22-Feb-2019 12:59:43 nint_exactness_mixed_test: MATLAB version Test nint_exactness_mixed. 22-Feb-2019 12:59:43 NINT_EXACTNESS_MIXED MATLAB version Investigate the polynomial exactness of a multidimensional quadrature rule for a region R = R1 x R2 x ... x RM. Individual rules may be for: Legendre: region: [-1,+1] weight: w(x)=1 rules: Gauss-Legendre, Clenshaw-Curtis, Fejer2, Gauss-Patterson Jacobi: region: [-1,+1] weight: w(x)=(1-x)^alpha (1+x)^beta rules: Gauss-Jacobi Laguerre: region: [0,+oo) weight: w(x)=exp(-x) rules: Gauss-Laguerre Generalized Laguerre: region: [0,+oo) weight: w(x)=x^alpha exp(-x) rules: Generalized Gauss-Laguerre Hermite: region: (-oo,+o) weight: w(x)=exp(-x*x) rules: Gauss-Hermite Generalized Hermite: region: (-oo,+oo) weight: w(x)=|x|^alpha exp(-x*x) rules: generalized Gauss-Hermite NINT_EXACTNESS_MIXED: User input: Quadrature rule A file = "sparse_grid_mixed_d2_l2_ccxgl_a.txt". Quadrature rule B file = "sparse_grid_mixed_d2_l2_ccxgl_b.txt". Quadrature rule R file = "sparse_grid_mixed_d2_l2_ccxgl_r.txt". Quadrature rule W file = "sparse_grid_mixed_d2_l2_ccxgl_w.txt". Quadrature rule X file = "sparse_grid_mixed_d2_l2_ccxgl_x.txt". Maximum total degree to check = 9 Spatial dimension = 2 Number of points = 25 Analysis of integration region: 1 Gauss-Legendre 2 Gauss-Legendre Error Degree Exponents 0.0000000000000009 0 0 0 0.0000000000000001 1 1 0 0.0000000000000003 1 0 1 0.0000000000000005 2 2 0 0.0000000000000000 2 1 1 0.0000000000000005 2 0 2 0.0000000000000002 3 3 0 0.0000000000000002 3 2 1 0.0000000000000000 3 1 2 0.0000000000000002 3 0 3 0.0000000000000003 4 4 0 0.0000000000000000 4 3 1 0.0000000000000005 4 2 2 0.0000000000000000 4 1 3 0.0000000000000003 4 0 4 0.0000000000000001 5 5 0 0.0000000000000002 5 4 1 0.0000000000000000 5 3 2 0.0000000000000002 5 2 3 0.0000000000000000 5 1 4 0.0000000000000004 5 0 5 0.0666666666666662 6 6 0 0.0000000000000000 6 5 1 0.6666666666666657 6 4 2 0.0000000000000000 6 3 3 0.0000000000000008 6 2 4 0.0000000000000000 6 1 5 0.0000000000000000 6 0 6 0.0000000000000001 7 7 0 0.0000000000000002 7 6 1 0.0000000000000000 7 5 2 0.0000000000000002 7 4 3 0.0000000000000000 7 3 4 0.0000000000000001 7 2 5 0.0000000000000000 7 1 6 0.0000000000000005 7 0 7 0.0999999999999996 8 8 0 0.0000000000000000 8 7 1 1.3333333333333321 8 6 2 0.0000000000000000 8 5 3 0.6666666666666646 8 4 4 0.0000000000000000 8 3 5 0.1600000000000009 8 2 6 0.0000000000000000 8 1 7 0.0000000000000001 8 0 8 0.0000000000000001 9 9 0 0.0000000000000002 9 8 1 0.0000000000000000 9 7 2 0.0000000000000002 9 6 3 0.0000000000000000 9 5 4 0.0000000000000001 9 4 5 0.0000000000000000 9 3 6 0.0000000000000001 9 2 7 0.0000000000000000 9 1 8 0.0000000000000005 9 0 9 NINT_EXACTNESS_MIXED: Normal end of execution. 22-Feb-2019 12:59:43 nint_exactness_mixed_test: Normal end of execution. 22-Feb-2019 12:59:43