , 4.

Exercise 23.2 (from [169]) The following problem has a singular case at
one time step. Solve
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min
u

5∑

k=0

1
2
[
x2

k

]

subject to xk+1 = xk + uk for k = 0, 1, . . . , 5,

x0 = 5,

− 1 ≤ uk ≤ 1 for k = 0, 1, . . . , 5.

Exercise 23.3 State the adjoint equations and optimality condition for
this system problem, which is a simple pest control problem. View the y
population as the pest to be controlled with u.

max
u

T∑

k=0

1
2
[
xk − u2

k

]

subject to xk+1 = xk + xk(1− xk)− xkyk for k = 0, 1, . . . , T,

yk+1 = yk + xkyk − ukyk for k = 0, 1, . . . , T,

x0 = 5, y0 = 10,

0 ≤ uk ≤ 1 for k = 0, 1, . . . , T.





Chapter 24

Lab 14: Invasive Plant Species

Reconsider Example 23.3, where an invasive plant species was modeled. The
species consists of a finite number of satellites with a main focus. We wish
to minimize the total area covered by the invader at the end of a finite time
period. A discrete time model is used. The optimal control problem we
considered before was

min
u

n∑

j=1

[
r2
j,T + B

T−1∑
t=0

u2
j,t

]

subject to rj,t+1 =
(

rj,t +
rj,tk

ε + rj,t

)
(1− uj,t), rj,0 = ρj ,

0 ≤ uj,t ≤ 1 for j = 0, 1, . . . , T − 1,

(24.1)

where B is a weight parameter, and ρj are the known initial conditions. Recall,
the state rj,t is the radius length of focus j at time step t, the control uj,t is
the amount of radius decrease for focus j at time step t, and k is the spread
rate.

To simplify matters, we will fix some of the constants for this lab. The
number of foci n will be set to five, so that there is one main focus and four
satellites. The initial values will be set to ρ1 = 0.5, ρ2 = 1, ρ3 = 1.5, ρ4 = 2,
ρ5 = 10, so that the main focus is denoted by j = 5. Further, the arbitrary
constant ε will be fixed at ε = 0.01.

Further, we wish to avoid the transversality condition λj,T = 2rj,T . This
type of boundary condition cannot be handled by the standard forward-
backward sweep (the adapted sweep can be used, of course; see Exercise 24.1).
Therefore, we change to

φ(x1,T , . . . , x5,T ) =
5∑

j=1

xj,T ,

which gives the transversality conditions λj,T = 1. Therefore, our new optimal
control problem is

min
u

5∑

j=1

[
rj,T + B

T−1∑
t=0

u2
j,t

]
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subject to rj,t+1 =
(

rj,t +
rj,tk

ε + rj,t

)
(1− uj,t), rj,0 = ρj ,

0 ≤ uj,t ≤ 1.

(24.2)

To be clear, we are not claiming (24.1) and (24.2) are equivalent optimal
control problems. They will no doubt produce different results. However, by
only removing the square, we have not drastically altered the dynamics of the
problem. This new problem should have solutions of the same flavor as the
original.

Before beginning, we discuss the slight changes in the code, as compared
to previous forward-backward sweep routines. The first thing to note, is that
while our vectors have been indexed from 0 to T , MATLAB indexes vectors
starting with 1. Therefore, the states and adjoints, which should run from 0
to T , actually start at 1 and end with T + 1. Similarly, the controls should
end with T −1, but end with T . This is only a superficial difference, occurring
entirely in the code. In fact, the t variable, as defined, gives the correct index
values. Namely, t(1) = 0, t(2) = 1, . . . , t(T + 1) = T . This t will be used to
graph the solutions correctly indexed.

The other minor changes involve the differing vector lengths. Before, we
updated the characterization of the control all at once, via vectors. Here, we
must be more careful, as the controls uj have one less term than the states and
adjoints. Therefore, it is done term-by-term in a for loop. Then, the standard
convex combination is used. Second, instead of outputting the solutions as
the dummy matrix y, we must use two matrices (y and z). The y variable
contains the states (running from 0 to T ), and the controls (running from 0
to T − 1) are given by z.

Everything else in the code should be familiar. As we noted in the previous
chapter, instead of a Runge-Kutta 4 routine, the difference equations are
solved exactly as stated.

In MATLAB run the program lab14. To begin, try the values

B = 1 k = 1 T = 10 , (24.3)

and do not vary any parameters. The optimal solutions are displayed in a
different manner than normal. All five state variables are plotted together on
the left. For emphasis, the state variable representing the main foci, r5, is
plotted in red, with the values denoted by circles. The remaining four states
are in blue, marked by x’s. Also, while the x’s and circles denote the values
of the states, dotted lines connect the points. This is done in order to make
the plots easier to see and read. The five controls are plotted together on the
right, with the same color and marker scheme.

This first simulation illustrates one of the major differences between con-
tinuous time and discrete time models. Here, choosing the control to be 1
at any time immediately forces the corresponding radius to 0. The optimal
strategy depicted is to use no control for the first 8 years, then maximum
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control in the last year, for all radii. This causes the radii to grow naturally
for the majority of the time interval, only to be completely eradicated in the
last year. We note, with these parameters, any controls with value 1 for one
year, and 0 at all others, would produce the same final state values, and are
therefore optimal as well.

Enter (24.3), varying with k = 0.5. The radii for the first system (with
k = 1) are depicted as before. The main focus for the second system (with
k = 0.5) is plotted in purple, with circle markers. The remaining four foci
are plotted in green with x markers. The controls are similar. The control
strategy is the same for both simulations. Namely, use no control until the last
year, then use maximum control. The foci grow naturally until the last year,
when they are pushed to 0. The only difference occurs during the natural
growth phase, where the result of the different k values is clear.

This control strategy, that of maximum control at the end, is optimal in
these cases primarily because of the weight parameter B = 1. Minimizing the
final radii values and the total control are of equal importance, which allows
this harsh control strategy. Suppose we increase the importance of keeping
the control low. Enter (24.3), varying with B = 2. The optimal solutions are
identical. We still are neglecting the control too much. Vary with B = 10.
This causes a change in strategy. The second system employs controls with
less total square sum. As such, the radii do not decrease all the way to 0.
Note, all controls in the second simulation steadily increase, and the (second)
main focus steadily decreases. However, the other four foci increase at first,
and actually end at values higher than their initial positions. We also point
out that while the five foci begin at varying values, they end at exactly the
same value (0) in the first simulation, and very near the same value in the
second.

Now examine

B = 5 k = 1 T = 10 . (24.4)

Here, the optimal strategy is a mixed one. For the four minor foci, we should
use a steadily increasing control, as we just saw. On the other hand, the
main focus should be eradicated via a max control at the end of the time
interval. With this medium B value, it is still advantageous to eliminate the
main focus, which begins much larger than the others, but to only maintain
the others. With

B = 4.19 k = 1 T = 10 (24.5)

the main focus and the largest minor focus are eliminated, while the others
are maintained. Try

B = 4.1 k = 1 T = 10 (24.6)
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FIGURE 24.1: Optimal radius value r∗5 with B = 10, k = 1, and T = 10
plotted in solid circles, together with r5 with no control applied, in open
circles.

and

B = 4 k = 1 T = 10 (24.7)

to see the other possibilities.
Return to the variable k. Enter

B = 10 k = 1 T = 10 (24.8)

varying with k = 0.5. With less natural growth, the controls in the second
simulations need not increase so dramatically at the end, but instead can be
more balanced. We see the controls in the second system begin at higher
values than their respective counterparts in the first system, but end at lower
values. Also, the foci in the second system end with lower radii values. Now
vary (24.8) with k = 3. The natural growth rate here is too high, and the less
aggressive maintenance strategy is no longer optimal. Even with B = 10, the
second system has returned to using eradication during the last year.

Finally, we examine the role of T . Enter (24.8), varying with T = 20. The
new control regimes are relatively similar to their counterparts, only stretched
out over 20 years instead of 10. The resulting radii are quite different for much
of the interval. Note, for example, the second main focus experiences a period
of increase, whereas the first only decreases. However, all radii end at nearly
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the same value. In this case, the optimal strategy was to alter the controls in
order to achieve the same result, more or less.

Exercise 24.1 Write an adapted forward-backward sweep code for the
original discrete problem

min
u

5∑

j=1

[
r2
j,T + B

T−1∑
t=0

u2
j,t

]

subject to rj,t+1 =
(

rj,t +
rj,tk

ε + rj,t

)
(1− uj,t), rj,0 = ρj ,

0 ≤ uj,t ≤ 1,

with the same values for ρj and ε. You should also be able to write a code
where ρj and ε are inputs. Readers with more MATLAB experience can write
a code where n is an input.





Chapter 25

Partial Differential Equation Models

There are many population models that involve a spatial component [27, 45,
155]. For example, recall the bioreactor model used in Example 12.4 and
Lab 12. There, we assumed contaminant and bacteria levels were spatially
uniform, but this may not always be a valid assumption. Different locations in
the bioreactor may promote or discourage bacterial growth. In this case, we
would add a spatial variable (or variables). The second volume of Murray [150]
contains many different examples of models with spatial features. Of course,
depending on the scale of the spatial resolution, the introduction of space
variables can alter our models from ODEs (with just time as the underlying
variable) to partial differential equations (PDEs). If the spatial structure
gives a metapopulation model of ODEs [79], then the systems approach to
optimal control already presented is appropriate. We now turn our attention
to consideration of optimal control of PDEs.

J.-L. Lions laid the foundation of the basic ideas of optimal control of partial
differential equations in the 1970’s [129]. There is no complete generalization
of Pontryagin’s Maximum Principle to partial differential equations, but the
book by Li and Yong [128] deals with corresponding “maximum principle”
type results. There are also some counterexamples for certain infinite dimen-
sional systems (systems of PDEs are considered infinite dimensional systems,
but ODEs are finite dimensional). The examples we treat here have maxi-
mum principle type results. We also call the reader’s attention to the books
by Barbu, Lasiecka and Triggiani, Fattorini, and Mordukhovich for a variety
of results on optimal control of PDEs [5, 10, 11, 57, 110, 111, 112, 147].

Choosing the underlying solution space for the states is a crucial feature for
optimal control of PDEs. Classical solutions (solutions with all the derivatives
occurring in the PDE being continuous) will not exist for most nonlinear PDE
problems. Deciding in what “weak” sense we are solving the PDEs is essential.
We refer to Evans [56] and Friedman [66] for the rigorous definitions of Sobolev
spaces and weak derivatives and give only an informal treatment. This chapter
will require more background in analysis and PDEs than the other chapters.

Let Ω be an open, connected subset of Rn. From now on, x (and occasion-
ally y) will be the space variable associated to Ω. One can think of a weak
derivative as the function which makes the appropriate integration by parts
work: for u and v, which are integrable (in the Lebesgue sense) on Ω, we say
v is the weak xi-derivative of u if
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∫

Ω

uφxi
dx = −

∫

Ω

v φ dx

for all φ in C∞c (Ω), which is the set of all infinitely differentiable functions on
Ω with compact support.

For most parabolic PDE control problems, such as those involving diffu-
sion, the appropriate solution space is L2([0, T ]; H1

0 (Ω)). Roughly speaking,
this space consists of all functions square-integrable in time with two weak
derivatives in space, which are also square-integrable. The control set is fre-
quently the Lebesgue integrable functions, which have specified upper and
lower bounds.

The general idea of optimal control of PDEs starts with a PDE with state
solution w and control u. Take A to be a partial differential operator with
appropriate initial conditions (IC) and boundary conditions (BC),

Aw = f(w, u) in Ω× [0, T ], along with BC, IC,

assuming the underlying variables are x for space and t for time. We are
treating problems with space and time variables, but one could treat steady
state problems with only spatial variables [26, 122, 125].

Again, the objective functional represents the goal of the problem; here we
write our functional in an integral form. We seek to find the optimal control
u∗ in an appropriate control set such that

J(u∗) = inf
u

J(u),

with objective functional

J(u) =
∫ T

0

∫

Ω

g(x, t, w(x, t), u(x, t)) dx dt.

After specifying a control set and a solution space for the states, one can
usually obtain the existence of a state solution given a control. Namely,
for a given control u, there exists a state solution w = w(u), showing the
dependence of w on u.

25.1 Existence of an Optimal Control

Proving the existence of an optimal control in the PDE case requires more
work than in the ODE case. A priori estimates of the norms of the states
in the solution space are needed to justify convergence. If the controls are
bounded above and below, one can usually obtain corresponding bounds in
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the solution space for the states. This boundedness gives the existence of a
minimizing sequence un where

lim
n→∞

J(un) = inf
u

J(u).

In the appropriate weak sense, this usually gives

un ⇀ u∗ in L2(Ω× [0, T ]),
wn = w(un) ⇀ w∗ in the solution space,

for some u∗ and w∗. One must show w∗ = w(u∗), which means that the
solution depends continuously on the controls. We must also show that u∗ is
an optimal control, i.e.,

J(u∗) = inf
u

J(u).

To derive the necessary conditions like we did in Chapter 1, we need to
differentiate the objective functional with respect to the control, namely, dif-
ferentiate the map

u 7−→ J(u).

Note that w = w(u) usually contributes to J(u), so we must also differentiate
the map

u 7−→ w(u).

In the usual well-posed PDE problem, continuous dependence of the solution
on the control would imply continuity of this map, but differentiable depen-
dence is needed here.

25.2 Sensitivities and Necessary Conditions

The map u 7→ w(u) is weakly differentiable in the directional derivative
sense (Gateaux):

lim
ε→0

w(u + εl)− w(u)
ε

= ψ.

The function ψ is called the sensitivity of the state with respect to the control.
It is analogous to the

∂xε

∂ε

∣∣∣∣
ε=0
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term from the proof of the necessary conditions in Chapter 1. In the ODE
case, the adjoint is chosen to make the sensitivity terms drop out, but here
we need the sensitivity PDE to find the adjoint PDE. A priori estimates of
the difference quotients in the norm of the solution space give the existence
of the limit function ψ and that it solves a PDE, which is linearized version
of the state PDE

Lψ = F (w, l, u) with appropriate BC, IC.

Note the linear operator L comes from linearizing the state PDE operator A.
Usually, ψ will have zero BC and IC since w(u + εl) and w(u) have the same
BC and IC. Differentiating the objective functional J(u) with respect to u at
u∗,

0 ≤ lim
ε→0+

J(u∗ + εl)− J(u∗)
ε

.

We use the adjoint problem λ and ψ to simplify and obtain the explicit char-
acterization

u∗ = G(w∗, λ)

of the optimal control. The use of λ and ψ to simplify the difference quotient
of J and to derive the optimal control characterization will be clarified in the
following examples. The operator in the adjoint equation is the adjoint oper-
ator (in the functional analysis sense [38]) of the operator acting on ψ in the
sensitivity equation. The boundary conditions from the adjoint system come
from the boundary conditions for the sensitivity equations and properties of
the adjoint operator. Formally, the operator L and the adjoint operator L∗

are related by

〈λ, Lψ〉 = 〈L∗λ, ψ〉
where 〈·, ·〉 is the L2-inner product. A key tool is integration by parts in
multidimensions to throw the derivatives on ψ from the operator L onto the
derivatives of λ in the operator L∗.

In a time dependent problem, the adjoint problem usually has final time
conditions, like the transversality conditions that we have treated so far. The
nonhomogeneous term of the adjoint equation comes from differentiating the
integrand of the objective functional with respect to the state. Informally,

L∗λ =
∂(integrand of J)

∂w
,

where L is the operator from the ψ PDE. We will have a characterization of
an optimal control in terms of the solutions of the state and adjoint equa-
tions. This system, the state and adjoint equations together with the control
characterization, is called the optimality system.
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25.3 Uniqueness of the Optimal Control

Uniqueness of solutions to the optimality system,

Aw∗ = f(w∗, G(w∗, λ)),

L∗λ =
∂(integrand of J)

∂u
,

BC, state IC, with adjoint final time conditions,

will imply uniqueness of the optimal control, since an optimal control and cor-
responding state and adjoint satisfy this system. In the usual time dependent
case, like a diffusion equation, the adjoint equation has final time conditions
while the state equation has an initial time condition. This means that the
state equation and the adjoint equation have opposite time orientations

w = w0 for t = 0,

λ = 0 for t = T.

Typically, one can only prove uniqueness for small T [59, 117]. Numerical
algorithms are usually able to solve the optimality systems for larger times.
Note that an alternative approach to prove uniqueness of the optimal control
is to verify directly the strict convexity of the map u → J(u); this involves cal-
culation of the second derivative of the control-to-state map u → w(u) [118].

25.4 Numerical Solutions

In this chapter, we will only discuss briefly one numerical method, which is
the PDE analogue of the methods used here on ODEs. A “forward-backward
sweep” iteration method can be used to solve such optimality systems. Each
sweep must be done by some type of PDE solver, like finite difference or finite
elements. We repeat the iterations until convergence of successive controls and
state solutions are close together. If there is a problem with uniqueness of
the solutions of the optimality system, one might choose to also calculate the
change in the objective functional. See books by Ahmed, Teo, Neittaanamaki,
Tiba, and Troelsch [2, 152, 176] for numerical methods for optimal control
problems in PDEs.

In the following examples, we will concentrate on doing the calculations
of the sensitivity equation, adjoint equation, and the characterization of the
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optimal control. We do not treat the details of proving existence and unique-
ness of the optimal control here. We will also assume the appropriate differ-
ence quotients converge to the sensitivity function, which would need to be
proven in a fully justified solution. We want to emphasize the importance
of doing the analysis estimates, but we feel that the background necessary
is beyond the scope of this book [56]. We refer the reader to the following
references [59, 117, 119] to see examples with such details. All of the following
examples are parabolic PDEs because of their relevance to biological situa-
tion. One can treat elliptic PDEs for the steady state situations, but there
are no initial or final time conditions involved [122]. Further, just proving
that solutions of the state equation (or system) in the elliptic case exist can
be difficult. See the chapter on control of PDEs in Knowles [106].

25.5 Harvesting Example

Consider the problem of harvesting in a diffusing population

wt(x, t)− α∆w(x, t) = w(x, t)(1− w(x, t))− u(x, t)w(x, t) in Ω× (0, T ),
w(x, t) = 0 on ∂Ω× (0, T ) (side boundary),
w(x, 0) = w0(x) ≥ 0 on Ω, t = 0 (bottom boundary),

where ∂Ω is the boundary of Ω. The symbol ∆ represents the Laplacian. In
two dimensions, ∆w = wx1x1 + wx2x2 , where x = (x1, x2). The state w(x, t)
is the density of the population and the harvesting control is u(x, t). Note the
state equation has logistic growth w(1−w) and constant diffusion coefficient
α. The “profit” objective functional is

J(u) =
∫ T

0

∫

Ω

e−δt(pu(x, t)w(x, t)−Bu(x, t)2) dx dt,

which is a discounted “revenue less cost” stream. With p representing the
price of harvesting population, puw represents the revenue from the harvested
amount uw. We use a quadratic cost for the harvesting effort with a weight
coefficient B. At first, we consider the case of a positive constant B. The
coefficient e−δt is a discount term with 0 ≤ δ < 1. For convenience, we now
take the price to be p = 1.

A main point of interest in a fishery application is where the “marine re-
serves” should be placed, that is, the regions of no harvesting, u∗(x, t) = 0.
We seek to find u∗ such that

J(u∗) = max
u

J(u),
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where the maximization is over all measurable controls with 0 ≤ u(x, t) ≤
M < 1 a.e.. Under this set-up, we note that any state solution will satisfy

w(x, t) ≥ 0 on Ω× (0, T ),

by the Maximum Principle for parabolic equations [56].
First, we differentiate the u → w map. Given a control u, consider another

control uε = u + εl, where l is a variation function and ε > 0. Let w = w(u)
and wε = w(uε). The state PDEs corresponding to controls, u and uε, are

wt − α∆w = w(1− w)− uw

wε
t − α∆wε = wε(1− wε)− uεwε.

We form the difference quotient

wε − w

ε
,

and find the corresponding PDE satified by the difference quotients

(
wε − w

ε

)

t

−α∆
(

wε − w

ε

)
=

wε − w

ε
−

(
(wε)2 − w2

ε

)
−u

(
wε − w

ε

)
−lwε.

Assume that as ε → 0, wε → w and

wε − w

ε
→ ψ.

As for the nonlinear term, note that

(wε)2 − w2

ε
= (wε + w)

wε − w

ε
→ 2wψ.

The corresponding derivative quotients will converge
(

wε − w

ε

)

t

−∆
(

wε − w

ε

)
→ ψt −∆ψ.

The resulting PDE for ψ is

ψt −∆ψ = ψ − 2wψ − uψ − lw on Ω× (0, T ),
ψ = 0 on ∂Ω× (0, T ),
ψ = 0 on {t = 0}.

Given an optimal control u∗ and the corresponding state w∗, we rewrite the
sensitivity PDE as

Lψ = −lw∗, where Lψ = ψt −∆ψ − ψ + 2w∗ψ + u∗ψ.



218 Optimal Control Applied to Biological Models

Now we discuss the process of finding the adjoint equation. The basic idea of
the L∗ operator in the adjoint PDE is the following

∫ T

0

∫

Ω

e−δtλLψ dx dt =
∫ T

0

∫

Ω

e−δtψ(L∗λ + δλ) dx dt.

To see the specific terms of L∗, use integration by parts to see

∫ T

0

∫

Ω

e−δtλψt dx dt =
∫ T

0

∫

Ω

−e−δt(−δλ + λt)ψ dx dt.

The boundary terms on Ω × {T} and Ω × {0} vanish due to λ and ψ being
zero on the top and the bottom of our domain, respectively. The term with δ
comes from the discount term in the objective functional. Next notice

∫ T

0

∫

Ω

e−δtλψxxdx dt =
∫ T

0

∫

Ω

(−e−δtλx)ψx dx dt =
∫ T

0

∫

Ω

e−δtλxxψ dx dt

since λ and ψ are zero on ∂Ω× (0, T ). The linear terms of L go directly in L∗

as the same types of terms. Our operator L∗ and the adjoint PDE are

L∗λ = −λt −∆λ− λ+2w∗λ + u∗λ

adjoint PDE L∗λ + δλ = u∗ on Ω× (0, T )
λ = 0 on ∂Ω× (0, T )
λ = 0 on Ω× {t = T}.

The nonhomogeneous term u in the adjoint PDE comes from

∂(integrand of J)
∂(state)

=
∂(uw)

∂w
= u

where we use the integrand of J without the discount factor e−δt, which came
into play in the integration by parts above.

Next, we use the sensitivity and adjoint functions in the differentiation of
the map u → J(u). At the optimal control u∗, the quotient is non-positive
since J(u∗) is the maximum value, i.e.,

0 ≥ lim
ε→0+

J(u∗ + εl)− J(u∗)
ε

.

Rewriting the adjoint equation as L∗λ + δλ = u∗, this limit simplifies to
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0 ≥ lim
ε→0+

∫ T

0

∫

Ω

e−δt 1
ε
((u∗ + εl)wε − u∗w∗ − (B(u∗ + εl)2 −Bu∗2)) dx dt

=
∫ T

0

∫

Ω

e−δt[u∗ψ + lw∗ − 2Bu∗l] dx dt

=
∫ T

0

∫

Ω

e−δt(ψ(L∗λ + δλ) + lw∗ − 2Bu∗l) dx dt

=
∫ T

0

∫

Ω

e−δt(λLψ + lw∗ − 2Bu∗l) dx dt

=
∫ T

0

∫

Ω

e−δt(−λlw∗ + lw∗ − 2Bu∗l) dx dt

=
∫ T

0

∫

Ω

e−δtl(w∗(1− λ)− 2Bu∗) dx dt,

where we used that the RHS of the ψ PDE is −lw∗.
On the set {(x, t) : 0 < u∗(x, t) < M}, the variation l can have any sign,

because the optimal control can be modified a little up or down and still stay
inside the bounds. Thus on this set, in the case that B 6= 0, the rest of the
integrand must be zero, so that

u∗ =
w∗(1− λ)

2B
.

By taking the upper and lower bounds into account, we obtain

u∗ = min
(

M, max
(

w∗(1− λ)
2B

, 0
))

.

This completes the analysis in the case of positive balancing constant B.
However, the B = 0 case is also important. In this case, we are maximizing

profit (yield) only. When B = 0, the problem is linear in the control u. The
argument above goes through with B = 0 until the end, before we solve for
u∗. On the set {(x, t) : 0 < u∗(x, t) < M}, the variation l can have any sign,
which corresponds to λ = 1. This case is called singular because the integrand
of the objective functional drops out on this set. Suppose λ = 1 on some set of
positive measure. By looking at the adjoint PDE, and noting the derivatives
of λ are 0, we can solve for the state

w∗ =
1− δ

2
.

Now use this constant for w in the state equation and solve for the optimal
control

u∗ =
1 + δ

2
.
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By an argument similar to the above one, we get

u∗(x, t) =





0 if λ > 1,
1+δ
2 if λ = 1,

M if λ < 1.

We illustrate one numerical example of this bang-bang case in Figure 25.1,
taken from the work of Joshi et. al. [92]. The singular case does not occur
in this numerical example. A forward-backward sweep iteration method was
used to solve this problem. Each sweep was done by a finite difference scheme.
In this example, there is a region in the spatial domain with no harvest, which
would be considered a marine reserve, as in Example 17.5.
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FIGURE 25.1: Proportion to be harvested, u∗, with M = 0.9.

25.6 Beaver Example

We now consider an example about harvesting a beaver population that
has caused damage through flooding and destroying trees. This model comes
from a paper by Lenhart and Bhat [117]; see that paper for the estimates to
justify the needed convergences. In this model, we are only considering the
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nuisance side of the beavers, not the benefit side. The initial distribution of
beavers and some estimates of the parameters came from data from the New
York State Department of Environmental Conservation.

The population density of the beaver species is given by the model

zt(x, y, t)− α∆z(x, y, t) = z(x, y, t)(a− bz(x, y, t)− u(x, y, t)) in Ω× (0, T )
z(x, y, 0) = z0(x, y) in Ω
z(x, y, t) = 0 on ∂Ω× (0, T )

where α is the constant diffusion coefficient, and a and b are spatially depen-
dent growth parameters. Our control is u, the proportion of population z to be
trapped per unit time. The zero boundary conditions imply the unsuitability
of the surrounding habitat.

Given the control set

U = {u ∈ L2(Ω× (0, T )) : 0 ≤ u(x, y, t) ≤ M}
we seek to minimize the cost functional

J(u) =
∫ T

0

∫

Ω

e−rt

(
1
2
γz(x, y, t)2 + cu(x, y, t)2z(x, y, t)

)
dx dy dt.

In this objective functional, 1
2γz2 represents the density dependent damage

that beavers cause. The cu2z term represents the cost of trapping, which is
composed of two factors,

(cu unit cost )(uz amount trapped).

The term e−rt is included for discounted value of the accrued future costs.
We find the optimal control p∗ that minimizes the objective functional

J(u∗) = min
u∈U

J(u).

The model is very similar to the previous example, so we omit the deriva-
tion of the sensitivity equation and just give it below. For a variation l, the
resulting PDE for ψ is

ψt − α∆ψ = aψ − 2bz∗ψ − u∗ψ − lz on Ω× (0, T )
ψ = 0 on ∂Ω× (0, T )
ψ = 0 on {t = 0}.

The form of the objective functional is slightly different, which affects the
adjoint equation. Given an optimal control u∗ and corresponding state z∗,
the adjoint problem is given by



222 Optimal Control Applied to Biological Models

−λt − α∆λ = aλ− 2bz∗λ− rλ− u∗λ + γz∗ + c(u∗)2 in Ω
λ = 0 on Ω× {t = T}
λ = 0 on ∂Ω× (0, T ).

The nonhomogeneous term γz∗+c(u∗)2 in the adjoint equation is from differ-
entiating the integrand 1

2γz2 + cu2z of the objective functional (without the
discount factor) with respect to the state z. Note again the r term comes from
the discount factor. The operator in the adjoint PDE is the adjoint operator
of

Lψ = ψt − α∆ψ − aψ + 2bz∗ψ + u∗ψ.

At the optimal control u∗, we again differentiate J(u) with respect to u.
The quotient is nonnegative since J(u∗) is the minimum value

0 ≤ lim
ε→0+

J(u∗ + εl)− J(u∗)
ε

.

We simplify this limit

0 ≤ lim
ε→0+

∫ T

0

∫

Ω

e−rt[
1
2ε

γ
(
zε2 − z∗2) + c((u∗ + εl)2zε − u∗2z∗)

)
] dx dt

=
∫ T

0

∫

Ω

e−rt[γz∗ψ + cu∗2ψ + 2cu∗z∗l] dx dt

=
∫ T

0

∫

Ω

e−δt(ψL∗λ + rψλ + 2cu∗z∗l) dx dt

=
∫ T

0

∫

Ω

e−δt(λLψ + 2cu∗z∗l) dx dt

=
∫ T

0

∫

Ω

e−δt(−λlz∗ + 2cu∗z∗l) dx dt

=
∫ T

0

∫

Ω

e−δtlz∗(−λ + 2cu∗) dx dt.

As before, we used

(zε)2 − z2

2ε
→ zψ.

Considering the possible variations l, we obtain u∗ = λ
2c on the interior of the

control set (away from the bounds), since z∗ is positive inside the domain.
Taking the bounds into account, we conclude

u∗ = min
(

max
(

0,
λ

2c

)
, M

)
.
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A forward-backward sweep iteration method with a finite difference scheme
was also used to solve this problem. Figures 25.2 and 25.3 show the numerical
results of a particular case of the beaver harvesting problem with a ten year
time horizon.
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FIGURE 25.2: Proportion to be harvested: (a) at initial time, (b) at t = 5
years.

25.7 Predator-Prey Example

Next, we treat an example with a system of PDEs to show how to han-
dle the adjoint system. We consider optimal control of a parabolic system
with Neumann boundary conditions. Solutions of the state system represent
population densities of the prey and the predator species. The system has
Lotka-Volterra type growth terms and local interaction terms between the
populations. This example is a somewhat simplified version of the results
in [59], where one can find the analysis justification for the results given here.
The two controls represent harvesting (actually rates of harvest). The spatial
domain is bounded set in Rn.
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FIGURE 25.3: Population density of beavers: (a) at initial time, (b) at
t = 5 years.

wt − b1∆w = (a1 − d1w)w − c1wv − u1w and
vt − b2∆v = (a2 − d2v)v + c2wv − u2v in Q = Ω× (0, T ),

with initial and boundary conditions

w(x, 0) = w0(x), v(x, 0) = v0(x) for x ∈ Ω,

∂w

∂ν
(x, t) = 0,

∂v

∂ν
(x, t) = 0 on ∂Ω× (0, T ).

Here, the terms and coefficients are

u1(x, t), u2(x, t) = controls

w(x, t) = prey population (1st state variable)

v(x, t) = predator population (2nd state variable)
b1(x, t), b2(x, t) = diffusion coefficients, strictly positive

a1(x, t), a2(x, t), d1(x, t), d2(x, t) = standard logistic growth terms
c1(x, t), c2(x, t) = interaction coefficients

ν(x) = outward unit normal vector at x in ∂Ω.
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Our class of admissible controls is

U =
{

(u1, u2) ∈ L2(Ω× (0, T )) : 0 ≤ ui ≤ Γi a.e. for i = 1, 2
}

.

We want to maximize the objective functional J(u1, u2) defined by

∫

Q

[
K1u1(x, t)w(x, t) + K2u2(x, t)v(x, t)−M1u

2
1(x, t)−M2u

2
2(x, t)

]
dx dt,

where K1u1w, K2u2v represent the revenue of harvesting, and M1u
2
1, M2u

2
2

denote the cost of the controls.
Next, we calculate the sensitivities. The mapping

(u1, u2) ∈ U → (w, v)

is differentiable, i.e.,

w(u + εk)− w(u)
ε

→ ψ1 and
v(u + εk)− v(u)

ε
→ ψ2

as ε → 0 for any u = (u1, u2) ∈ U and bounded k = (k1, k2) such that
(u + εk) ∈ U for ε small. As we did in the previous two examples, one can
show that ψ1, ψ2 satisfy

(ψ1)t − b1∆ψ1 = a1ψ1 − 2d1ψ1w − c1(wψ2 + vψ1)− u1ψ1 − k1w and
(ψ2)t − b2∆ψ2 = a2ψ2 − 2d2ψ2v + c2(wψ2 + vψ1)− u2ψ2 − k2v in Q,

ψ1(x, 0) = 0 = ψ2(x, 0) for x ∈ Ω,

∂ψ1

∂ν
= 0 =

∂ψ2

∂ν
on ∂Ω× (0, T ).

To derive the optimality system and to characterize the optimal control, we
need adjoint variables and adjoints of the operators associated with the ψ1, ψ2

system. We write the ψ1, ψ2 PDE system as

L
(

ψ1

ψ2

)
=

(−h1w
−h2v

)

where

L
(

ψ1

ψ2

)
=

(L1ψ1

L2ψ2

)
+ M

(
ψ1

ψ2

)
,

(L1ψ1

L2ψ2

)
=

(
(ψ1)t − b1∆ψ1

(ψ2)t − b2∆ψ2

)
,

and
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M =
(−a1 + 2wd1 + c1v + u1 c1w

−c1v −a2 + 2d2v − c2w + u2

)
.

The adjoint PDE system is

L∗
(

λ1

λ2

)
=

(
K1u1

K2u2

)
,

where K1, K2 are the constants from the objective functional. The adjoint
operator is

L∗
(

λ1

λ2

)
=

(L∗1λ1

L∗2λ2

)
+ MT

(
λ1

λ2

)
,

where MT denotes the transpose of the matrix. The derivative terms of the
adjoint system are the same as in our other two examples. Thus the adjoint
PDE equations are

(−(λ1)t − b1∆λ1

−(λ2)t − b2∆λ2

)
+ Mτ

(
λ1

λ2

)
=

(
K1u1

K2u2

)
.

For the adjoint system, we have the appropriate boundary conditions, namely,
zero Neumann conditions and zero final-time conditions. The adjoint system
is calculated at the optimal controls u∗ = (u∗1, u

∗
2) and corresponding states

w∗, v∗. The transversality conditions are

λ1(x, T ) = 0 and λ2(x, T ) = 0 for x ∈ Ω.

We compute the directional derivative of the functional J(u) with respect
to u in the direction k at u∗. Since J(u∗) is the minimum value, we have
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0 ≤ lim
ε→0+

J(u∗ + εk)− J(u∗)
ε

= lim
ε→0+

∫

W

[
K1u1(wε − w∗) + K2u2(vε − v∗) + K1k1w

ε + K2k2v
ε

ε

]
dx dt

− 1
ε

∫

Q

[
M1((u∗1 + εk1)2 − (u∗1)

2) + M2((u∗2 + εk2)2 − (u∗2)
2)

]
dxdt

=
∫

Q

(ψ1, ψ2)
(

K1u1

K2u2

)
dx dt

+
∫

Q

k1(K1w
∗ − 2M1u

∗
1) + k2(K2v

∗ − 2M2u
∗
2) dx dt

=
∫

Q

[
b1∇λ1 · ∇ψ1 + b2∇λ2 · ∇ψ2 + (ψ1, ψ2)Mτ

(
λ1

λ2

)]
dx dt

−
∫

Q

(λ1)tψ1 + (λ2)tψ2 dx dt

+
∫

Q

k1(K1w
∗ − 2M1u

∗
1) + k2(K2v

∗ − 2M2u
∗
2) dxdt

=
∫

Q

(λ1, λ2)
(−k1w

∗

−k2v
∗

)
dx dt

+
∫

Q

k1(K1w
∗ − 2M1u

∗
1) + k2(K2v

∗ − 2M2u
∗
2) dxdt

=
∫

Q

(−k1λ1w
∗ − k2λ2v

∗) dx dt

+
∫

Q

[k1(K1w
∗ − 2M1u

∗
1) + k2(K2v

∗ − 2M2u
∗
2)] dxdt

=
∫

Q

k1 (K1w
∗ − λ1w

∗ − 2M1u
∗) + k2 (K2v

∗ − λ2v
∗ − 2M2u

∗
2) dx dt.

From the above calculation, we obtain the characterization of the optimal
control pair:

u∗1(x) = min
(

Γ1, max
(

1
2M1

(K1 − λ1)w∗, 0
))

,

u∗2(x) = min
(

Γ2, max
(

1
2M2

(K2 − λ2)v∗, 0
))

.



228 Optimal Control Applied to Biological Models

25.8 Identification Example

This example illustrates that in some cases, optimal control theory can be
applied to an identification problem. We want to identify the “unknown”
coefficient of the interaction term in a predator-prey system with a Neumann
boundary condition in a two-dimensional bounded spatial domain. Let w rep-
resent the population concentration of prey and v the predator concentration.
The system has local interaction terms representing a predator-prey situa-
tion, and the prey equation has Lotka-Voltera type growth term. Our aim is
to identify the interaction coefficient by optimal control techniques. We refer
the reader to the book by Banks and Kunisch [8] for more background and
other techniques for estimation problems.

The state system is

wt(x, t)− b1∆w(x, t) =
(
a1(x, t)− d(x, t)w(x, t)

)
w(x, t)− u(x)w(x, t)v(x, t),

vt(x, t)− b2∆v(x, t) = −a2(x, t)v(x, t) + u(x)w(x, t)v(x, t),

in Q = Ω× (0, T ), with initial and boundary conditions

w(x, 0) = w0(x), v(x, 0) = v0(x) for x ∈ Ω,

∂w

∂ν
(x, t) = 0,

∂v

∂ν
(x, t) = 0 on ∂Ω× (0, T ).

Here, the terms and coefficients are

u(x) = coefficient of the interaction term to be identified
w(x, t) = prey population (first state variable)
v(x, t) = predator population (second state variable)
b1, b2 = diffusion coefficients

a1(x, t), a2(x, t), d(x, t) = standard logistic growth terms
ν(x) = outward unit normal vector at x in ∂Ω.

Our class of admissible interaction coefficients (controls) is

U = {u ∈ L2(Ω) : 0 ≤ u ≤ M a.e. in Ω}.
We want to minimize the objective functional

J(u) =
∫

W

1
2

[(
w(x, t)−z1(x, t)

)2+
(
v(x, t)−z2(x, t)

)2
]
dx dt +

β

2

∫

Ω

u(x)2 dx,
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where W ⊂ Q, the area of W is positive, and z1, z2 are observations of the
prey and predator populations. Namely, given partial (and perhaps noisy)
observations z1, z2 of the true solution w, v in a subdomain W of Q, we seek
to “identify” the u(x) which best matches the model to the data. Note the
control u is only a function of x, while our PDE system has space and time
variables.

The second term of the objective functional is artificial; we have added it to
prevent the problem from being linear in the control. In practice, we choose
β very small, so the emphasis of the problem lies in minimizing the closeness
of the states to the observed data. This method of solving this identification
problem is based on Tikhonov’s regularization. Our eventual estimate for u
will depend on the choice of β.

The mapping u ∈ U → (w, v) is differentiable, i.e.,

w(u + εk)− w(u)
ε

→ ψ1 and
v(u + εk)− v(u)

ε
→ ψ2

as ε → 0 for any u ∈ U and bounded k such that (u + εk) ∈ U for ε small. As
we did in the previous two examples, one can show that ψ1, ψ2 satisfy

(ψ1)t − b1∆ψ1 = a1ψ1 − 2dψ1w − u(wψ2 + vψ1)− kwv and
(ψ2)t − b2∆ψ2 = −a2ψ2 + u(wψ2 + vψ1) + kwv in Q,

ψ1(x, 0) = 0 = ψ2(x, 0) for x ∈ Ω,

∂ψ1

∂ν
= 0 =

∂ψ2

∂ν
on ∂Ω× (0, T ).

To derive the optimality system and to characterize the optimal control, we
need adjoint variables and adjoint operators associated with the ψ1, ψ2 system.
We write the ψ1, ψ2 PDE system as

L
(

ψ1

ψ2

)
=

(−kwv
kwv

)

where

L
(

ψ1

ψ2

)
=

(L1ψ1

L2ψ2

)
+ M

(
ψ1

ψ2

)
,

(L1ψ1

L2ψ2

)
=

(
(ψ1)t − b1∆ψ1

(ψ2)t − b2∆ψ2

)
, and M =

(−a1 + 2wd + uv uw
−uv a2 − uw

)
.

We define the adjoint PDE system as

L∗
(

λ1

λ2

)
=

(
w − z1

v − z2

)
χ

W
,
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where χW is the characteristic function of the set W ,

L∗
(

λ1

λ2

)
=

(L∗1λ1

L∗2λ2

)
+ MT

(
λ1

λ2

)

and

(L∗1λ1

L∗2λ2

)
=

(−(λ1)t − b1∆λ1

−(λ2)t − b2∆λ2

)
.

The components of the RHS of this system are the derivatives of the first
integrand in with objective functional with respect to each state. We rewrite
the objective functional as

1
2

∫

Q

[
(w(u)− z1)2 + (v(u)− z2)2

]
χ

W
dx dt +

β

2

∫

Ω

u(x)2 dx.

For the adjoint system, we have the appropriate boundary conditions, zero
Neumann conditions and zero final-time conditions. For a fixed β, the adjoint
system is calculated at the optimal control u∗ and corresponding states w∗,
v∗

L∗1λ1 = (w∗ − z1)χW
+ a1λ1 − 2dw∗λ1 − u∗(v∗λ1 − v∗λ2) in Q,

∂λ1

∂ν
= 0 on ∂Ω× (0, T ),

and

L∗1λ2 = (v∗ − z2)χW
− a2λ2 + u∗(w∗λ2 − w∗λ1) in Q,

∂λ2

∂ν
= 0 on ∂Ω× (0, T ).

The transversality conditions are

λ1(x, T ) = 0 and λ2(x, T ) = 0 for x ∈ Ω.

We compute the directional derivative of the functional J(u) with respect
to u in the direction k at u∗. Since J(u∗) is the minimum value, we have
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0 ≤ lim
ε→0+

J(u∗ + εk)− J(u∗)
ε

=
1
2

lim
ε→0+

∫

W

[
(wε − z1)2 − (w∗ − z1)2

ε
+

(vε − z2)2 − (v∗ − z2)2

ε

]
dx dt

+
β

2 ε

∫

Ω

[
(u∗ + εk)2 − (u∗)2

]
dx

=
∫

Q

(ψ1, ψ2)
(

(w∗ − z1)χW

(v∗ − z2)χW

)
dx dt + β

∫

Ω

u∗k dx

=
∫

Q

[
b1∇λ1 · ∇ψ1 + b2∇λ2 · ∇ψ2 + (ψ1, ψ2)MT

(
λ1

λ2

)]
dx dt

+
∫

Q

− [(λ1)tψ1 + (λ2)tψ2] dxdt + β

∫

Ω

u∗k dx

=
∫

Q

(λ1, λ2)
(−kw∗v∗

kw∗v∗

)
dx dt + β

∫

Ω

u∗k dx

=
∫

Q

(−kλ1w
∗v∗ + kλ2w

∗v∗) dx dt + β

∫

Ω

u∗k dx

=
∫

Ω

k(x)

(
βu∗ +

∫ T

0

(−λ1w
∗v∗ + kλ2w

∗v∗) dt

)
dx.

From the above calculation, we obtain the characterization of the optimal
control (explicitly showing the β dependence):

uβ(x) = min

(
M, max

(
1
β

∫ T

0

(λ1 − λ2)wβvβ dt , 0

))
. (25.1)

We illustrate a numerical example in which the exact u(x) = x + 1/4 and
use the observation set W = (0, 1/2) × (0, 1/2). The observation functions
were

z1(x, t) = e−t(2 + cos πx), z2(x, t) = e−t(2− cos πx).

In Figure 25.4, we can see the actual value u versus the approximate optimal
control u∗β in the subdomain (0, 1/2) and with β = 0.05.

25.9 Controlling Boundary Terms

In control of PDEs, one could choose boundary source terms or coefficients
as controls. Consider a parabolic PDE system with Neumann boundary con-
ditions
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0 1

1

x

u
*

β

u

FIGURE 25.4: Exact u and computed approximation u∗β .

wt −∆w = f on Q = Ω× (0, T )
w = w0(x) on Ω× {0}
∂w

∂ν
= u on Ω× (0, T ).

We take our control to be the flux on the boundary. The source term f is
a given bounded function. Our control set is

U =
{

u ∈ L2(∂Ω× (0, T )) : 0 ≤ u(x, t) ≤ M
}

.

We seek to adjust the flux control to drive the solution toward a desired profile
and minimize the cost of the control. The objective functional is

J(u) =
∫

Q

1
2
(
w(x, t)− z(x, t)

)2
dx dt +

B

2

∫

∂Ω×(0,T )

u(x, t)2 dsdt,

where z is a given bounded function. This example is a simple version of the
work in [46]. Since we have chosen a linear PDE, the sensitivity equation
would have the same structure as the state PDE
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ψt −∆ψ = 0 on Q = Ω× (0, T )
ψ = 0 on Ω× {0}

∂ψ

∂ν
= k on Ω× (0, T ),

where ψ is the derivational derivative of w with respect to u in the direction
l. The adjoint equation becomes

−λt −∆λ = w − z on Q = Ω× (0, T )
λ = 0 on Ω× {T}

∂λ

∂ν
= 0 on Ω× (0, T ).

When the objective functional is differentiated, we obtain

0 ≤ lim
ε→0+

J(u∗ + εk)− J(u∗)
ε

=
1
2

lim
ε→0+

∫

Q

[
(wε − z)2 − (w∗ − z)2

ε

]
dx dt

+
B

2ε

∫

∂Ω×(0,T )

[
(u∗ + εk)2 − (u∗)2

]
dsdt

=
∫

Q

ψ(w∗ − z) dx dt + B

∫

∂Ω×(0,T )

u∗k ds dt

=
∫

Q

[−ψλt +∇λ∇ψ] dx dt + B

∫

∂Ω×(0,T )

u∗k ds dt

=
∫

∂Ω×(0,T )

k (λ + Bu∗) ds dt.

Thus the optimal control characterization is

u∗(x) = min
(

M, max
(−λ

B
, 0

))
.

Note that the control appears linearly in this PDE problem and quadratically
in the objective functional. Thus, it is a PDE generalization of the linear
quadratic regulator problem treated in chapter 12. See the book by Lasiecka
and Triggiani for results for such PDE control problems [111, 112]. For an
example of a system with control on the boundary terms, see [119].
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25.10 Exercises

Exercise 25.1 Consider the following predator-prey problem, which has
a slightly different model than in Section 25.7. Find the PDE system and
boundary conditions for the sensitivities and the adjoint, and calculate the
characterization of the optimal control.

wt − b1∆w = (a1 − d1w)w − c1wv − u1w and
vt − b2∆v = −a2v + c2wv − u2v in Q = Ω× (0, T ),

with initial and boundary conditions

w(x, 0) = w0(x), v(x, 0) = v0(x) for x ∈ Ω,

∂w

∂ν
(x, t) = 0,

∂v

∂ν
(x, t) = 0 on ∂Ω× (0, T ).

Our class of admissible controls is

U =
{

(u1, u2) ∈ L2(Ω× (0, T )) : 0 ≤ ui ≤ Γi a.e. for i = 1, 2
}

.

Maximize the objective functional J(u1, u2) defined by

∫

Q

[
K1u1(x, t)w(x, t) + K2u2(x, t)v(x, t)−M1u

2
1(x, t)−M2u

2
2(x, t)

]
dx dt.

Exercise 25.2 Find the equations for the sensitivity and the adjoint and
the characterization of the optimal control. You can check your results in
[123].

wt −∆w = f on Q = Ω× (0, T )
w = w0(x) on Ω× {0}

∂w

∂ν
+ uw = 0 on ∂Ω× (0, T ).

Our control set is

U =
{

u ∈ L2(∂Ω× (0, T )) : 0 ≤ u(x, t) ≤ M
}

.
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The objective functional is

J(u) =
∫

Q

1
2
(
w(x, t)− z(x, t)

)2
dx dt +

B

2

∫

∂Ω×(0,T )

u(x, t)2 dsdt.
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Other Approaches and Extensions

In this final chapter, we present briefly some other topics in optimal control
and optimization problems of biological models. Alternative approaches to
solutions are discussed and some types of underlying dynamics which have
not been treated here are mentioned.

Dynamic Programming

So far, we have solved optimal control problems via the Maximum Principle.
However, this is not the only method for such problems. Another approach,
called dynamic programming, was developed by Richard Bellman. Dynamic
programming provides a procedure for determining the optimal combination
of decisions. It uses the principle of optimality to verify that the value function
satisfies a partial differential equation with appropriate boundary conditions.
We first present this approach as applied to optimal control of differential
equations, and then we present some background in the application of this
approach to discrete models.

Recall from Section 2.3, the principle of optimality roughly says: an optimal
control for a given problem must also be optimal for the reduced problem,
where the initial conditions are shifted forward along the optimal path. In
our basic optimal control problem for ordinary differential equations, we use
u(t) for the control and x(t) for the state. The problem is cast as

max
u

∫ t1

t0

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0.

Also, recall the value function V

V (x0, t0) := max
u

∫ t1

t0

f(t, x(t), u(t)) dt

subject to x′(t) = g(t, x(t), u(t)), x(t0) = x0.
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Note that V (x(t1), t1) = 0. Fix ∆t > 0 small, and break this integral into
two pieces,

V (x0, t0) = max
u

[∫ t0+∆t

t0

f(t, x(t), u(t)) dt +
∫ t1

t0+∆t

f(t, x(t), u(t)) dt

]
.

Using the principle of optimality, the optimal control for the full problem
should be optimal for the problem starting at t0 + ∆t. So,

V (x0, t0) = max
u

[∫ t0+∆t

t0

f(t, x(t), u(t)) dt + V
(
x(t0 + ∆t), t0 + ∆t

)
]

where the maximum is taken over controls u on the interval [t0, t0 + ∆t]. We
can assume ∆t is so small the integrand is approximately constant. Further,
suppose we can expand the second term on the right hand side into a Taylor
series (assuming enough regularity on V). Then,

V (x0, t0) =
max

u
[f(t0, x0, u)∆t + V (x0, t0) + Vt(x0, t0)∆t + Vx(x0, t0)∆x + h.o.t.],

where h.o.t. represents the higher order terms from the Taylor series, and
∆x = x(t0 + ∆t) − x(t0). Dividing by ∆t and letting ∆t → 0 the dynamic
programming PDE or the Hamilton-Jacobi-Bellman equation can be obtained.
Namely,

−Vt(x, t) = max
u

[f(t, x, u) + Vx(x, t)g(t, x, u)]

with boundary condition V (x(t1), t1) = 0. Note this PDE holds for any state
position x and t in the time interval. It has dynamics flowing backward from
the final time t1. See the theory of viscosity solutions developed for solutions
to such equations [39], especially when V is not differentiable.

If, in your model, the decision times can be divided into discrete times and
the range space of the states has a finite number of values, then dynamic
programming for discrete models is a reasonable tool. This approach also
works well for discrete time problems (or discrete in other underlying vari-
ables) since the optimal policy at stage n (or time step n) can be obtained
from the optimal policy at stage n + 1. This iterative backward solving is the
crucial tool. Frequently the range space of the control variable is a finite set.
We point out the interesting work of Mangel and Clark [34, 136] and Houston
and McNamara [86] in this area of dynamic programming. Mangel and Clark
call their models “dynamic state variable models,” which are individual opti-
mization models of behavior and are well suited to empirical studies based on
field or laboratory data [34, 136]. Some of their problems include foraging and
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fattening strategies for willow tits, overwintering foraging by juvenile salmon,
and predicting flowering in thistles. The organism and the environment can
be linked through the expected lifetime success of the organism. Important
issues are whether behaving optimally is important for the organism and eval-
uating the fitness of alternative strategies. This optimization approach had
a big impact on the field of behavioral ecology, and the ease of coding the
algorithm and the applicability to appropriate models were crucial. Using
a continuous approach as opposed to this discrete approach depends on the
situation to be modeled, the number of decisions to be made, and the possible
range values of the state variables.

We also call attention to the idea of stochastic dynamic programming [161].
Possingham and his collaborators have worked extensively on ecological ap-
plications of this approach; we cite only one of many such papers [160].

Linear and Nonlinear Programming

A third approach to optimal control problems is linear and nonlinear pro-
gramming. This involves two steps. First, using linear and nonlinear program-
ming to formulate the control problem or starting with a standard optimal
control formulation using ODEs or discrete equations. Second, using nonlinear
programming to solve the problem.

First, we point out novel examples of formulating spatial optimization prob-
lems using linear and nonlinear programming and then solving them with cor-
responding programming techniques. The books by Hof and Bevers [84, 85]
present ideas and methods for directly optimizing the spatial layout of man-
agement actions across an ecosystem landscape. The spatial relationships
can be simple static or involve spatial autocorrelation and dynamic changes
through time. In [85], the two ways of depicting spatial options are cellu-
lar grids and geometric shapes. In the cellular grid problems, the control
variables are defined for each cell and irregular shapes are approximated by
aggregation of cells. In the geometric shapes case, the control variables define
the size and location of the geometric shapes. In many of their examples,
the underlying ecological relationships are represented in discrete difference
equations with constraints on the control and state variables. The methods
for the numerical solutions include the simplex algorithm, “integer-friendly”
linear mixed-integer programs, and generalized reduced gradient algorithms.
The applications are varied and range from ferret reintroduction in South
Dakota to strategies for controlling wildfires. Note that these examples are
discrete in time and space. Choosing such an approach depends on the scale
of your model.
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Second, there are a variety of methods to solve optimal control problems
via programming, many of which involve discretizing the ODE state equa-
tions and the objective functional and using an optimization approach. The
book by Betts [17] concentrates on numerical methods for solving optimal
control problems, using a sequence of simpler finite dimensional subproblems.
His examples are engineering oriented, but the description of their approach,
“first discretize and then optimize,” is worthwhile. The book by Gregory and
Lin [71] is also a useful reference for numerical techniques involving difference
equations and then generalized spline matrices.

Control versus Optimal Control

We have not treated the area of “control,” which deals with the following
issues:

• Controllability
(use controls to steer system from one position to another)

• Observability
(deduce system information from control input and observation output)

• Stabilization
(implement controls to force stability)

These are frequently considered from the viewpoint of feedback control [30,
87, 116], meaning the optimal control was a function of the state (and not
the adjoint), as in section 12.2. Stabilization results can be obtained by using
Laplace transforms of linear state systems and calculating the poles of the
transfer function, which takes the transformed input function to the output
function [148]. We also did not consider infinite time horizon problems, which
are important in economics applications [33, 87, 100, 124, 167].

The area of geometric control theory is also interesting. It deals with the
idea of reachable sets and trajectories of the state systems, including the case
of having a terminal surface (or manifold) for endpoints of the trajectories.
The application of Lie algebras and brackets to the controllability of certain
ODE systems has applications, for example, in robotics [19, 99, 151, 164,
172]. Inherently, Lie brackets can measure the degree of noncommutativity of
operators, and this property can enable a system to reach more positions in
the state space.
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Alternate Dynamic Features

We have treated systems of ordinary differential equations and partial dif-
ferential equations with continuous dynamics, in addition to discrete equa-
tions. There are many useful other possibilities for features in the dynamics
of the state variables. One can easily imagine differential equations with de-
lays [41, 76, 143, 150], like a drug or vaccine treatment that has a delay before
its effect starts. See [4, 21, 100] for the necessary conditions of optimal control
and [77] for feedback control for delay differential equations.

It is also possible to have dynamics with jumps in the state variables. For
example, consider a model of the seasonal dynamics of ticks and their hosts.
The hosts could have continuous dynamics, but the ticks arrest their devel-
opment in the winter. Thus, the ticks have dynamics in the summers and
the initial condition for one summer could depend on the previous summer,
leading to possible discontinuities or jumps in the dynamics [69]. In many
engineering applications, jumps in the state dynamics and in the controls
have lead to new results [63, 144]. Systems with a mixture of different dy-
namic features like discrete, continuous, and jumps are often called hybrid
systems [75, 121].

Integrodifferential equations have been used successfully to model popula-
tions with distinct growth and dispersal stages. A simple such model would
be

Nt+1(x) =
∫

Ω

k(x, y)f(Nt(y)) dy,

where f is the growth function, and k(x, y) is the dispersal kernel. For a vari-
ety of plant and animal population models with integrodifferential equations,
see the work of Kot, Lewis, and Neubert [108, 127, 153]. These systems are a
type of hybrid system, and recently, the optimal control techniques have been
developed, combining ideas from the discrete version of Pontryagin’s Maxi-
mum Principle and techniques from optimal control of PDEs [91, 94]. For an
application to a plant pathogen model in crops, see [67].

The underlying dynamics of an optimal control problem could be stochas-
tic differential equations (SDEs) due to randomness in the habitat or de-
mographic stochasticity features. There are different types of “calculus” for
such SDEs. The most common type is Ito calculus; for more information
see [62, 65, 88]. As in the optimal control of ODEs, where the adjoint dy-
namics have final time data, the stochastic differential equations (SDEs) case
can be solved with backwards SDEs [134]. Another interesting type of system
involving randomness is piecewise-deterministic processes with deterministic
ODE dynamics between random jumps [43].

In the discrete time case, further extensions can be considered beyond what
was treated here. For example, the state equation could depend on the con-
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trol values at the two previous time steps, not just the immediately preceding
steps. See [96, 97] for an application in improving the chest compression-
decompression pattern in the standard technique of cardiopulmonary resusci-
tation (CPR) using a seven compartment circulation model. Models that are
discrete in space and in time are amenable to the techniques treated here.

Sometimes state constraints can be incorporated in the dynamics of the
system, as in having a lower or upper obstacle on the state values. One
could restrict harvesting so that the state population stays above an enforced
lower bound. In this case, the state ODE or PDE equation would be an
inequality. When the state is strictly above its obstacle, equality would hold.
This framework is called variational inequalities [103], and the optimal control
framework was developed by Barbu [10, 11]. In general, state constraints are
much more difficult to handle than control constraints, whether or not the
state constraints are incorporated into the dynamics [50]. See the survey
paper by Hartl, Sethi, and Vickson [80].

Optimizing Parameters

The idea of optimal control is easily extended to problems where parameters
are to be optimized. Consider this simple illustrative example:

max
u∈R

[
u2 +

∫ T

0

f(t, x(t)) dt

]

subject to x′(t) = g(t, x(t), u), x(0) = x0,

where the parameter u to be controlled (or optimized over) is taken from the
real numbers. If we differentiate the objective functional J(u) with respect to
u at u∗ and choose the adjoint function to satisfy

λ′(t) = −
[
fx(t, x(t)) + λ(t)gx(t, x(t), u)

]
, λ(T ) = 0,

then one obtains

0 = 2u∗ +
∫ T

0

λ(t)gu(t, x(t), u) dt.

We conclude that

u∗ = −1
2

∫ T

0

λ(t)gu(t, x(t), u) dt.

If the only goal is to estimate or optimize a parameter, then other techniques
may be preferable. However, for problems where a parameter and a control
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function are to be optimized simultaneously, then the above method should
be considered [101].

There is another technique for estimating parameters, frequently called data
assimilation. It uses the adjoint equations to approximate the gradient of the
objective functional, which would measure the distance from the state output
from the observations [15, 42, 72]. That gradient information can be used in
an optimization method such as steepest descent [102]. Consider a problem
viewing u as a vector of parameters to be estimated:

max
u∈Rn

[∫ T

0

f(t, x(t), u) dt

]

subject to x′(t) = g(t, x(t), u), x(0) = x0.

Define the adjoint function by

λ′(t) = −
[
fx(t, x(t), u) + λ(t)gx(t, x(t), u)

]
, λ(T ) = 0.

Differentiating the objective functional gives

lim
ε→0

J(u + εh)− J(u)
ε

=
∫ T

0

[fu(t, x(t), u) + λ(t)gu(t, x(t), u)]h(t) dt,

and we obtain the gradient of J ,

∇J(u)(t) = fu(t, x(t), u) + λ(t)gu(t, x(t), u).

The state solution at a particular parameter vector u and the corresponding
adjoint solution can be used to calculate this gradient. The adjoint equation
is used, but not necessarily evaluated at the optimal control.

Final Remarks

This book has mainly focused on the positive side of optimal control the-
ory; that is, methods of solving such problems and usefulness in applications.
However, it should be pointed out that many things can go wrong, and our
methods sometimes fail. We call your attention to a book with counterex-
amples in optimal control [168] and to a section of Macki and Strauss [135]
on “three discouraging examples” about existence of optimal control results.
We suggest the volume by Blondel and Megretski [18] on open problems in
control and systems theory.

Throughout, we have focused on the case of piecewise continuous controls.
Of interest is the theory of chattering controls, those controls which bounce
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between the upper and lower bounds an infinite number of times in a finite
time interval; see the book by Zelikin and Borisov [183].

More control work and biological applications in (partial) functional dif-
ferential equations [181] would be worthwhile. Also, there are many types
of biological models that have not been investigated from an optimal con-
trol or optimization viewpoint. In particular, we mention cellular automata
and individual-based (or agent-based) models [73]. Further work on multi-
drug treatments in disease and cancer models is needed, including linking
epidemiology and immunology models. Multilevel models (sometimes called
multi-models) of diseases or population interactions, which link the individ-
ual, local, and regional levels would be interesting to explore. Also, some
biocontrol problems for invasive populations has been investigated via sce-
nario analysis [81]. We hope that optimal control techniques can be seen as a
viable alternative.
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[176] Fredi Tröltzsch. Optimality Condtions for Parabolic Control Problems
and Applications. Teubner, Leipzig, Germany, 1984.

[177] William R. Wade. An Introduction to Analysis. Prentice Hall, Upper
Saddle River, New Jersey, 2000.

[178] A. Whittle, S. Lenhart, and J. White. Optimal control of gypsy moth
populations. Preprint, 2007.

[179] A. J. Whittle, S. Lenhart, and L. J. Gross. Optimal control for man-
agement of an invasive plant species. Mathematical Biosciences and
Engineering, to appear, 2007.

[180] K. H. Wickwire. Mathematical models for the control of pests and
infectious diseases: A survey. Theoretical Population Biology, 11:182–
238, 1977.

[181] J. Wu. Theory and Applications of Partial Functional Differential Equa-
tions. Springer, New York, 1996.



References 257

[182] Jiongmin Yong and Xun Yu Zhou. Stochastic Controls: Hamiltonian
Systems and HJB Equations. Springer-Verlag, New York, 1999.

[183] M.I. Zelikin and V. F. Borisov. Theory of Chattering Control with
Applications to Astronautics, Robotics, Economics, and Engineering.
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