fem2d_poisson_rectangle_linear


fem2d_poisson_rectangle_linear, a MATLAB code which solves the 2D Poisson equation using the finite element method (FEM) with piecewise linear (PWL) triangular elements.

The computational region is a rectangle, with Dirichlet boundary conditions applied along the boundary. The state variable U(X,Y) is then constrained by:

        - ( Uxx + Uyy ) = F(x,y)  in the region
                 U(x,y) = G(x,y)  on the region boundary
      

The computational region is first covered with an NX by NY rectangular array of points, creating (NX-1)*(NY-1) subrectangles. Each subrectangle is divided into two triangles, creating a total of 2*(NX-1)*(NY-1) geometric "elements".

We now assume that the unknown function U(x,y) can be represented as a linear combination of the basis functions associated with each node. For each node I, we determine a basis function PHI(I)(x,y), and evaluate the following finite element integral:

        Integral ( Ux(x,y) * PHIx(I)(x,y) + Uy(x,y) * PHIy(I)(x,y) ) =
        Integral ( F(x,y) * PHI(I)(x,y)
      
The set of all such equations yields a linear system for the coefficients of the representation of U.

Licensing:

The computer code and data files described and made available on this web page are distributed under the MIT license

Languages:

fem2d_poisson_rectangle_linear is available in a C version and a C++ version and a Fortran90 version and a MATLAB version.

Related Data and Programs:

fem2d_poisson_rectangle_linear_test

fem2d_poisson_rectangle, a MATLAB code which solves the 2D Poisson equation on a rectangle, using the finite element method, and piecewise quadratic triangular elements.

Reference:

  1. Hans Rudolf Schwarz,
    Finite Element Methods,
    Academic Press, 1988,
    ISBN: 0126330107,
    LC: TA347.F5.S3313.
  2. Gilbert Strang, George Fix,
    An Analysis of the Finite Element Method,
    Cambridge, 1973,
    ISBN: 096140888X,
    LC: TA335.S77.
  3. Olgierd Zienkiewicz,
    The Finite Element Method,
    Sixth Edition,
    Butterworth-Heinemann, 2005,
    ISBN: 0750663200,
    LC: TA640.2.Z54

Source Code:


Last revised on 13 July 2023.