fem2d_heat_square
18-Apr-2019 08:11:54
fem2d_heat_square
MATLAB version
Test fem2d_heat_square.
18-Apr-2019 08:11:54
FEM2D_HEAT
MATLAB version:
Solution of the time dependent heat equation
on an arbitrary triangulated region D in 2 dimensions.n
Ut - Uxx - Uyy + K(x,y,t) * U = F(x,y,t) in D;
U = G(x,y,t) on boundary;
U = H(x,y,t) at initial time.
The finite element method is used, with
6 node quadratic triangular elements ("T6").
The time derivative is approximated using the
backward Euler formula.
Current status:
* Time step information currently set internally!
* Would be easy to do linear triangles as well.
* Do you want ability to compare to an exact solution?
Node file is "square_nodes.txt".
Element file is "square_elements.txt".
Number of nodes = 81
First 10 nodes
Row: 1 2
Col
1 0.000000 0.000000
2 0.125000 0.000000
3 0.250000 0.000000
4 0.375000 0.000000
5 0.500000 0.000000
6 0.625000 0.000000
7 0.750000 0.000000
8 0.875000 0.000000
9 1.000000 0.000000
10 0.000000 0.125000
Element order = 6
Number of elements = 32
First 10 elements
Row: 1 2 3 4 5 6
Col
1 1 19 3 10 11 2
2 21 3 19 12 11 20
3 3 21 5 12 13 4
4 23 5 21 14 13 22
5 5 23 7 14 15 6
6 25 7 23 16 15 24
7 7 25 9 16 17 8
8 27 9 25 18 17 26
9 19 37 21 28 29 20
10 39 21 37 30 29 38
Quadrature order = 7
The matrix half bandwidth is 18
The matrix bandwidth is 37
The storage bandwidth is 55
Initial time = 0.000000
Final time = 0.500000
Step size = 0.050000
Number of steps = 10
FEM2D_HEAT:
Normal end of execution.
18-Apr-2019 08:11:54
fem2d_heat_square
Normal end of execution.
18-Apr-2019 08:11:54
diary off